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Abstract: The traditional manual breast cancer diagnosis method of pathological images is time-
consuming and labor-intensive, and it is easy to be misdiagnosed. Computer-aided diagnosis of WSIs 
gradually comes into people’s sight. However, the complexity of high-resolution breast cancer 
pathological images poses a great challenge to automatic diagnosis, and the existing algorithms are 
often difficult to balance the accuracy and efficiency. In order to solve these problems, this paper 
proposes an automatic image segmentation method based on dual-path feature extraction network for 
breast pathological WSIs, which has a good segmentation accuracy. Specifically, inspired by the 
concept of receptive fields in the human visual system, dilated convolutional networks are introduced 
to encode rich contextual information. Based on the channel attention mechanism, a feature attention 
module and a feature fusion module are proposed to effectively filter and combine the features. In 
addition, this method uses a light-weight backbone network and performs pre-processing on the data, 
which greatly reduces the computational complexity of the algorithm. Compared with the classic 
models, it has improved accuracy and efficiency and is highly competitive. 

Keywords: semantic segmentation; breast cancer; whole-slide image; feature extraction; computer-
aided diagnosis; deep learning 

 

1. Introduction  

According to the latest global cancer data released by International Agency for Research on Cancer 
(IARC), female breast cancer has surpassed lung cancer as the most commonly occurring cancer 
worldwide for the first time [1]. Even though, the mortality rate of breast cancer has been steadily 
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decreasing in recent years, especially in developed countries. The contrast is due in large part to the 
gradual improvement of clinical treatment methods which depend on early detection and correct 
diagnosis. Histological examination of biopsy specimen is considered to be the golden standard for 
breast cancer detection and affirmation [2]. Traditionally pathologists perform operations such as 
focusing, zooming and panning on the slices of breast tissue under an electronic or light microscope 
in order to observe and analyze the density and shape of cells, and the structure and morphology of 
local tissues at different magnifications. Accordingly, whether cancer occurs and the location and 
extent of the lesions could be determined, and further treatments could be made [3].  

With the increasing number of breast cancer patients, the traditional diagnosis method based on 
manual observation is facing huge challenges. Firstly, observation through microscopes consumes 
substantial time and effort owing to the complexity and diversity of breast tissue, thus leading to a 
percentage of misdiagnosis [4]. Furthermore, the average diagnostic concordance among different 
pathologists’ individual interpretations based on a single breast biopsy slide reaches only 75.3% [5] 
affected by both objective factors such as different staining methods and equipment batches, and 
subjective factors including diversity of pathologists’ personal clinical experience and evaluation 
criteria as well [6,7]. Such challenges are unfavorable for the determination of therapy courses, which 
may bring about overtreatment or undertreatment and further lead to harm or even death of patients. 
Therefore, there is urgent need for an objective, accurate and effective auxiliary system to 
automatically process histological images and assist the pathologists to make wiser diagnosis and 
treatment options. 

More recently, thanks to the tremendous progress of digital pathology technology and machine 
learning, computer-aided diagnosis (CAD) has become possible [8]. This paper focuses on the 
semantic segmentation of whole-slide images (WSIs). In the light of the proliferation degree of breast 
tumor, each pixel in the WSIs is classified into 4 predominant cancer types: normal, benign, in situ 
carcinoma and invasive carcinoma, thus WSIs are automatically divided into four regions respectively. 
The automatic segmentation result could provide pathologists a pixel-wise understanding of WSIs and 
a scientific basis for correct and fast diagnosis.  

In this paper, we propose an end-to-end automatic segmentation system for breast cancer 
histological images. The main contributions of this paper are as follows: 

1) We adopt the dual-path structure to the semantic segmentation of histological images for the 
first time and modify it to solve the high-resolution and semantically complicated WSIs of breast 
cancer, consequently improving the segmentation accuracy and efficiency. 

2) We introduce dilated convolution structure in the spatial path and draw the attention mechanism 
into the semantic path as well as the feature fusion module, reconciling the rich context of WSIs with 
detailed information, enabling the network with powerful feature acquisition and discrimination ability. 

