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Abstract: Electronic Medical Record (EMR) is the data basis of intelligent diagnosis. The diagnosis 
results of an EMR are multi-disease, including normal diagnosis, pathological diagnosis and 
complications, so intelligent diagnosis can be treated as multi-label classification problem. The 
distribution of diagnostic results in EMRs is imbalanced. And the diagnostic results in one EMR have 
a high coupling degree. The traditional rebalancing methods does not function effectively on highly 
coupled imbalanced datasets. This paper proposes Double Decoupled Network (DDN) based 
intelligent diagnosis model, which decouples representation learning and classifier learning. In the 
representation learning stage, Convolutional Neural Networks (CNN) is used to learn the original 
features of the data. In the classifier learning stage, a Decoupled and Rebalancing highly Imbalanced 
Labels (DRIL) algorithm is proposed to decouple the highly coupled diagnostic results and rebalance 
the datasets, and then the balanced datasets is used to train the classifier. This paper evaluates the 
proposed DDN using Chinese Obstetric EMR (COEMR) datasets, and verifies the effectiveness and 
universality of the model on two benchmark multi-label text classification datasets: Arxiv Academic 
Papers Datasets (AAPD) and Reuters Corpus1 (RCV1). Demonstrating the effectiveness of the 
proposed methods is an imbalanced obstetric EMRs. The accuracy of DDN model on COEMR, AAPD 
and RCV1 datasets is 84.17, 86.35 and 93.87% respectively, which is higher than the current optimal 
experimental results. 
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1. Introduction 

With the implementation of China’s three-child policy, obstetric clinical research is faced with 
unprecedented challenges, and the number of elderly parturient women is increasing rapidly. The 
incidence rate of obstetric and gynecological diseases in elderly maternal is significantly higher than 
that of pregnant women at the right age [1]. Electronic Medical Records (EMRs) are the most detailed 
and direct record of clinical medical activities. The clinical diagnosis process of doctors can be 
regarded as judging the probability of suffering from a certain disease according to the clinical 
manifestations and examination results of patients. An obstetric EMR usually contains multiple 
diagnostic results, that is, patients may be diagnosed with both “gestational diabetes mellitus” and 
“gestational hypertension”, and the diagnosis results have strong coupling. If an EMR is regarded as 
one sample, each sample can be grouped into multiple categories. Therefore, the intelligent diagnosis 
problem can be regarded as a multi-label classification problem in machine learning, and multiple 
diagnostic results in an EMR have different labels [2]. 

However, the data distribution of EMRs is often imbalanced, and the sample number of rare 
diseases is far less than that of common diseases [3]. The imbalanced distribution of datasets will lead 
to the performance degradation of traditional classification algorithms [4]. Traditional algorithms tend 
to treat a few classes as noise or outliers, and ignore them in classification [5]. For imbalanced EMRs, 
the cost of false negative is much higher than that of false positive. For example, in 100 EMRs, 99 
results were normal and one detected cancer. If the traditional classification algorithm is directly 
applied to this kind of data, the diagnostic results of EMR will be predicted as normal. Although the 
precision rate is as high as 99%, the most critical cancer information is ignored. 

In neural networks, the features of input samples have a great influence on classifiers. The reason 
that rebalancing method works is that it can update the weights of classifiers and significantly improve 
the learning ability of deep network classifiers, but it damages the feature learning ability of deep 
network [6,7]. In addition, the coupling of high-frequency diagnostic results and low-frequency 
diagnostic results in an EMR needs to be considered in the multi-label rebalancing method: removing 
the EMR containing high-frequency diagnostic results also means losing low-frequency diagnostic 
results, and cloning the EMR containing low-frequency diagnostic results to add new instances will 
also increase the frequency of existing high-frequency diagnostic results. 

In recent years, intelligent diagnosis has become a research focus. Yin et al. [8] proposed a 
method to extract signal features from heart rate variability signals and classify patients’ states using 
the long short-term memory network. Yan et al. [9] collected 1880 endoscopic images, and developed 
a Gastric Intestinal Metaplasia (GIM) system with these images using a modified convolutional 
neural network algorithm. Wang et al. [10] proposed Patch Shuffle stochastic pooling neural network, 
which improved recognition performances of Corona Virus Disease 2019 (COVID-19) infection 
from chest CT (CCT) images, and will help assist radiologists to make diagnosis more quickly and 
accurately on COVID-19 cases. 

