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Abstract: This paper investigates the output-feedback stabilization for stochastic nonlinear systems
with both Markovian switching and time-varying powers. Specifically, by developing a novel dynamic
gain method and using the Itô formula of Markovian switching systems, a reduced-order observer with
a dynamic gain and an output-feedback controller are designed. By using advanced stochastic analysis
methods, we show that the closed-loop system has an almost surely unique solution and the states are
regulated to the origin almost surely. A distinct feature of this paper is that even though there is no
Markovian switching, our design is also new since it can deal with nonlinear growth rate, while the
existing results can only deal with constant growth rate. Finally, the effectiveness of the design method
is verified by a simulation example.
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1. Introduction

In many industrial applications, due to the ubiquity of stochastic noise and nonlinear [1, 2], real
systems are often modelled by stochastic differential equations, which attracts researchers to pay more
and more attention to the control of stochastic systems. Using the state-feedback, a closed-loop pole
can be arbitrarily configured to improve the performance of the control systems. Therefore, some
scholars research the problem of state-feedback stabilization for stochastic systems, e.g., reference [3]
focuses on the cooperative control problem of multiple nonlinear systems perturbed by second-order
moment processes in a directed topology. Reference [4] considers the case where the diffusion term and
the drift term are unknown parameters for stochastic systems with strict feedback. Reference [5] studies
stochastic higher-order systems with state constraints and [6] discusses output constrained stochastic
systems with low-order and high-order nonlinear and stochastic inverse dynamics. However, it is often
difficult to obtain all the state variables of the system directly, it is unsuitable for direct measurement
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or the measurement equipment is limited in economy and practicality, so the physical implementation
of state-feedback is difficult. One of the solutions to this difficulty is to reconstruct the state of the
system. At this time, scholars use an observer to investigate the output-feedback stabilization, e.g.,
reference [7] investigates the prescribed-time stability problem of stochastic nonlinear strict-feedback
systems. Reference [8] focuses on stochastic strict feedback systems with sensor uncertainties. In
addition, based on output-feedback, for nonlinear multiagent systems, a distributed output-feedback
tracking controller is proposed in [9].

It should be noted that all of the above results [7–9], Markovian switching is not considered in the
design of output-feedback controller. However, as demonstrated by [10], switching system is a
complex hybrid system, which consists of a series of subsystems and switching rules that coordinate
the order of each subsystem. In real life, due to the aging of internal components, high temperature,
sudden disturbance of external environment, operator error and other inevitable factors, the structure
of many systems changes suddenly. Such systems can be reasonably modelled as differential equation
with Markovian switching, see [11, 12]. Recently, references [13] and [14] discuss the adaptive
tracking problem and output tracking problem with Markovian switching respectively. Besides, as
shown in [15], the power of the system changes because of factors such as the aging of the springs
inside the boiler-turbine unit. Therefore, the research on the stability of stochastic nonlinear systems
with time-varying powers has important practical significance. Reference [16] investigates the
optimality and stability of high-order stochastic systems with time-varying powers. However, these
results do not address the output-feedback stabilization for higher-order stochastic systems with both
Markovian switching and time-varying powers.

Based on these discussions, we aim to resolve the output-feedback stabilization for higher-order
stochastic nonlinear systems with both Markovian switching and time-varying powers. The main
contributions and characteristics of this paper are two-fold:

1) The system model we take into account is more applicable than the existing results [7–9] and
[12–14]. Different from the previous results [7–9], the stochastic system with Markovian switching
is studied in this paper. Unlike previous studies in [12–14], we investigate the power is time-varying.
The simultaneous existence of the Markov process and time-varying order makes the controller design
process more complicated and difficult. More advanced stochastic analysis techniques are needed.

2) We propose a new observer. The existence of Markovian switching and nondifferentiable time-
varying power makes the observer constructed in [7–9] invalid. We use the time-varying power’s
bounds to construct a new observer, which can effectively observe the unmeasurable state and can deal
with the nonlinear growth rate, while the existing observer can only deal with constant growth rate.