3) The pre-processing operation used alleviates the data capacity and the light-weight backbone 
structure of our network lows the model complexity, which greatly speeds up the segmentation of high-
resolution WSIs and further makes automatic diagnosis entering the clinic possible. 

The rest of the paper is organized as follows. Section 2 suggests and analyzes the related works of 
automatic segmentation of medical images. In Section 3, the dataset we used and the steps of automatic 
segmentation are declared in detail. Section 4 describes experimental details and displays the results. 
Section 5 makes a discussion on the results. Finally, Section 5 makes a summary on the paper. 
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2. Related works 

The development process of automatic segmentation of pathological images can be roughly 
divided into two stages, based on the different basic theory used and various methods of feature 
extraction [9]. 

In the first stage, researchers employed traditional machine learning algorithms along with 
handcrafted features of pathological images such as texture, spatial structure and colors. A lot of 
classical algorithms of feature extraction emerged during this period. Naik et al. [10] used a level-set 
algorithm to identify the feature of boundaries and a template matching algorithm with shape models 
to identify glands and nuclei. The accuracy obtained 87% when the algorithm was used to discriminate 
cancer form non-cancer in breast histology. Jung and Kim [11] proposed a watershed-based method 
for segmentation of cervical and breast cell images, and introduced ellipsoidal modeling of contours 
to adjust nuclei contours. Kowal et al. [12] used four different clustering approaches including K-
means, fuzzy C-means, competitive learning neural networks and Gaussian mixture models to each 
extract 42 morphological, topological and texture features. Next these features were put into three 
different classifiers to decide whether cancer occurred. Belsare et al. [13] proposed a similarity based 
super pixel generation method and integrate it with texton representation to form spatio-color-texture 
map of breast histology image. This approach segmented nuclear arrangement in normal or 
malignant duct. Compared to manual segmentations, the above methods did demonstrate good 
accuracy on early pathological datasets. However, these operations are time-consuming and 
computationally expensive [14], and cannot work without professional pathological knowledge. 
Besides, as the resolution and scale of datasets continue to improve, the low-level visual feature 
information that is easy to be observed by human eyes no longer meet the requirements, and abstract 
and high-level features are difficult to be captured. Meanwhile, the limitations of conventional 
algorithms also lead to poor robustness of the model, which seriously restrict the evolution of 
medical image segmentation. 

In the second stage, deep learning (DL), especially convolutional neural network (CNN) begins 
to play an important role in the field of computer vision [15]. CNNs can automatically learn useful 
features from training data by optimizing the loss function, which not only avoids the complexity and 
limitation of handcrafted features, but also enables image segmentation models better robustness and 
versatility. For the past few years, CNNs have been widely used in medical image segmentation and 
have made excellent achievements. Ciresan et al. [16] classified patches with each pixel as the center, 
and take the classification result as the category of the pixel to get a pixel-wise classification image so 
that the segmentation completed. This method ranked first in the ICPR2012 mitosis detection 
competition. But the pixel-by-pixel computation causes high overlapping and wasting, which is not 
suitable for giga-pixel WSIs. Litjens et al. [17] converted CNN to a fully convolutional network (FCN) 
and applied it to the WSI to get a likelihood map where each pixel has a continuous potential between 
0 and 1 of containing cancer. Compared with pixel-by-pixel method [16], FCN employed transposed 
convolution instead of simple upsampling and achieved end-to-end segmentation in a more convenient 
and faster way. In 2015, U-net, one of the most frequently used models in medical field, was proposed 
by Ronneberger et al. [18]. U-net was an encoder-decoder model, which captured global features on 
the contraction path and realize accurate location on the extension path, so as to reserve both low-level 
and high-level information of images. The segmentation accuracy was greatly improved and a lot of 
state-of-art schemes were the modified version of the encoder-decoder structure. Ho et al. [19], using 
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U-net as the single-magnification network, proposed a multi-encoder multi-decoder multi-
concatenation architecture for breast cancer images at different magnifications and segmentated the 
WSIs into carcinoma, benign epithelial, background, stroma, necrotic and adipose. Anand et al. [20] 
raised a ResU-Net structure for breast tumor segmentation where residual connections were added to 
address vanishing gradient. Chen et al. [21] proposed Deeplab which introduced dilated convolution 
for the first time. Without increasing the amount of calculation, Deeplab can obtain more contextual 
information, which won the first place in PASCAL VOC competition. The improved Deeplab v3+ was 
introduced to recognize and segmentate gastric cancer [22], and has proven its worth in automatic 
medical image processing. 

