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Abstract: Acoustic neuroma is a common benign tumor that is frequently associated with postopera-
tive complications such as facial nerve dysfunction, which greatly affects the physical and mental health
of patients. In this paper, clinical data of patients with acoustic neuroma treated with microsurgery by
the same operator at Xiangya Hospital of Central South University from June 2018 to March 2020 are
used as the study object. Machine learning and SMOTE-ENN techniques are used to accurately predict
postoperative facial nerve function recovery, thus filling a gap in auxiliary diagnosis within the field
of facial nerve treatment in acoustic neuroma. First, raw clinical data are processed and dependent
variables are identified based on clinical context and data characteristics. Secondly, data balancing is
corrected using the SMOTE-ENN technique. Finally, XGBoost is selected to construct a prediction
model for patients’ postoperative recovery, and is also compared with a total of four machine learning
models, LR, SVM, CART, and RF. We find that XGBoost can most accurately predict the postoperative
facial nerve function recovery, with a prediction accuracy of 90.0% and an AUC value of 0.90. CART,
RF, and XGBoost can further select the more important preoperative indicators and provide therapeutic
assistance to physicians, thereby improving the patient’s postoperative recovery. The results show that
machine learning and SMOTE-ENN techniques can handle complex clinical data and achieve accurate
predictions.
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1. Introduction

Acoustic neuroma (AN) is the most common benign tumor of the internal auditory tract and the
cerebellopontine horn region, accounting for approximately 90% of cerebellopontine horn tumors and
8% of intracranial tumors in adults, for which surgery is the primary therapy [1]. With the advancement
of microsurgery and improved diagnosis in recent years, postoperative mortality of acoustic neuroma
has gradually decreased. The goal of treatment has shifted from saving the patient’s life to preserving
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facial and acoustic nerve function and improving quality of life [2]. It is still difficult to maximize the
patient’s facial nerve anatomy and postoperative function during surgery. Before undergoing surgery,
the patient’s preoperative indications must be obtained through relevant tests, and a treatment plan must
be developed. Because of the large individual variability among patients and their preoperative indices,
the treatment plan and postoperative recovery of facial nerve function vary greatly. Investigating the
relationship between preoperative indicators and postoperative recovery, as well as predicting the re-
covery, can assist physicians in developing individualized treatment approaches, surgical plans, and
prognostic measures. This necessitates an accurate prediction of postoperative facial nerve function
recovery. Further, it can improve the patient’s recovery and quality of life.

The study of tumor-related diseases has long been a priority in clinical medicine. With the ad-
vancement of computer technology, machine learning as an artificial intelligence science has become
increasingly popular in biomedical fields such as clinical diagnosis, precision treatment, and tumor
health monitoring [3]. The opening of the Artificial Intelligence in Medicine (AIME) conference in
1985 brought computer science, medicine, and biology even closer together, as well as the realization
that computers’ computational power could solve more clinical medical problems [4,5]. In comparison
to traditional statistical methods, machine learning is more concerned with the model predictive abil-
ity and generalization ability, so it has precision and accuracy that other models don’t have. Machine
learning can provide more accurate diagnostic algorithms and postoperative predictions in the study
of tumor-related diseases [6–11]. Among them, machine learning models such as logistic regression,
support vector machine, decision tree and ensemble models are widely used due to their excellent
performance and high accuracy [12–16].

XGBoost, a classical boosting machine learning model, has been widely used in the biomedical field
since it was proposed in 2016 due to its extremely high accuracy and excellent properties [17–21]. In
2019, Fu et al. [22] used XGBoost to construct a prognostic model framework for predicting invasive
disease-free survival (iDFS) in early-stage breast cancer patients. Experiments demonstrated its very
competitive performance and helped physicians to develop treatment plans that may prolong patient
survival. In 2020, Li et al. [23] constructed an orthopedic auxiliary classification prediction model
based on XGBoost. The experiments demonstrated its ability to cope with complex and diverse medical
data and better meet the requirements of timeliness and accuracy of ancillary diagnosis. In 2021,
Hsiao et al. [24] used an improved XGBoost model to predict the risk of death due to ovarian cancer.
Compared with other methods, the model has improved sensitivity in classifying patients for risk and
helps to optimize the treatment of high-risk patients.