The rest of this paper is listed as follows. The problem is formulated in Section 2. In Section 3,
an output-feedback controller is designed. Section 4 is the stability analysis. A simulation is given in
Section 5. The conclusions are collected in Section 6.

Notations: R2 denotes the 2-dimensional space and the set of nonnegative real numbers is
represented by R+. X denotes the matrix or vector, its transpose is represented by XT . |X| denotes the
Euclidean norm of a vector X. When X is square, Tr{X} denotes its trace. The set of all functions with
continuous ith partial derivatives is represented by Ci. Let C2,1(R2 × R+ × S ; R+) represent all
nonnegative functions V on R2 × R+ × S which are C2 in x and C1 in t.
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2. Problem formulation

This paper studies the output-feedback stabilization for stochastic nonlinear systems with both
Markovian switching and time-varying powers described by:

dζ1 = [ζ2]m(t)dt,

dζ2 = [u]m(t)dt + f T
γ(t)(ζ̄2)dω,

y = ζ1,

(2.1)

where ζ = ζ̄2 = (ζ1, ζ2)T ∈ R2, y ∈ R and u ∈ R are the system state, control output and the input,
respectively. The state ζ2 is unmeasurable. The function m(t) : R+ → R+ is continuous and bounded,
which satisfies 1 ≤ m ≤ m(t) ≤ m̄ with m and m̄ being constants. The powers sign function [·]α is
defined as [·]α := sign(·)| · |α with α ∈ (0,+∞). The functions fγ(t) is assumed to be smooth, and for all
t ≥ 0, the locally Lipschitz continuous in x uniformly. fγ(t)(t, 0) = 0. ω is an r−dimensional standard
Wiener process, which is defined on the complete probability space (Ω,F ,Ft, P) with the filtration
Ft satisfying the general conditions. γ(t) is a homogeneous Markov process on the probability space
taking values in a space S = {1, 2, ...,N}, which the generator Γ = (λi j)N×N given by

Pi j(t) = P{γ(t + s) = i|γ(s) = j}

=

{
λi jt + o(t) if i , j,
1 + λi jt + o(t) if i = j,

(2.2)

where λi j > 0 is the transition rate from i to j if i , j while λii = −Σ
N
j=1,i, jλi j for any s, t ≥ 0. Suppose

the Markov process γ(t) is irrelevant to the ω(t).
To implement the controller design, we need the following assumption.

Assumption 2.1. There exists a non-negative smooth function f̃ (ζ1) such that

| fγ(t)(ζ̄2)| ≤
(
|ζ1|

m(t)+1
2 + |ζ2|

m(t)+1
2

)
f̃ (ζ1). (2.3)

Remark 2.1. As we know, the existing results for stochastic systems with time-varying powers
(e.g., [16]), neither the state-feedback control nor the output-feedback control, has considered
Markovian switching. However, the structure of many physical systems in the actual system often
mutates, which makes it necessary to study systems with both Markovain switching and time-varying
powers. Therefore, compared with [16], the model we consider is more practical and more general.

Remark 2.2. In Assumption 2.1, we can see that the power m(t) is time-varying and the growth rate
f̃ (ζ1) is a nonlinear function. When m(t) = 1 and f̃ (ζ1) is a constant, Assumption 2.1 is a linear growth
condition. However, we consider that f̃ (ζ1) is a nonlinear function, which includes the constant case
as a special case. The growth condition of Assumption 2.1 is broader than the linear growth condition.
The time-varying power m(t) makes the design in [7–9] for time-invariant power invalid. In addition,
the nonlinear growth rate f̃ (ζ1) makes the design in [7–9, 17, 18] for constant growth rate fail. A new
design scheme should be proposed.
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3. Controller design

In this section, we develop an output-feedback controller design for system (2.1). The process is
divided into two steps:
• Firstly, we assume that all states are measurable and develop a state-feedback controller using

backstepping technique.
• Secondly, we construct a reduced-order observer with a dynamic gain, and design an output-

feedback controller.