Despite the above studies to some extent achieved satisfactory results, semantic segmentation on 
breast cancer images still has a long way to go. Most of the studies to date focus on binary classification 
such as detection of cancer areas, and classification of benign and malignant. Multi-classification 
concerning the malignant degree of tumor is more clinically valuable because it provides more specific 
grading information, where interclass difference is much smaller and needs multiscale features 
integrating more detailed information. Moreover, most of the existing models have complicated 
structure and a large number of parameters, leading to high memory consumption and low inference 
speed, which is contrary to the original intention of aiding diagnosis in an efficient way. Considering 
the above problems, we refer to Bilateral Segmentation Network (BiSeNet) [23] with excellent 
performance on remote sensing images and proposed a dual-path feature extraction network for breast 
pathological image segmentation. 

3. Materials and methods 

In this section, we first display the dataset used in this paper. Then, the pre-processing operations 
of the whole-slide images (WSIs) are stated. In the last subsection, the architecture of the proposed 
segmentation model is presented and each module of the model is described in detail. 

 

Figure 1. The overall process of segmentation. 
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3.1. Dataset 

This paper adopts the standard dataset from ICIAR 2018 Grand Challenge on BreAst Cancer 
Histology images (BACH) Part B [24]. All the whole-slide images (WSIs) of this dataset were 
collected from hematoxylin-eosin (H&E) stained slices of breast cancer patients during 2013–2015, in 
Castelo Beanco, Portugal. The acquisition system was Leica SCN400. WSIs are released in the form 
of. svs, with a pixel scale of 0.467/pixel. Each image has a different size, with width ∈ [39980, 62952] 
(pixels) and height ∈ [27972, 44889] (pixels). Ten WSIs out of 30 were annotated by a pathologist 
and revised by a second one, where there was disagreement were discarded. Benign, in situ carcinoma 
and invasive carcinoma regions are pixel-wise annotated, and the rest is considered as normal tissue. 
The corresponding ground truth of each image was provided in the form of .xml files, containing a 
corresponding set of labelled coordinates of each kind of region. 

3.2. Pre-processing 

WSIs comprise breast tissue as well as none-tissue regions. To focus on the tissue area and speed 
up the following process, this paper designs a method to extract the foreground area from WSI. In the 
H&E-stained slices, the cell nuclei are purple and the cytoplasm is pink, while the non-tissue area is 
grayish-white [25]. It is obvious that the more colorful the region, the more likely it is to be a tissue 
region. In other words, the more inconsistent the RGB channel values of the image, the more it would 
be preserved. 

	 	 	                         (1) 

The binary image  is obtained by thresholding the range of the RGB channels. As shown 
in Figure 2, the colorful area is filtered out so that the binary mask is made and the useless none-tissue 
areas are removed. 

 

Figure 2. The overall process of foreground segmentation, (a) original WSI (b) 
binarization mask (c)tissue area. 

WSIs cannot be directly input to the neural network because the existing graphics card cannot 
support an array of giga-pixel images. What’s more, the length and width of the images from 
ICIAR2018 are not equal. If WSIs are forced into squares, 1/4 of the information will be lost and 
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distortion may occur. Accordingly, we crop WSIs into patches with a size of 512 × 512. The patch of 
this size is not only large enough to envelop plenty diagnostic information and prevent the imbalance 
of training categories that may cause overfitting, but also small enough to concentrate on cell-level 
details and avoid too much memory and time consuming [18]. Finally, considering the great gap in the 
proportion of samples (normal regions are much more than the other three), we performed data 
augmentation on the training set to ensure uniform distribution and prevent overfitting [26]. 