The studies mentioned above show that machine learning techniques are becoming more mature in
tumor diagnosis and prognosis. Some traditional statistical methods, such as regression analysis and
significance tests, are currently being used in studies of postoperative facial nerve function recovery in
patients with AN. They are typically used to determine whether specific indicators effect the recovery,
whereas machine learning techniques are less commonly used [25]. Therefore, in this study, machine
learning techniques are considered to predict the recovery. After collecting the raw clinical data and
quantifying them, data balancing is corrected using SMOTE-ENN technique. XGBoost is selected to
construct a prediction model for the recovery, which is also compared with a total of four machine
learning models: logistic regression, support vector machine, decision tree, and random forest. Among
them, logistic regression is a traditional statistical method, and not exclusively a machine learning
tool. It is chosen to better compare with other classical machine learning models. In terms of each
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evaluation criteria, XGBoost outperforms other models. The prediction model based on XGBoost can
accurately predict the recovery of patients. Further, based on the importance of the features, preop-
erative indicators that have a significant impact on the recovery are sought. In addition, a prognostic
model framework is built to accurately predict the recovery.

The main contributions of the study are listed as follows:
1) For the first time, machine learning techniques are applied to the study of postoperative facial

nerve function recovery in patients with AN. We break the limitations of traditional studies and use
machine learning techniques to achieve accurate prediction of the postoperative recovery of patients.

2) Completing the collection and processing of complex clinical data. The data of AN is charac-
terized by difficult collection, unbalanced data, and a small sample size. We finish the collection and
processing of data, using SMOTE-ENN technology for data correction.

3) Filling the gap of auxiliary diagnosis within the field of AN facial nerve treatment. The XGBoost
prediction model can accurately predict the postoperative recovery of patients and assist doctors in
developing personalized treatment plans. This helps to form a synergy of existing medical information
and further promotes the development of smart medical care.

Figure 1. A prognostic model framework of postoperative recovery in AN patients.

2. Materials

2.1. Data source

The data are provided by the neurosurgery department at Central South University’s Xiangya Hos-
pital. They are collected retrospectively from patients who had microsurgery performed by the same
operator between June 2018 and March 2020. Patients’ data include basic patient information, tumor
image data, preoperative patient symptom assessment, and postoperative facial nerve function assess-
ment, which is obtained 6 months after surgery via follow-up visit. Due to patient privacy concerns
and a follow-up walkout, 128 patients’ data are included in our study. The study is approved by the Re-
search Ethics Committee of Xiangya Hospital, and an ethical certificate for the use of human subjects
is obtained.

The uniform inclusion criteria are:
1) Age is greater than 16 years and less than 80 years.
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2) Pathology is proven to be AN.
3) Preoperative image suggests that the tumor originated from the auditory nerve, and surgery con-

firms that the tumor originated from the auditory nerve Schwann cells.

2.2. Data quantification

The data in this work include age, gender, tumor size, tumor nature, tumor with or without brainstem
compression, internal auditory tract shape, Samii grading, TFIAC grading, preoperative neurological
grading, presence of cerebellar symptoms, presence of posterior group neurological symptoms, and
postoperative facial nerve grading, for a total of 12 variables.

The variables must then be quantified. Continuous variables such as age and tumor size don’t
require any special processing, whereas qualitative variables are a little more complicated. They must
be quantified one by one based on their characteristics. The gender is divided into two categories, with
the female being 0 and male being 1. The tumor nature is classified as solid or other, with solid being 0
and other being 1. The tumor with or without brainstem compression, presence of cerebellar symptoms,
and presence of posterior group neurological symptoms are all dichotomous variables, with absence
defined as 0 and presence defined as 1. The internal auditory tract shape is divided into physiological
shape and other shapes, denoted by the numbers 0 and 1. Samii grading is divided into T1, T2, T3a,
T3b, T4a, and T4b, and is inscribed as 1, 2, 3, 4, 5, and 6. TFIAC grading is divided into I, II, III, and
IV, and is denoted as 1, 2, 3, and 4. The preoperative and postoperative facial nerve gradings are I, II,
III, IV, V, and VI, and are denoted as 1, 2, 3, 4, 5, and 6.

Table 1. House-Brackman grading.

Grading Function grading Grading criteria
Grade I Normal Normal state of facial muscle movement in all regions.

Grade II Mild abnormal
Mild facial muscle weakness, mild asymmetry of the cor-
ners of the mouth during motor status.

Grade III Moderate abnormal
Obvious facial muscle weakness, mild asymmetry of the
corners of the mouth when using maximum force in the mo-
tor state.