3.1. State-feedback controller design

In this part, under Assumption 2.1, our objective is to develop a state-feedback controller design for
the system (2.1).

Step 1. Introducing the coordinate transformation ξ1 = ζ1 and choosing V1 =
1
4ξ

4
1, by using the

infinitesimal generator defined in section 1.8 of [11], we have

LV1 ≤ ξ
3
1[ζ2]m(t) + IIV1

≤ ξ3
1([ζ2]m(t) − [ζ∗2]m(t)) + ξ3

1[ζ∗2]m(t) + IIV1.
(3.1)

If we choose ζ∗2 as
ζ∗2 = −c1/m

1 ξ1 := −α1ξ1, (3.2)

we get
ξ3

1[ζ∗2]m(t) = −αm(t)
1 ξ

m(t)+3
1 ≤ −c1|ξ1|

m(t)+3, (3.3)

where α1 = c1/m
1 ≥ 1 is a constant with c1 ≥ 1 being a design parameter.

Substituting (3.3) into (3.1) yields

LV1 ≤ −c1|ξ1|
m(t)+3 + ξ3

1

(
[ζ2]m(t) − [ζ∗2]m(t)

)
+ IIV1. (3.4)

Step 2. Introducing the coordinate transformation ξ2 = ζ2 − ζ∗2 , and using Itô’s differentiation rule,
we get

dξ2 =
(
[u]m(t) −

∂ζ∗2
∂ζ1

[ζ2]m(t)
)

dt + f T
γ(t)(ζ̄2)dω. (3.5)

Choose V2 = V1 +
1
4ξ

4
2. From (3.4) and (3.5), we obtain

LV2 ≤ −c1|ξ1|
m(t)+3 + ξ3

1

(
[ζ2]m(t) − [ζ∗2]m(t)

)
+ ξ3

2[u]m(t)

− ξ3
2

∂ζ∗2
∂ζ1

[ζ2]m(t) +
3
2
ξ2

2 | f
T
γ(t)(ζ̄2)|2 + IIV2.

(3.6)

By (3.2) and using Lemma 1 in [19], we have

ξ3
1

(
[ζ2]m(t) − [ζ∗2]m(t)

)
≤ m̄(2m̄−2 + 2)

(
|ξ1|

3|ξ2|
m(t) + αm̄−1

1 |ξ1|
m(t)+2|ξ2|

)
. (3.7)

By using Lemma 2.1 in [20], we get

m̄(2 + 2m̄−2)|ξ1|3|ξ2|m(t) ≤
1
6
|ξ1|

3+m(t) + β211|ξ2|
3+m(t),

m̄(2 + 2m̄−2)αm̄−1
1 |ξ1|

m(t)+2|ξ2| ≤
1
6
|ξ1|

3+m(t) + β212|ξ2|
3+m(t),

(3.8)

Mathematical Biosciences and Engineering Volume 19, Issue 11, 11071–11085.



11075

where

β211 =
m̄

m + 3

(
m̄

(
2 + 2m̄−2

)) 3+m̄
m

(
3 + m

18

)− 3
m̄

,

β212 =
1

m + 3

(
m̄

(
2 + 2m̄−2

)
αm̄−1

1

)m̄+3
(

m + 3
6(m̄ + 2)

)−(m̄+2)

.