In addition to using image data for intelligent diagnosis, text-based intelligent diagnosis is also a 
research focus. Rajkomar et al. [11] proved that in all the methods using EMRs, deep learning methods 
are superior to the most advanced statistical prediction model. Maxwell et al. [12] used physical 
examination data to predict the possible chronic diseases such as diabetes, hypertension and fatty liver. 
Yang et al. [13] proposed a Convolutional Neural Network (CNN) based auxiliary diagnosis method, 
which is based on self-learning to learn high-level semantic understanding from EMRs, and output the 
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prediction probability of common diseases including hypertension and diabetes. Liang et al. [14] 
proposed a system framework based on pediatric EMRs, which integrates medical knowledge in 
pediatric EMRs for intelligent diagnosis. 

In the current researches, the imbalanced distribution of datasets is an important factor limiting 
the performance of intelligent diagnosis. The precision of low-frequency disease diagnosis is too low, 
which leads to the decline of the practicability of the diagnosis model. The existing researches based 
on imbalanced data can be divided into data-level methods and algorithm-level methods. 

The data-level methods are to transform the original datasets into a relatively balanced datasets 
from the data preparation stage. Liu et al. [15] proposed an algorithm based on information granulation. 
The algorithm assembles the data in most classes into particles to balance the proportion of classes in 
the data, and uses prostate cancer data to predict the survival rate of patients. Huang et al. [16] proposed 
random balanced sampling algorithm based on association rule selection, and verified the performance 
of the algorithm in a private diabetes EMRs. 

Unlike the data-level methods, the algorithm-level methods do not change the distribution of 
training data; instead, they increase the importance of minority classes in the learning and decision-
making process [17]. Li et al. [18] proposed dice loss to improve the weight of difficult samples and 
reduce the weight of simple negative samples. For high-dimensional imbalanced text data, researchers 
found that selecting features that are conducive to identifying minority classes can effectively deal 
with imbalanced data. Yang et al. [19] proposed a text feature selection method based on relation score. 
By calculating the relationship score of each feature and category, the relationship score of minority 
features is increased and the imbalance degree of data concentration categories. 

At present, intelligent diagnosis researches based on EMRs are mostly for a single disease, and 
does not consider the multiple complications and other diagnostic results. In addition, the existence of 
rare diseases causes the imbalance of EMRs, and the diagnostic performance of the model needs to be 
further improved. 

This paper proposes Double Decoupled Network (DDN) to improve the performance of 
intelligent diagnosis based imbalanced datasets. Our main contributions are summarized as follows: 
1） DDN is proposed to decouple representation learning from classifier learning and high coupling 

diagnostic results. 
2） In the classifier learning stage, a Decoupled and Rebalancing highly Imbalanced Labels (DRIL) 

algorithm is proposed to decouple the highly coupled diagnostic results and rebalance the datasets. 
3） Experiments on a real Chinese Obstetric EMR (COEMR) datasets and two public datasets show 

that DDN method has better performance than comparison methods. 

2. Materials and methods 

Inspired by paper [6], we firstly analyze the performance of rebalancing strategies in neural 
network. Secondly, we discuss the rebalancing strategies in high coupling diagnostic results of 
COEMR datasets. This paper proposes DDN to decouple representation learning from classifier 
learning, and high coupling diagnostic results. 

2.1. Overall framework 

In order to solve the problem of high coupling of diagnosis results and obtain better features of 
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input samples, an intelligent diagnosis model based on double decoupling network is proposed in this 
section. The overall architecture of DDN is shown in Figure 1. First, DDN decouples representation 
learning from classifier learning. In the presentation learning stage, DDN uses CNN to learn the 
original features of COEMR datasets 𝐷 𝑑 , 𝑑 , … , 𝑑  , and fixed parameters of presentation 
learning, where 𝑑  represents a sample in the datasets. Map the input text to a sequence of embedding 
vector. Words are embedded in a vector sequence through a convolutional layer and linearly 
transformed using a non-linear activation function to capture indicative information. Different types 
of useful information for prediction are selected in the pooling layer, and the maximum value is chosen 
from the feature mapping for each type. Finally, fully connected layers are used to integrate 
information with disease differentiation in the convolutional or pooling layers. In the classifier learning 
stage, DRIL algorithm is proposed to decouple the high coupling diagnostic results and rebalance the 
datasets 𝐷 𝑑 , 𝑑 , … , 𝑑 , using the datasets 𝐷  to train the classifier. The classifier consists a 
full connection layer and Softmax function. Both stages use the same CNN network structure and share 
all weights except for the last full connection layer. 

 

Figure 1. The architecture of DDN model. 