3.3. Model building 

The framework of our network is shown as Figure 3. Two paths are proposed to capture and encode 
different levels of feature information of breast cancer images, a feature fusion model (FFM) is 
followed. To realize the end-to-end segmentation, we adopt 8 unsampling operations on the joint 
spatial-semantic feature. At last, a Softmax function is conducted to supervise the output of the network. 
The rest of this section specifically illustrates each part of the network. 

 

Figure 3. The architecture of dual-path feature extraction network. 

3.3.1. Spatial path 

The structure of spatial path is shown as Figure 4. Firstly, three ordinary convolutions were 
performed on the pre-processed patch with a kernel size of 3 × 3 and a stride of 2, producing a feature 
map whose size is 1/8 of the original patch, which directly composes 1/4 of the output of spatial path 
as identity mapping by residual connection.  

We introduce three parallel branches based on the structure of RFB [27], which respectively 
consist of different size of kernels and dilated convolution layers with various dilation rates. From top to 
bottom: The first branch consists of a 1 × 1 convolution kernel, a 3 × 3 dilated convolution kernel with 
dilation rate set to 1, equivalent to a 1 × 1 receptive field; The middle branch compromises a 3 × 3 
convolution kernel together with a 3 × 3 dilated convolution kernel with dilation rate set to 3, equivalent 
to a 1 × 1 receptive field. The third branch introduced two 3 × 3 convolutional layers instead of a 5 × 5 
kernel, followed by a 3 × 3 dilated convolution kernel with dilation rate set to 3.  

Eventually, the three feature maps extracted by the three parallel branches are concatenated 
together with the identity mapping, forming the output of spatial path. The output feature map with the 
size of (64, 64, 128) includes multi-scale contextual information and further prepares high-resolution 
low-level spatial information for the segmentation task. 
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Figure 4. Spatial path. 

 

Figure 5. Semantic path. 
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3.3.2. Semantic path 

In contrast to spatial path, semantic path aims at the extraction of high-level semantic information, 
as it is shown in Figure 5. Xception39 [28] is explored as the backbone network, which is a depthwise 
separable convolution network designed on the basis of InceptionV3. It is light-weighted compared 
with other networks [17–19,21] commonly used in medical images thus effectively reducing training 
costs. Xception39 was then is followed by a global average pool to integrate global context information. 

Every channel of the feature map corresponds to a specific semantic feature response, while only 
discriminative features do help with segmentation results [29]. Therefore, this paper designs a feature 
attention module which aims to pick out discriminative features from the last two stages of Xception36. 
This module is based on the channel attention mechanism which can capture channel-wise 
dependencies and put emphasis on salient objects to suppress the redundant discriminative features. 

The structure of feature attention module is shown in Figure 6. Compared to SE-Block [29], we 
conduct both global average and max pool on the input feature map and generating two 1D feature 
vectors. Then the two vectors are concatenated and then reduced the channel number to 1/16 by a 1 × 1 
convolution layer. ReLU function introduces non-linearity after the channel reduction. Then the channel 
expanded via a 1 × 1 convolution layer to 128, and a sigmoid function is utilized to activate the 
convolution result so that 1D attentive weight WFAM could be obtained. The value of each element of 
WFAM is constrained between 0 and 1. The input feature map of feature attention module passes through 
a 1 × 1 projection layer which calibrates the number of channels to 128, and finally a channel-wise 
multiplication is performed with attentive weight WFAM to generate the output feature map of feature 
attentive module. 

 

Figure 6. Feature attention module. 

Back to the bottom of Figure 5, semantic path step-wise combines upsampled output feature maps 
from the global pool layer and the last two stages of the semantic path. 
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3.3.3. Feature fusion module 

The features extracted by the two paths have different levels of information. The spatial path 
captures rich low-level detailed spatial information, while the semantic path encodes high level 
semantic information. If two different levels of information are integrated forcibly, the huge gap 
between them may lead to terrible segmentation results. Therefore, a feature fusion module must be 
proposed to narrow the gap. In our model, the feature fusion module is also based on the channel 
attention mechanism, as shown in Figure 7. 

 

Figure 7. Feature fusion module. 