(3.9)

Substituting (3.8) into (3.7) yields

ξ3
1

(
[ζ2]m(t) − [ζ∗2]m(t)

)
≤

1
3
|ξ1|

3+m(t) + β21|ξ2|
3+m(t), (3.10)

where β21 = β211 + β212 is a positive constant.
By (3.2) and using Lemma 5 in [21], we get

|ζ2|
m(t) = |ξ2 + ζ

∗
2 |

m(t)

≤ (|ξ2| + |α1ξ1|)m(t)

≤ 2m̄−1
(
|ξ2|

m(t) + |α1ξ1|
m(t)

)
≤ 2m̄−1αm̄

1

(
|ξ2|

m(t) + |ξ1|
m(t)

)
,

(3.11)

which means that
|ζ1|

m(t) + |ζ2|
m(t) ≤ φ1

(
|ξ2|

m(t) + |ξ1|
m(t)

)
, (3.12)

where φ1 = 2m̄−1αm̄
1 + 1 ≥ 0 is a constant.

By (3.11) and using Lemma 1 in [19], we have

ξ3
2

∂ζ∗2
∂ζ1

[ζ2]m(t) ≤ |ξ3
2 ||
∂ζ∗2
∂ζ1
|2m̄−1αm̄

1

(
|ξ2|

m(t) + |ξ1|
m(t)

)
≤ 2m̄−1αm̄

1 |
∂ζ∗2
∂ζ1
|
(
|ξ2|

m(t)+3 + |ξ3
2 ||ξ1|

m(t)
)
.

(3.13)

By using Lemma 2.1 in [20], we get

2m̄−1αm̄
1 |
∂ζ∗2
∂ζ1
||ξ3

2 ||ξ1|
m(t) ≤

1
3
|ξ1|

3+m(t) + β221(ζ1)|ξ2|3+m(t), (3.14)

where

β221(ζ1) =
3

m + 3

(
2m̄−1αm̄

1 |
∂ζ∗2
∂ζ1
|

) m̄+3
3

(
m + 3

3m̄

)− m̄
3

. (3.15)

Substituting (3.14) into (3.13) yields

ξ3
2

∂ζ∗2
∂ζ1

[ζ2]m(t) ≤
1
3
|ξ1|

3+m(t) + β22(ζ1)|ξ2|3+m(t), (3.16)

where β22(ζ1) = 2m̄−1αm̄
1 |
∂ζ∗2
∂ζ1
| + β221(ζ1) is a smooth function irrelevant to m(t).

By (3.12), using Assumption 2.1 and Lemma 1 in [19], we get

3
2
ξ2

2 | f
T
γ(t)(ζ̄2)|2 ≤ 3 f̃ 2(ζ1)|ξ2|2

(
|ζ1|

m(t)+1 + |ζ2|
m(t)+1

)
≤ 3 f̃ 2(ζ1)φ2

(
|ξ2|

m(t)+3 + |ξ2|
2|ξ1|

m(t)+1
)
,

(3.17)
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where φ2 = 2m̄αm̄+1
1 + 1 ≥ 0 is a constant.

From Lemma 2.1 in [20], we obtain

3 f̃ 2(ζ1)φ2|ξ2|
2|ξ1|

m(t)+1 ≤
1
3
|ξ1|

m(t)+3 + β231(ζ1)|ξ2|m(t)+3, (3.18)

where

β231(ζ1) =
2

m + 3

(
3 f̃ 2(ζ1)φ2

) m̄+3
2

(
m + 3

3(m̄ + 1)

)− m̄+1
2

. (3.19)

Substituting (3.18) into (3.17) yields

3
2
ξ2

2 | f
T
γ(t)(ζ̄2)|2 ≤

1
3
|ξ1|

m(t)+3 + β23(ζ1)|ξ2|m(t)+3, (3.20)

where β23(ζ1) = 3 f̃ 2(ζ1)φ2 + β231(ζ1) ≥ 0 is a smooth function irrelevant to m(t).
By using (3.6), (3.10), (3.16) and (3.20), we obtain

LV2 ≤ −(c1 − 1)|ξ1|m(t)+3 + ξ3
2

(
[u]m(t) − [x∗3]m(t)