Grade IV Moderate to severe abnormal
Obvious facial deformation or facial muscle weakness, and
obvious asymmetry in the corners of the mouth when using
maximum force in the motor state.

Grade V Severe abnormal

Only extremely subtle facial movements are visible to the
naked eye, and when in motion, the eyes cannot be com-
pletely closed after exertion, and the corners of the mouth
can move slightly.

Grade VI Completely abnormal No movement at all.

2.3. Dependent variable determination

Our purpose is to accurately predict patients’ postoperative recovery of facial nerve function. The
recovery corresponded to patients’ facial nerve grading at the time of follow-up, with the grading cri-
teria referring to the House-Brackmann (H-B) scoring system (Table 1). The smaller the postoperative
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facial nerve grading of the patient, the more complete the facial nerve function is preserved.
It is widely assumed that when patients’ facial nerve gradings are grade I, their facial nerve function

retention is more complete, and their postoperative facial nerve recovery is better. When the grading
of the facial nerve are grade II, III, IV, V, and VI, the facial nerve function retention is incomplete, and
the recovery is poor. As a result, the dependent variable can be identified as the patient’s postoperative
facial nerve recovery: better or worse, denoted by 0 and 1, respectively.

2.4. Data Structure

We have processed all data materials up to this point, and there are 11 independent variables and 1
dependent variable, with 2 continuous and 9 qualitative variables included in the independent variables.
The dependent variable is qualitative that reflects the patients’ postoperative facial nerve recovery
(Table 2).

Table 2. Comparison of variables.

Variable Name Description Range of value
Facial nerve function recovery Qualitative Variable (2 levels) Better / Worse
Patient gender Qualitative Variable (2 levels) Male / Female
Patient age Continuous Variable (years) 17–73
Tumor size Continuous Variable (cm3) 0.585–93.897
tumor nature Qualitative Variable (2 levels) Solid / Other
Tumor with brainstem compression Qualitative Variable (2 levels) Yes / No
Internal auditory tract shape Qualitative Variable (2 levels) Physiological shape / Others
TFIAC grading Qualitative Variable (4 levels) Grade I - Grade IV
Samii grading Qualitative Variable (6 levels) Grade T1–Grade T4b
Cerebellar symptoms resence Qualitative Variable (2 levels) Yes / No
Posterior group neurological symptoms Qualitative Variable (2 levels) Yes / No
Preoperative neurological grading Qualitative Variable (6 levels) Grade I–Grade VI

3. Methods

3.1. SMOTE-ENN

The problem of data imbalance frequently arises in practical medical data, which means that the
number of samples in different categories in the dataset varies greatly [26]. Methods for dealing with
data imbalance are broadly classified as algorithmic and dataic [27]. Algorithm-level methods fre-
quently encounter new problems in their application. Data-level methods primarily employ sampling
techniques to reconstruct data in order to change the data sample distribution. Oversampling and un-
dersampling are two common sampling techniques.

If there is a large difference in the number of samples from different categories in a dataset S , it
is considered unbalanced. Typically, sampling techniques can be used to solve this problem. Chawla
proposed SMOTE in 2002 as a classic comprehensive minority class oversampling algorithm [28].
The primary goal of this algorithm is to increase the number of minority class samples through linear
interpolation, thereby balancing the dataset. The following are the specific steps.
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Step 1: For the imbalanced dataset, divide it into majority class S ma j and minority class S min.
Step 2: For each minority class sample, calculate its K-nearest neighbors.
Step 3: Based on the imbalance ratio of the dataset, determine the number N of new samples to

be synthesized for each minority class sample. For each minority class sample, choose N nearest
neighbors at random from its K-nearest neighbors. If the nearest neighbor is chosen in the process
of synthesizing a new sample xn from sample x, then the new sample is built according to equation
xnew = x + rand(0, 1) ∗ (xn − x).

Since the SMOTE algorithm proved to be prone to problems such as sample overlap and noisy
samples, the SMTOE-ENN algorithm was proposed by Batista et al. [29]. It is based on the SMOTE
algorithm and uses the ENN algorithm to achieve further cleaning of the data. The SMTOE-ENN
algorithm has been shown to outperform other classical sampling methods in many fields [30, 31].