We first element-wise add two output feature maps from two paths as a preliminary fusion. 
Then a global average pooling is operated. Next two fully-connected convolution (FC) layers are 
performed on the 1D feature vector for channel reduction and expansion, which respectively follow 
the two activation functions of ReLU and Sigmoid. The 1D weight vector WFFM is generated by the 
preliminary fusion, so it can effectively narrow the gap between high-level and low-level feature 
information, and guide feature selection. By the means of channel-wise multiplying WFFM with 
output feature maps from spatial and semantic path, feature representations important for 
segmentation are adaptively selected and discriminative ones are inhibited. Eventually, the two 
reweighted feature map are concatenated to generate the final fusion output, which is the end of the 
whole dual-path feature extraction. 

4. Experiment 

4.1. Experimental details 

The entire semantic segmentation experiment is completed under the Keras framework built 
under windows 10. The experimental platform established by Inter ® Xeon E5-2620 v4 CPU 2.4 GHz, 
and NVIDIA RTX2080 GPU with 8 G GPU memory. 

There are 10 pixel-wise annotated WSIs in ICIAR2018 BACH dataset. We use 8 of them for training 
and 2 for verification. According to the label type of the image center pixel, 2000 normal, 2000 benign 
and 2000 in situ carcinoma, and 2000 invasive carcinoma patches were randomly extracted from 
each WSI to form the training dataset. In order to prevent model overfitting [30], all the patches are 
rotated by 90°, 180° and 270° each, so that the scale of training data is expanded to 4 times the original. 
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The initial learning rate of the model is set to 0.00 01, and the Adam optimizer is selected for 
iterative optimization. Small batch stochastic gradient descent algorithm is used. The batch size is set 
to 4, and the epoch is set to 500. In addition, in order to avoid model overfitting, the regularization 
method of early termination is used in the training process. 

4.2. Evaluation metrics 

In the segmentation of breast cancer whole-slide images, we adopt three metrics to evaluate the 
accuracy including Intersection over Union (IoU), mean Intersection over Union (mIoU), and Pixel 
Accuracy (PA), together with two metrics to estimate effectiveness of the algorithm, involving 
calculation time and model complexity. 

Pixel accuracy (PA) is the ratio of the sum of all correctly classified pixels to the total number of 
pixels, which is defined as follows: 

∑

∑
                                      （2） 

The intersection over union (IoU) of each category is the ratio of the number of real samples to 
the sum of the numbers of real samples, false negative samples and false positive samples in this 
category. And mean Intersection over Union (mIoU) averages the IoU of all categories, which is 
defined as follows: 

∑
∑

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	   (3)	

4.3. Experimental results 

To evaluate the proposed model, we compare the segmentation performance with three other 
methods based on deep learning, including FCN-32s [17], U-Net [18], and Deeplab [21]. 

4.3.1. Results for accuracy evaluation 

As shown in Table 1, The PA and mIoU scores of the semantic segmentation method proposed in 
this paper are higher than those of other networks. At the same time, the IoU score of our model in 
benign, in situ carcinoma and invasive carcinoma is the highest in all networks, and the IoU of normal 
tissue is slightly lower than that of the best Deeplab network. However, the basic purpose of CAD is 
to automatically identify the cancer area, which means it is more critical to accurately segment 
cancerous regions (benign, in situ, and invasive) than normal tissues. Therefore, in terms of overall 
accuracy, the experimental results on ICIAR2018 BACH dataset strongly verify the effectiveness of 
the proposed networks’ feature capture ability and model performance. 

4.3.2. Results for efficiency evaluation 

The fundamental purpose of computer-aided diagnosis is to improve the diagnosis efficiency of 
pathologists. The blind pursuit of segmentation accuracy while ignoring the calculation cost cannot 
put the algorithm into practical use. Therefore, efficiency is also an important evaluation index of the 
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semantic segmentation model. As we can see in Table 2, the parameter amount of the FCN is large, 
and the training time is the longest. Although Deeplab and U-net have nice performance, due to the 
complex network structure, the running speed is also low. The light-weight network proposed in this 
paper reaches a better segmentation performance without increasing the number of parameters, and 
the calculation speed is obviously faster than the other three networks. 