)
+ ξ3

2[x∗3]m(t) + β2(ζ1)|ξ2|m(t)+3 + IIV2,
(3.21)

where β2(ζ1) = β21(ζ1) + β22(ζ1) + β23(ζ1) is a smooth function irrelevant to m(t).
Constructing the virtual controller as

x∗3 = − (c2 + β2(ζ1))
1
m := −α2(ζ1)ξ2, (3.22)

we have
ξ3

2[x∗3]m(t) = −αm(t)
2 (ζ1)ξm(t)+3

2

≤ − (c2 + β2(ζ1)) ξm(t)+3
2 ,

(3.23)

where c2 > 0 is a constant and α2(ζ1) ≥ 0 is a smooth function irrelevant to m(t).
Substituting (3.23) into (3.21) yields

LV2 ≤ −(c1 − 1)|ξ1|m(t)+3 − c2|ξ2|
m(t)+3 + ξ3

2

(
[u]m(t) − [x∗3]m(t)

)
+ IIV2. (3.24)

3.2. Output-feedback controller design

In this part, we first design a reduced-order observer with a dynamic gain, then we design an output-
feedback controller.

Since ζ2 are unmeasurable, we construct the following observer

dη =
(
[u]m(t) −

∂L(ζ1)
∂ζ1

[η + L(ζ1)]m(t)
)

dt, (3.25)

where L(ζ1) is a smooth function, and ∂L(ζ1)
∂ζ1
> 0 is irrelevant to m(t).

Defining e = ζ2 − L(ζ1) − η and by the construction of the observer, we have

de =
∂L(ζ1)
∂ζ1

(
[η + L(ζ1)]m(t) − [ζ2]m(t)

)
dt + f T

γ(t)(ζ̄2)dω. (3.26)
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Choose U = 1
4e4. From (3.26), we get

LU = e3∂L(ζ1)
∂ζ1

(
[η + L(ζ1)]m(t) − [ζ2]m(t)

)
+

3
2

e2| f T
γ(t)(ζ̄2)|2 + IIU. (3.27)

By definition of e and lemma 2.2 in [22], we have

e3∂L(ζ1)
∂ζ1

(
[η + L(ζ1)]m(t) − [ζ2]m(t)

)
≤ −

1
2m̄−1

∂L(ζ1)
∂ζ1

em(t)+3. (3.28)

From (3.12), (3.17) and Assumption 2.1,we get

3
2

e2| f T
γ(t)(ζ̄2)|2 ≤ 3 f̃ 2(ζ1)|e|2

(
|ζ1|

m(t)+1 + |ζ2|
m(t)+1

)
≤ 3 f̃ 2(ζ1)φ2

(
|e|2|ξ2|m(t)+1 + |e|2|ξ1|m(t)+1

)
.

(3.29)

By using Lemma 2.1 in [20], we have

3 f̃ 2(ζ1)φ2|e|2|ξ1|1+m(t) ≤ |ξ1|
3+m(t) + β31(ζ1)|e|3+m(t),

3 f̃ 2(ζ1)φ2|e|2|ξ2|1+m(t) ≤
1
2
|ξ2|

3+m(t) + β32(ζ1)|e|3+m(t),
(3.30)

where

β31(ζ1) =
2

m + 3

(
3 f̃ 2(ζ1)φ2

) m̄+3
2

(
m + 3
m̄ + 1

)− m̄+1
2

,

β32(ζ1) =
2

m + 3

(
3 f̃ 2(ζ1)φ2

) m̄+3
2

(
3 + m

2(1 + m̄)

)− 1+m̄
2

.