3.2. Logistic regression

Logistic regression is a classical classification model that uses regression ideas to solve classification
problems. A Sigmoid function is introduced to transform a regression problem into a classification
problem for a general dichotomous classification problem based on linear regression y = wT x + b. The
general formulation of the logistic regression problem is as follows:

y(x) =
1

1 + ewT x+b
, (3.1)

where y(x) is the label value returned by the logistic regression, w is the regression coefficient, and b is
the constant term. Because the values of y(x) are between [0,1], the sum of y(x) and 1 − y(x) must be
1. From this, the binary logistic regression expression can be derived:

p(y = 0|x) =
1

1 + ewT x+b
, (3.2)

p(y = 1|x) =
1

1 + ewT x+b
, (3.3)

the loss function of the logistic regression algorithm is obtained using the great likelihood method to
estimate the parameters w and b. The solution of its parameters is equivalent to the minimization of
the loss function:

min l(w, b) = min
N∑

i=1

[−yi(wT x + b) + ln(1 + ewT x+b)] (3.4)

3.3. Support vector machine

The main idea of the support vector machine is to establish an optimal decision hyperplane that
minimizes the distance between the closest two classes of samples. To solve the classification problem
more effectively, it is also known as interval maximization. The linear equation is frequently used to
describe the hyperplane in the sample space:

wT x + b = 0, (3.5)

where w is the normal vector that determines the hyperplane’s direction. The displacement term, b,
determines the distance between the hyperplane and the origin. The hyperplane is determined by w and
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b. Support vectors are the few samples closest to the hyperplane, and the sum of the distances from
two dissimilar support vectors to the hyperplane is:

γ =
2
||w||

, (3.6)

this sum of distances is also made the interval, and ||w|| is the L2-parametrization of w. To find the
maximum interval dividing the hyperplane, that is, to find the parameters w and b that maximize γ, the
objective function for solving the optimal hyperplane can then be written as:minw,b

1
2 ||w||

2

s.t. yi(wT x + b) ≥ 1, i = 1, 2, ...,m
(3.7)

3.4. Decision tree

A decision tree is a classical tree model in machine learning. It can extract decision rules from
a dataset with features and labels and present them in a tree structure, which is commonly used to
solve classification and regression problems. A decision tree is typically built in three stages: feature
selection, decision tree generation, and decision tree pruning. The key to classification decision tree
algorithms is determining the best partitioning attributes. As the partitioning process progresses, it is
natural to anticipate that the samples contained in each branch node will belong to the same category
as much as possible. In other words, the ”purity” of the nodes is increasing over time. The most
commonly used indicators for measuring purity are information gain, information gain rate, and Gini
index.

Information entropy is one of the most commonly used metrics to measure the purity of D sample
set, assuming that the proportion of class k samples in the sample set D is pk. Then information entropy
can be defined as:

E(D) =

K∑
k=1

pklog2 pk, (3.8)

the smaller the value, the higher the purity. From this, the concept of information gain can be further
introduced. Assuming that the discrete attribute a has V possible values

{
a1, a2, ..., aV

}
. If feature a is

used to partition the sample set D, this results in V branch nodes, where the v-th node contains the total
number of all samples in the sample set D that take value av on feature a, denoted as Dv. Then the
information gain of attribute m can be defined as:

G(D, a) = E(D) −
V=1∑

v

|Dv|

|D|
E(Dv), (3.9)

the higher its value, the higher the purity. Further, the information gain rate of attribute a can be defined
as:

RGain(D, a) =
G(D, a)

I(a)
, (3.10)

I(a) = −

V=1∑
v

|Dv|

|D|
log2
|Dv|

|D|
, (3.11)
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in addition to this, the Gini index can also be used to measure the purity of the sample set, which is
defined as:

G(D) = 1 −
K∑

k=1

pk
2, (3.12)

the smaller its value, the higher the purity. Further, the Gini index of attribute a can be defined as:

IGini(D, a) = −

V=1∑
v

|Dv|

|D|
G(D), (3.13)

the smaller its value, the higher the purity. The feature division, that is, the purity metric chosen by
different indicators, creates different decision trees. The decision trees constructed from the indicators
information gain, information gain rate, and Gini index are ID3, C4.5, and CART , respectively.