2.2. Representation and classifier learning decoupling module 

Two methods are adopted to deal with unbalanced data: resampling samples and reweighting 
sample loss in small batches. In order to explore the working mechanism of rebalancing method, we 
divide the training process of neural network into two stages, namely representation learning and 
classifier learning. Specifically, in the first stage, we use the common method (Cross Entropy, CE) or 
rebalancing methods (Re-sampling/R-weighting, RS/RW) to train the neural network to get the 
corresponding feature extractor. Then we fix the parameters of the feature extractor. In the second 
stage, the classifier is retrained by common method or rebalancing methods. In this section, 
representation learning and classifier learning are used to compare the effects of different training 
methods. Figure 2 shows the precision of different methods on COEMR and Arxiv Academic Papers 
Datasets (AAPD) datasets. 
1) CE: the traditional cross entropy loss is used to train the network on the original imbalanced data. 
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2) RS: in this section, class balanced resampling method is used to ensure that the probability of each 
class in each batch is the same. The sampling probability is 𝑝   calculated as Eq (1). 

 
𝑝

1
𝐶

(1)

where C is the number of all labels in the training set. 
3) RW: reweighting all classes according to the reciprocal of their sample size. 

For representation learning, when using the same classifier learning method (comparing the 
precision of three blocks in the horizontal direction), the precision of CE block is always higher than 
that of RW/RS block. We can find that CE can get better classification results since it obtains better 
features. The worse results of RW/RS block show that RW/RS method has a poor ability to identify 
depth features, which will damage the ability of representation learning. 

For classifier learning, when using the same representation learning method (comparing the 
precision of three blocks in the vertical direction), it can be found that RW/RS methods can achieve 
higher precision than CE. The results show that the main reason why rebalancing methods can achieve 
a balanced performance on imbalanced data is that these methods directly affect the update of the 
weights of deep network classifiers, that is, promote the learning of classifiers. 

 

Figure 2. Precision of different methods on COEMR and AAPD datasets. 

This section discusses the influence of rebalancing methods on representation learning and 
classifier learning in neural network. We can find that rebalancing methods can significantly promote 
classifier learning, but it also damages the ability of learning features to a certain extent. To solve these 
problems, we propose decoupled representation learning from classifier learning. In the representation 
learning stage, the original features of the datasets are learned. In the classifier learning stage, the 
rebalancing datasets are used for training, so as to give consideration to both representation learning 
and classifier learning, and improve the generalization ability of low-frequency data, and improve the 
classification performance of imbalanced data. 

2.3. Label decoupling module 

The rebalancing strategy is independent of classifier, so it is applicable to a wider range of 
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scenarios than does the adaptive classifier. It is difficult for traditional rebalancing methods to achieve 
good performance for multi-label data. The main problems include the huge difference of imbalanced 
degree between labels in multi-label datasets, and the highly coupling of low-frequency labels and 
high-frequency labels in the same sample. 

The imbalance ratio and average imbalance ratio between labels in a multi-label dataset can be 
determined according to the method proposed in reference [20]. The first measure is the Imbalance 
Ratio per label (IR), as shown in Eq (2), which evaluates the imbalance ratio of a single label. Define 
a multi-label dataset 𝐷 𝑋 , 𝑌 |0 𝑖 𝑛, 𝑌 ∈ 𝐿 , where 𝑋  is the 𝑖  sample in the datasets, 𝑌  
is the label set of the datasets 𝑋 , and L is the label set of the datasets. 

 

𝐼𝑅

𝐿| |     

𝑎𝑟𝑔𝑚𝑎𝑥 ∑ ℎ 𝑙 , 𝑌| |

𝑙 𝐿                          

∑ ℎ 𝑙, 𝑌| | , ℎ 𝑙, 𝑌  
1, 𝑙 ∈ 𝑌
0, 𝑙 ∉ 𝑌  

 (2)

The second measure is Mean Imbalance Ratio (MeanIR), which is the overall estimation of the 
imbalance degree of multi-label datasets, that is, the average IR value of all labels, See Eq (3), where 
|L| is the label set of the datasets. 

 

𝑀𝑒𝑎𝑛𝐼𝑅
1

|𝐿|
𝐼𝑅 𝑙

| |

 (3)

According to MeanIR and IR value, this section defines high-frequency label and low-
frequency label. When IR value is higher than mean IR value, it is a low-frequency label; otherwise, 
it is high-frequency label. For label y, if IR y MeanIR , it belongs to minBags, otherwise it 
belongs to majBags. 

In order to understand the coupling degree of low-frequency and high-frequency labels in the 
same sample in multi-label datasets, we can evaluate it by SCUMBLE measure [21]. As can be seen 
from Eq (4), SCUMBLE relies on the aforementioned IR metric. The coupling degree for each sample 
is first obtained 𝑆𝐶𝑈𝑀𝐵𝐿𝐸 𝑖 , and then, the average coupling degree SCUMBLE D  is calculated 
for the entire multi-label datasets, as shown in Eq (5). The values of SCUMBLE are normalized in 
the [0, 1] range, and the larger the values, the higher the coupling between the unbalanced labels. 