(3.31)

Substituting (3.30) into (3.29) yields

3
2

e2| f T
γ(t)(ζ̄2)|2 ≤ |ξ1|m(t)+3 +

1
2
|ξ2|

m(t)+3 + β3(ζ1)|e|m(t)+3, (3.32)

where β3(ζ1) = β31(ζ1) + β32(ζ1) ≥ 0 is a smooth function irrelevant to m(t).
Substituting (3.28), (3.32) into (3.27) yields

LU ≤ |ξ1|m(t)+3 +
1
2
|ξ2|

m(t)+3 −

(
1

2m̄−1

∂L(ζ1)
∂ζ1

− β3(ζ1)
)
|e|m(t)+3 + IIU. (3.33)

Since ζ2 is unmeasurable, replace ζ2 in virtual controller x∗3 with η + L(ζ1), and we can get the
controller as follows

u = −α2(ζ1) (η + L(ζ1) + α1ζ1) . (3.34)

By (3.22), (3.24) and (3.34), we obtain

LV2 ≤ − (c1 − 1)|ξ1|m(t)+3 − c2|ξ2|
m(t)+3

+ ξ3
2α

m̄
2 (ζ1)

(
[ξ2]m(t) − [ξ2 − e]m(t)

)
+ IIV2.

(3.35)
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By using Lemma 1 in [19], we have

ξ3
2α

m̄
2 (ζ1)

(
[ξ2]m(t) − [ξ2 − e]m(t)

)
≤ αm̄

2 (ζ1)m̄(2m̄−2 + 2)
(
|ξ2|

3|e|m(t) + |e||ξ2|m(t)+2
)
.

(3.36)

By using Lemma 2.1 in [20], we get

αm̄
2 (ζ1)m̄(2m̄−2 + 2)|ξ2|3|e|m(t) ≤

1
4
|ξ2|

3+m(t) + β41(ζ1)|e|3+m(t),

αm̄
2 (ζ1)m̄(2m̄−2 + 2)|e||ξ2|2+m(t) ≤

1
4
|ξ2|

3+m(t) + β42(ζ1)|e|3+m(t),

(3.37)

where

β41(ζ1) =
m̄

m + 3

(
αm̄

2 (ζ1)m̄(2m̄−2 + 2)
) m̄+3

m

(
m + 3

12

)− 3
m̄

,

β42(ζ1) =
1

m + 3

(
αm̄

2 (ζ1)m̄(2m̄−2 + 2)
)m̄+3

(
m + 3

4(m̄ + 2)

)−(m̄+2)

.

(3.38)

Substituting (3.37) into (3.36) yields

ξ3
2α

m̄
2 (ζ1)

(
[ξ2]m(t) − [ξ2 − e]m(t)

)
≤

1
2
|ξ2|

3+m(t) + β4(ζ1)|e|3+m(t), (3.39)

where β4(ζ1) = β41(ζ1) + β42(ζ1) ≥ 0 is a smooth function irrelevant to m(t).
By using (3.39) and (3.35), we have

LV2 ≤ −(c1 − 1)|ξ1|m(t)+3 − (c2 −
1
2

)|ξ2|m(t)+3 + β4(ζ1)|e|m(t)+3 + IIV2. (3.40)

Choosing V(ξ1, ξ2, e) = V2(ξ1, ξ2) + U(e), by (3.33) and (3.40), we obtain

LV ≤ −(c1 − 2)|ξ1|m(t)+3 − (c2 − 1)|ξ2|m(t)+3

−

(
1

2m̄−1

∂L(ζ1)
∂ζ1

− β3(ζ1) − β4(ζ1)
)
|e|m(t)+3 + IIV.

(3.41)

Let

L(ζ1) =
1

2m̄−1

(
c3ζ1 +

∫ ζ1

0
(β3(s) + β4(s)) ds

)
, (3.42)

and the controller as

u = −α2(ζ1)
(
η +

1
2m̄−1

(
c3ζ1 +

∫ ζ1

0
(β3(s) + β4(s)) ds

)
+ α1ζ1

)
, (3.43)