Table 1. Results for accuracy evaluation. 

Model 
IoU (%) 

mIoU (%) PA (%) 
Normal Benign In Situ Invasive 

FCN-32s 56.28 59.61 57.78 61.33 58.75 72.30 

U-net 64.68 60.75 59.87 65.78 62.77 78.76 

Deeplab 68.82 62.52 64.34 64.8 65.12 82.48 

Our net 68.20 66.80 65.22 72.26 68.12 87.02 

Table 2. Results for efficiency evaluation. 

Model Model complexity Calculation time (min) 

FCN-32s 54 10  10 

U-net 2	 10  6–8 

Deeplab 1	 10  3–5 

Our net 0.7 10  2–3 

5. Discussion 

5.1. Discussion on the segmentation results 

5.1.1. Analysis of the segmentation accuracy 

Figure 8 shows the comparison between our network and other networks. The superiority of our 
structure is reflected in the following aspects: 

1) The dual-path framework in feature extraction exactly meets the requirements of breast tissue 
classification. The semantic path can extract high-level semantic features, and the spatial path can 
supplement the underlying spatial information accordingly, which can fully extract the rich information 
at the cell level as well as tissue level in the pathological image of breast cancer. 

2) Dilated convolution is utilized to enhance the capability of encoding multi-scale contexts and 
thus resolve high intra-class differences in breast tissue. 

3) Feature attention module based on channel attention reinforces representational ability of 
semantics and thus address low inter-class variations in breast tissue. 

4) Channel attention mechanism efficiently fusion the low-level and high-level features. Two 
levels of feature fused preliminarily and then direct the low-level feature to restore semantic 
predictions, and also provide high-level feature with contextual particulars. This fusion method closes 
the distance of feature maps from dual paths and combines them more wisely. 
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Figure 8. Visual presentation of segmentation on WSIs ( ：benign； ：in situ； ：

invasive). 

5.1.2. Analysis of the segmentation efficiency 

When applied in practice, the load of high-resolution histological images along with large model 
complexity not only cannot be an effective auxiliary diagnosis tool, but also may become a burden to 
GPU/CPU memory and put forward higher requirements on the performance of computers in 
hospitals. So, efficiency is definitely a vital factor when segmentation system is devised. Our method 
has obvious advantage over other state-of-time models on ICPR2018 dataset as it is suggested in 
Section 4.3.2. There are mainly three following key concepts attributing to the high efficiency of our 
segmentation system: 

1) The foreground segmentation based on thresholding operated in the pre-processing stage 
removes nontissue areas in WSIs, which considerably reduces the data that needs to be processed later. 

2) In the spatial path of the proposed network, shallow layers are adapted and channel capacity is 
cautiously arranged to ensure no added model complexity and no loss of accuracy at the same time. 

3) The semantic path needs a deep-layer network to capture high-level feature maps. We utilized 
the light-weight backbone network Xception to alleviate the computational burden caused by deep 
networks. 

5.2. Ablation analysis on the segmentation network 

To investigate the property of every single part in the proposed network and further maximize the 
benefits of the model, we conducted separate experiments targeting at different modules.  

Table 3. Ablation analysis on dilation rate. 

Dilation rates PA (%) mIOU (%) 

{1, 3, 5} 

(Our method) 
87.02 68.12 

{1, 2, 3} 86.98 68.02 

{5, 6, 7} 86.79 67.93 

Firstly, in the spatial path, the three parallel branches involve dilated convolutional layers with 
three dilated rates. It is elaborated in chapter 3.3.1 that the eccentricity of the receptive field is 
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controlled by dilated rates, which inevitably become the key parameters determining the model 
performance. Therefore, we decide three sets of dilation rates {1, 3, 5}, {1, 2, 3}, {5, 6, 7} to see their 
impact on our segmentation model. The results shown in Table.3 confirm that the dilated rate {1, 3, 5} 
is favorable for the proposed breast cancer segmentation algorithm. 