3.5. Random forest

Random forest is a bagging ensemble learning algorithm first proposed by Breiman in 2001 [32].
It is not a standalone supervised learning algorithm, but rather integrates the modeling results of all
models by building multiple models. The basic unit in Random Forest is the CART decision tree. The
random forest algorithm’s specific steps are divided into four major steps, which are as follows:

Step 1: Using the bootstrap method, generate m training sets and train m decision trees.
Step 2: When selecting features for splitting at the node of each decision tree, a subset of the features

is chosen at random.
Step 3: Each decision tree is grown to its full potential without being pruned.
Step 4: The generated multiple decision trees are used for decision making. For the classifica-

tion problem, the classification result is decided by multiple decision trees voting. For the regression
problem, the regression result is decided by the mean of the predicted values of multiple decision trees.

3.6. XGBoost

XGBoost is a boosting ensemble learning algorithm proposed by Tianqi Chen et al. in 2016 [33].
It is a massively parallel boosting tree tool that employs a regression decision tree as its base unit.
Unlike the bagging ensemble learning algorithm, the boosting ensemble learning algorithm doesn’t
train multiple base models at the same time. It employs a boosting approach in which each base model
learns from the previous base model. The final prediction is produced by combining the predictions of
all base models.

The main process of XGBoost’s modeling is to grow a tree based on feature splitting and keep
adding trees, each time adding a tree, actually losing the residuals of the last prediction to obtain a new
function, iterating to improve the model performance. It is an additive operator consisting of k base
models:

yi(x) =

k∑
t=1

ft(xi), (3.14)

where ft is the t-th base model and yi(x) is the predicted value of the i-th sample. The loss function can
be expressed as:

L =

n∑
i=1

I(yi, yi(x)), (3.15)
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where n is the number of samples. The objective function of the XGBoost model consists of a loss
function and a regular term Ω that suppresses the complexity of the model:

Ob j =

n∑
i=1

I(yi, yi(x)) +

k∑
t=1

Ω( ft), (3.16)

how to minimizie the objective function, XGBoost’s idea is to approximate it using the Taylor second-
order expansion of f at t = 0. The final objective function relies only on the first-order derivatives and
second-order derivatives of each data point on the error function.

The regularization term is added to the objective function to prevent overfitting, and this construc-
tion and solution of the objective function gives XGBoost good performance. To improve the accuracy
of the results, not only the first-order derivatives but also the second-order derivatives are used in
the solution of the objective function. Furthermore, XGBoost can solve classification and regression
problems.

3.7. Evaluation criteria

The study’s core is a dichotomous problem in which five classical and representative machine learn-
ing models are chosen for prediction. Model evaluation is used to judge and compare the learning abil-
ity of these models. In machine learning, accuracy, sensitivity, specificity, the ROC curve, and the AUC
value are frequently used to assess model performance for dichotomous classification problems [34].

For any binary classification problem. Instances can be classified into positive and negative classes.
And predictions can be done in four ways. The instance is a positive class and prediction is a positive
class (TP). The instance is a positive class and prediction is a negative class (FN). The instance is a
negative class and prediction is a negative class (TN). The instance is a negative class and prediction is a
positive class (FP). The confusion matrix for the dichotomous classification problem can be constructed
from this (Table 3).

Table 3. Confusion matrix of binary classification problem.

Real situation
Predicted result

Positive Negative
Positive TP (True positive) FN (False negative)
Negative FP (False positive) TN (True negative)

Further, the formulae for the calculation of precision, sensitivity and specificity are derived:

Acurracy =
T P + T N

T P + FP + FN + T N
, (3.17)

S ensitity =
T P

T P + FN
, (3.18)

S peci f icity =
T N

T N + FP
, (3.19)

the full name of the ROC curve is Receiver Operating Characteristic (ROC) [35]. The ROC curve is
created by ranking the samples based on the model prediction results, then calculating the values of two
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significant quantities and plotting them as the horizontal and vertical axes, respectively. Its horizontal
and vertical axes are the false positive rate (FPR) and the true case rate (TPR), which are calculated as
follows:

FPR =
FP

FP + T N
, (3.20)

T PR =
T P

T P + FN
, (3.21)

the area under the ROC curve is the AUC value. It is widely assumed that the closer the AUC value is
to 1, the better the model’s learning ability.

4. Results

4.1. Data correction

There are 96 patients with better postoperative facial nerve function recovery and 32 patients with
poor postoperative facial nerve function recovery among 128 patients with AN. There is a significant
difference in sample size between the two categories. As a result, the AN dataset should be balanced
before selecting models and making predictions. However, the commonly used SMOTE algorithm
tends to cause problems such as overfitting, so the SMOTE-ENN algorithm is considered. Based on
the balanced data, it further performs data cleaning to better avoid overfitting. After completing the
data imbalance correction, the data in this paper changed from 128 to 94.