where c3 > 0 is a design parameter.
By using (3.41) and (3.42), we can obtain

LV ≤ −(c1 − 2)|ξ1|m(t)+3 − (c2 − 1)|ξ2|m(t)+3 − c3|e|m(t)+3 + IIV. (3.44)
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Remark 3.1. If m(t) is time-invariant and the growth rate is a constant rather than a smooth function,
such as those in [7–9], from (3.32) and (3.39), β3 and β4 are constants irrelevant to ζ1. Then, the
dynamic gain L(ζ) is a linear function of ζ1. We can design L(ζ1) = c ζ1 by choosing the right parameter
c to make LV in (3.41) negative definite. However, in this paper, the growth rate f̃ (ζ1) is a nonnegative
smooth function and the m(t) is time-varying and non-differentiable, which makes the deducing of the
dynamic gain much more difficult. To solve this problem, we introduce two constants m and m̄, which
are reasonably used in the design process, see (3.7) and (3.11). In this way, the dynamic gain (3.42) can
be designed irrelevant to m(t), which is crucial to assure the effectiveness of the observer and controller.
This is one of the main innovations of this paper.

4. Stability analysis

In this section, for the closed-loop system (2.1), (3.25) and (3.43), we first give a lemma, which
is useful to prove the system has a unique solution. Then, we present the main results of the stability
analysis.

Lemma 4.1. For ζ ∈ R, the function g(ζ) = [ζ]m(t) satisfies the locally Lipschitz condition.

Proof. If ζ = 0, we can get

h
′

+(0) = lim
ζ→0+

h(ζ) − h(0)
ζ

= 0,

h
′

−(0) = lim
ζ→0−

h(ζ) − h(0)
ζ

= 0.
(4.1)

Then, we have
dh
dζ

∣∣∣∣∣
ζ=0
= h

′

+(0) = h
′

−(0) = 0, (4.2)

thus, h(ζ) is differentiable function in ζ = 0 and so meets the locally Lipschitz condition in ζ = 0.
As ζ > 0, we get

h(ζ) = [ζ]m(t) = ζm(t). (4.3)

For m(t) ≥ 1, h(ζ) is differentiable function in ζ > 0, so meets the locally Lipschitz condition in ζ > 0.
Similarly, as ζ < 0, the conclusion is valid.

Therefore, the conclusion holds for ζ ∈ R. □

Next, we give the stability results.

Theorem 4.1. Under Assumption 2.1, for the system (2.1), using the observer (3.25) and controller
(3.43) with

ci > 3 − i, i = 1, 2, 3, (4.4)

we can get
1) For each ζ(t0) = ζ0 ∈ R2 and γ(t0) = i0 ∈ S , the closed-loop system has an almost surely unique

solution on [0,+∞);
2) For any ζ0 ∈ R2 and i0 ∈ S , the closed-loop system is almost surely regulated to the equilibrium

at the origin.

Mathematical Biosciences and Engineering Volume 19, Issue 11, 11071–11085.



11080

Proof. By (2.1), (3.25), (3.43) and using Lemma 4.1, we can conclude that the closed-loop system
satisfies the locally Lipschitz condition. By (3.2), (3.22), (3.25) and (3.42), we can get that ξ1, ξ2, η are
bounded, which implies that ζ1 is bounded, which means that

VR = inf
t≥t0,|ζ |>R

V(ζ(t))→ ∞⇐⇒ R→ ∞. (4.5)

Through the verification of the controller development process, we choose appropriate design
parameters ci to satisfy (4.4), and we can get IIV = 0. For each l > 0, the first exit time is defined as

σl = inf{t : t ≥ t0, |ζ(t)| ≥ l}. (4.6)

When t ≥ t0, choose tl = min{σl, t}. We can obtain that bounded |ζ(t)| on interval [t0, tl] a.s., which
means that V(ζ) is bounded in the interval [t0, tl] a.s. By using (3.44), we can get that LV is bounded
in the interval [t0, tl] a.s. By using Lemma 1.9 in [11], (3.44) and (4.4), we can obtain

EV(ζ(tl)) ≤ EV(ζ(t0)). (4.7)

By (4.5), (4.7) and using Lemma 1 in [23], we can obtain conclusion (1).
From (3.44), (4.5), by using Theorem 2.1 in [24], we can prove conclusion (2). □