While in the semantic path, the feature attention module plays the dominant role in extracting and 
selecting discriminative features. Therefore, the ablation study carried out by removing it and 
replacing it with an alternative module SE-block as shown in Table 4. The accuracy decreased 
significantly when the channel attention module is not introduced. Our feature attention module is 
inspired by SE-block [29] but presents a slightly better performance, probably owing to the addition 
of max pooling operation that aims at selecting the local distinctive feature and thus having a better 
channel-wise inference of feature mapping highlights. 

Table 4. Ablation analysis on feature attention module in semantic path. 

Channel attention modules in semantic path PA (%) mIOU (%) 

No channel attention module 84.72 65.33 

SE-Block [29] 86.54 68.04 

Feature attention module (Our method) 87.02 68.12 

In addition, we also display the ablation analysis using the feature fusion method. We compare 
the channel–attention-mechanism-based feature fusion module of our network with element-wise 
addition and concatenation as it is shown in Table 5. Element-wise addition and concatenation could 
to some extent reduce the model complexity, but show poor segmentation effects, especially in terms 
of pixel accuracy (PA) score. Our method suggests a significant improvement of model performance, 
which shows effectiveness in integrating different levels of information from different paths. 

Table 5. Ablation analysis using feature fusion method. 

Feature fusion method PA (%) mIOU (%) 

Element-wise addition 85.47 67.38 

concatenation [29] 85.50 67.95 

Channel–attention-based feature fusion module (Our method) 87.02 68.12 

5.3. Reprocessing 

It can be seen from Figure 8 that although the method proposed in this paper is ahead of other 
algorithms in terms of segmentation effect, there are still many holes in particular regions, and the 
boundary is not smooth and clear enough. After analysis, it is found that the main reason is that 
the 512 × 512 image block cropping operation limits the available context of the convolutional 
neural network to a certain extent, making the network unable to obtain a larger range of organizational 
features, and the final segmentation result lacks global shape information. In view of the above 
problems, this paper implies a conditional random field (CRF) [20] to optimize the images, and the 
final results of mapping on the original WSIs are shown in Figure 9. The segmented area tends to be 
complete and smooth, which is closer to the ground truth. Table 6 shows the changes of accuracy and 
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efficiency before and after reprocessing. It can be seen that the morphological pre-processing has a 
slightly positive impact on the segmentation accuracy, but there is a loss in costing time. 

 

Figure 9. Visual presentation of segmentation before and after reprocessing. 

Table 6. Comparison before and after reprocessing. 

Reprocessing PA (%) MIoU (%) Calculation time (min)

before 87.02 68.12 2–3 

after 87.74 68.53 3–5 

6. Conclusions 

The automatic segmentation of different regions of breast tissue pathological images is of great 
significance to the computer-aided diagnosis of breast cancer, and can provide reliable reference for 
the diagnosis and prognosis of breast cancer. This paper proposes a deep convolutional network based 
on dual-path feature extraction networks to solve the semantic segmentation task of high-resolution 
breast cancer WSIs. The light-weight dual-path structure is designed comprising dilated convolution 
layers in for encoding sufficient multi-scale contexts, feature attention module in semantic path for 
selecting discriminative semantic features, and feature fusion module for the efficient fusion of 
heterogeneous outputs of two different levels. This segmentation system focuses on improving the 
consistency of the same type of regions and alleviate high inter-class variation of breast cancer 
histological images, reaching a balance between segmentation accuracy and efficiency. On the 
ICPR2018 dataset, our method outperformed three other networks in segmentation accuracy, especially 
for the most lethal invasive carcinoma. The PA score of the model in this paper reached 87.02%, and the 
mIoU score reached 68.12%. 

At the same time, the method proposed also has some limitations. Firstly, because the standard 
medical datasets are scarce and difficult to obtain, this model was only verified on only one dataset. In 
the future, it should be tested on more datasets and applied to other computer vision tasks based on 
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histological images, such as the detection of mitosis and nuclei. Secondly, according to the Nottingham 
grading system [31], invasive breast cancer can be further graded with three independent indexes [32], 
each of which worth future exploration, because the further classification of subtypes and histological 
grading has better clinic value for breast cancer prognosis. 
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