Table 4. Data distribution table (before and after correcting).

Classification Sample size (before) Sample size (after) Proportion (before) Proportion (after)
Better 96 39 0.75 0.41
Worse 32 55 0.25 0.58

4.2. Model comparison

Five machine learning models are used in this study: logistic regression (LR), support vector ma-
chine (SVM), decision tree (CART), random forest (RF), and XGBoost. To more reasonably compare
the effects of the models, we use five-fold cross-validation. The corrected dataset is brought into the
five models for training, and the average accuracy, sensitivity, specificity, and AUC values of each
model are obtained. The performance of the five models is compared to determine the best model for
postoperative facial nerve function recovery in AN patients.

Table 5. Performance of five machine learning models.

Model Accuracy Sensitivity Specificity AUC
LR 0.79 ± 0.08 0.82 ± 0.17 0.74 ± 0.09 0.78 ± 0.07
SVM 0.82 ± 0.09 0.84 ± 0.18 0.80 ± 0.12 0.81 ± 0.08
CART 0.87 ± 0.10 0.91 ± 0.09 0.82 ± 0.12 0.86 ± 0.10
RF 0.86 ± 0.16 0.87 ± 0.15 0.85 ± 0.16 0.86 ± 0.15
XGboost 0.90 ± 0.14 0.93 ± 0.14 0.85 ± 0.21 0.90 ± 0.15
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The means and standard deviations of the evaluation criteria for the five models are given in Table
5. Combining precision, specificity, sensitivity, and AUC values, XGBoost outperforms the other four
models. LR, on the other hand, performs the worst and is lower than the other four models in terms of
each criterion. In terms of stability of precision, specificity, and AUC values, LR is more stable and
XGBoost is less stable. In the stability of sensitivity, CART is more stable and SVM is less stable.

All five models perform better in predicting postoperative facial nerve function in patients with AN,
but XGBoost is the best in each criterion. Not only does it have high prediction accuracy, sensitivity,
and specificity, but it also has an AUC value of 0.90. XGBoost has a disadvantage that it may be
slightly less stable. However, considering all other aspects, it is still considered that XGBoost is the
best model to predict the recovery of facial nerve function after surgery in patients with AN. As a result,
based on known basic patient information, tumor imaging data, preoperative symptoms assessment,
postoperative facial nerve function assessment, and other clinical information, it is concluded that
XGBoost is the most accurate model among the five models.

4.3. Model validation

To better validate the models, we select a portion of the original data as the validation set (n = 30).
It includes 15 positive samples and 15 negative samples. The validation set is used to further compare
the prediction effectiveness of the five models.

(a) (b) (c)

(d) (e) (f)

Figure 2. Confusion matrix and ROC curves of five machine learning models. (a) Confusion
matrix of LR, (b) Confusion matrix of SVM, (c) Confusion matrix of CART, (d) Confusion
matrix of RF, (e) Confusion matrix of XGBoost, (f) ROC curves of five models.

Figure 2 shows the confusion matrix and ROC curves of the models on the validation set. From the
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confusion matrix, the SVM and RF have the same prediction results with 22 cases of samples correctly
predicted (Figure 2b,2d). Among them, XGBoost and LR have the best prediction results with 23 cases
of samples correctly predicted (Figure 2a,2e). And CART has the worst prediction result, with 21 cases
of samples correctly predicted (Figure 2c). In terms of ROC curves and AUC values, XGBoost and
LR have the same AUC value of 0.77. SVM and RF also have the same AUC value of 0.73. While
CART has the smallest AUC value of 0.70 (Figure 2f). XGBoost and LR have the best prediction
results based solely on the confusion matrix and ROC curves, and further calculate the five models for
accuracy, sensitivity, specificity, and 95% CI of AUC (Table 6).

Table 6. Performance of five machine learning models.