5. A simulation example

In this section, a simulation example is given to show the availability of the control method.
Study the stabilization for system with two modes. The Markov process γ(t) belongs to the space

S = {1, 2} with generator Γ = (λi j)2×2 given by λ11 = 2, λ12 = −2, λ21 = −1 and λ22 = 1. We have
π1 =

1
3 , π2 =

2
3 . When γ(t) = 1, the systems can be written as

dζ1 = [ζ2]
3
2+

1
2 sin tdt,

dζ2 = [u]
3
2+

1
2 sin tdt + ζ1 sin ζ2dω,

y = ζ1,

(5.1)

where m(t) = 3
2 +

1
2 sin t,m = 1, m̄ = 2. When γ(t) = 2, the systems are described by

dζ1 = [ζ2]2+sin tdt,

dζ2 = [u]2+sin tdt +
1
2
ζ2

1 sin ζ2dω,

y = ζ1,

(5.2)

where m(t) = 2 + sin t,m = 1, m̄ = 3. Clearly, system (5.1) and (5.2) satisfy Assumption 2.1.
According to the above design process, when γ(t) = 1, the observer is constructed as

dη =
(
[u]

3
2+

1
2 sin t −

∂L(ζ1)
∂ζ1

[η + L(ζ1)]
3
2+

1
2 sin t

)
dt, (5.3)

and the control is
u = −

(
c2 + 4ζ2

1

)
(η + L(ζ1) + c1ζ1), (5.4)
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where L(ζ1) = 1
2 (c3ζ1 + 6ζ2

1 ).

When γ(t) = 2, the observer is constructed as

dη =
(
[u]2+sin t −

∂L(ζ1)
∂ζ1

[η + L(ζ1)]2+sin t

)
dt, (5.5)

and the control is

u = −
(
c2 + 4ζ1 + 12ζ2

1

)
(η + L(ζ1) + c1ζ1), (5.6)

where L(ζ1) = 1
4 (c3ζ1 + 20ζ1 + 4ζ2

1 ).

For simulation, we select c1 = 6, c2 = 6, c3 = 5, and the initial conditions as
ζ1(0) = −1, ζ2(0) = 2, η(0) = −5. We can obtain Figure 1, which illustrates that the signals of the
closed-loop system (ζ1, ζ2, u, η, e) converge to zero. Specifically, the states and controller of the
closed-loop system converge to zero. The observation error also converges to zero, which means that
our constructed observer and controller are efficient. Figure 2 illustrates the jump of Markov process
γ(t) in 1 and 2.
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Figure 1. The responses of closed-loop systems (5.1)–(5.6).
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Figure 2. The runs of the Markov process γ(t).

Remark 5.1. It can be observed from the example that there are time-varying powers and Markovian
switching in systems (5.1) and (5.2). For the output-feedback control of the system (5.1) and (5.2), the
method in [7–9] fails since they can only deal with time-invariant powers without Markovian switching.
To solve the difficulties caused by time-varying powers, we introduce constants 1, 2, and 1, 3 so that
the design of the observer and controller is irrelevant to the power. This is one of the characteristics of
our controller and observer design scheme (5.3)–(5.6).

6. Concluding remarks

We investigate the output-feedback stabilization for stochastic nonlinear systems with both
Markovian switching and time-varying powers in this paper. Compared with existing work, the
system model considered in this paper is more general because it studies the time-varying power and
Markovian switching, simultaneously. To achieve stabilization, we first design a state observer with a
dynamic gain and an output-feedback controller, then use advanced stochastic analysis techniques to
prove that the closed-loop system has an almost surely unique solution and the states are regulated to
the origin almost surely. Even though there is no Markovian switching, the results in this paper are
also new in the sense that we consider nonlinear growth rate, which is much more general than
constant growth rate cases in [7–9].

There are many related problems to be considered, such as how to extend the result to impulsive
systems [25–27] and systems with arbitrary order.
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