Model Accuracy Sensitivity Specificity AUC AUC (95% CI)
LR 0.77 0.73 0.80 0.7667 0.6105–0.9228
SVM 0.73 0.67 0.80 0.7333 0.5714–0.8953
CART 0.70 0.67 0.73 0.7000 0.5307–0.8693
RF 0.73 0.80 0.67 0.7333 0.5714–0.8953
XGboost 0.77 0.80 0.73 0.7667 0.6105–0.9228

In terms of prediction accuracy, XGBoost and LR have a high prediction accuracy of 0.77, while
CART has the lowest prediction accuracy of 0.70. Given sensitivity, XGBoost and RF have the highest
sensitivity of 0.80, while SVM and CART have the lowest sensitivity of 0.67. LR and SVM have the
highest specificity of 0.80, while RF has the lowest specificity was 0.67. Overall, XGBoost and LR
performed better on the validation set with the same 95% CI of AUC: 0.6105–0.9228. Combined with
the model prediction results of the five-fold cross-validation on the corrected dataset, we conclude that
XGBoost remains the best model for predicting patients’ postoperative facial nerve function recovery.

4.4. Feature importance

This study includes 11 features that corresponded to patients’ preoperative metrics. The features
that contribute more to the construction of the predictive models are the preoperative indicators that
should be given more importance by patients and physicians. Among the five machine learning models
constructed, CART, RF, and XGBoost provides a direct importance score for each feature, which mea-
sures the value of the feature in the construction of the model. The greater the contribution of a feature
in the construction of the model, the higher its relative importance. CART, RF, and XGBoost use the
Gini index, the average Gini index and the average information gained to measure the contribution of
each feature, respectively.
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(a) (b) (c)

Figure 3. Feature importance. (a) Feature importance of CART, (b) Feature importance of
RF, (c) Feature importance of XGBoost.

Figure 3 depicts the relative importance of features in CART, RF, and XGBoost models. In the
construction of CART, the more important features are tumS (tumor size), tfiacG (TFIAC grading),
age, and preG (preoperative facial nerve gradings) (Figure 3a). In the RF construction, the more
important features are tumS (tumor size), tfiacG (TFIAC grading), and age (Figure 3b). In contrast,
in the XGBoost construction, the more important features were tumS (tumor size), tfiacG (TFIAC
grading), and age (Figure 3c). It can be found that in the construction of these three models, the most
important one is tumS (tumor size), which is much more important than other features. The next more
important features are tfiacG (TFIAC grading), age, and preG (preoperative facial nerve gradings).

According to the feature importance ranking, tumor size, TFIAC grading, age, preoperative facial
nerve gradings should be prioritized among the 11 preoperative indicators for patients with AN. Simul-
taneously, these four indicators are critical for predicting facial nerve function recovery after surgery.
This can assist physicians in developing individualized treatment plans, saving medical resources, and
improving patients’ recovery of facial nerve function and quality of life after surgery.

5. Conclusions

This paper focuses on the uses of machine learning and SMOTE-ENN techniques in the postoper-
ative recovery of patients with AN, with a particular focus on the accurate prediction of facial nerve
function. Thanks to the datum collected from the Xiangya Hospital of Central South University, our
main working procedures based on the investigation of 128 surgical cases can be summarized as fol-
lows.

1) We assign all indices proper values before loading the statistical method. Due to the complexity
of the clinical data, it cannot be directly used for modeling. It may need to be quantified according to
the clinical characteristics of the disease and the purpose of the study. The dependent variable studied
in this paper is not directly given, so it is inscribed as whether the facial nerve function is improved.

2) The samples are corrected using the SMOTE-ENN algorithm. The accuracy of traditional ma-
chine learning models using unbalanced datasets is very poor, which eventually leads to unreliable
predictions of the models. So it is necessary to balance the datasets before modeling. However, using
the SMOTE algorithm to expand a few classes of samples generates noise and tends to cause model
overfitting. Therefore, the SMOTE-ENN algorithm is considered to correct the data set.

3) XGBoost is selected to construct a prediction model for the recovery, which is also compared
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with a total of four machine learning models. After using five-fold cross-validation, XGBoost is found
to have the highest prediction accuracy and AUC values. This indicates that the XGBoost model can
accurately predict the postoperative recovery of patients and can build prognostic models to provide
medical assistance to physicians.

The recent development of artificial intelligence has led to the gradual realization of precision
medicine. Based on machine learning and SMOTE-ENN techniques, we present a new methodol-
ogy to further study the accurate prediction of postoperative facial nerve function recovery for patients
with AN, instead of studying them solely by using traditional statistical techniques reported in previ-
ous literature. In our experience, the prediction accuracy of the XGBoost model reaches 90.0% and
the AUC value is 0.90. Due to the difficulty of data collection for AN disease, the sample size used in
this paper is not very large. In our future studies, a better and more reliable prediction model can be
established if more data can be collected from clinical practice.
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