 

𝑆𝐶𝑈𝑀𝐵𝐿𝐸 𝑖
1

𝐼𝑅
𝐼𝑅

| | | |⁄

 (4)

 

𝑆𝐶𝑈𝑀𝐵𝐿𝐸 𝐷
1

|𝐷|
𝑆𝐶𝑈𝑀𝐵𝐿𝐸 𝑖

| | (5)

We calculate the average coupling degree 𝑆𝐶𝑈𝑀𝐵𝐿𝐸 𝐷 0.3  of the COEMR datasets, and 
visualizes the label coupling of the COEMR datasets by using chord diagram, as shown in Figure 3. It 
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can be seen that there is a high coupling degree in the COEMR datasets, and the low-frequency labels 
are completely associated with some high-frequency labels.  

The high coupling of imbalanced labels can be alleviated with label decoupling strategy. Chart 
et al. [22] proposed remedial algorithm, which is independent of resampling algorithm and uses 
𝑆𝐶𝑈𝑀𝐵𝐿𝐸 𝑖 𝑆𝐶𝑈𝑀𝐵𝐿𝐸 𝐷   as the judgment condition of whether to decouple labels, the 
coupling degree between high-frequency labels and low-frequency labels is reduced by decoupling 
them. Based on this, this paper proposes a DRIL algorithm, which decouples and clones the 
samples with high scumble value, and obtains two examples, one of which is associated with high-
frequency labels, and the other is associated with low-frequency labels, so as to reduce the 
coupling degree, and then uses the method of combining oversampling and under-sampling to 
rebalance the datasets. It can reduce the loss of high-frequency disease sample information and the 
over fitting of low-frequency disease. 

 

Figure 3. Visualization of label coupling in COEMR datasets. 

Table 1 shows the pseudo code of DRIL. Specifically, DRIL first calculates the IR value and 
MeanIR value of each label to determine which category the label belongs to. Resampling rate P 
indicates that the proportion of samples needs to be adjusted. Then, DRIL calculates the SCUMBLE 
of each sample and whole dataset SCUMBLE D . The NumOfMinBag is calculated:  

 

NumOfMinBag h l, minBags (6)

When 𝑆𝐶𝑈𝑀𝐵𝐿𝐸 𝑖 𝑆𝐶𝑈𝑀𝐵𝐿𝐸 𝐷   and  𝑁𝑢𝑚𝑂𝑓𝑀𝑖𝑛𝐵𝑎𝑔 |𝑌 | , the label will be 
decoupled. Find sample 𝐷  with high coupling label according to step 5.  From step 5 to step 7, 
one sample is decoupled into two samples, namely clone sample 𝐷  is 𝐷 ，L  is the label set of 
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𝐷 , 𝐿  is the label set of 𝐷 , 𝐿 𝐿 ，𝐿 𝐿 . By decoupling, the low-

frequency and high-frequency labels in the samples can be separated, and the decoupled datasets 
𝐷  is obtained. MeanSamples is the number of samples required for all labels to reach the mean state 
of MeanIR. Its calculation method is to divide the number of samples of the most frequent labels by 
the value of MeanIR: 
 

𝑀𝑒𝑎𝑛𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝐿| |

𝑎𝑟𝑔𝑚𝑎𝑥 ∑ ℎ 𝑙 , 𝑌| |

𝑙 𝐿                          

𝑀𝑒𝑎𝑛𝐼𝑅

(7)

From step 9 to step 21, the datasets are balanced by the method of combining oversampling and 
under-sampling. Firstly, a random label y is generated and X samples are randomly selected from y. If 
y belongs to minBags, x Random 0, MeanSamples |y| , then the selected samples are added to 
the datasets D . If y belongs to majBags, x Random 0, |y| MeanSamples , delete the X samples 
from the datasets D  . DRIL uses Mean samples to limit the number of samples x to balance the 
distribution among samples, and the number of samples needed to achieve the balance is not more than 
or less than the number of samples needed to achieve the balance. At the end of each rebalancing, 
MeanIR and IR are recalculated. Mean samples always use the initial value, and the original 
distribution of the datasets will not be greatly affected. Finally, we get the datasets D   which is 
decoupled and balanced by the DRIL algorithm. 

Table 1. DRIL algorithm. 

 Input: multi-label datasets D, resampling rate P 

 Output: decoupled datasets D  

1 Calculate samplesToResampling |D| ∗ P, IR, MeanIR & MeanSamples 

2 Calculate the SCUMBLE  of each sample D  in D, calculate the SCUMBLE D  of the datasets 

3 For each instance D  in D do 

4    Calculate number of low-frequency labels of sample D ：NumOfMinBag 

5 If 𝑆𝐶𝑈𝑀𝐵𝐿𝐸 𝑖 𝑆𝐶𝑈𝑀𝐵𝐿𝐸 and 𝑁𝑢𝑚𝑂𝑓𝑀𝑖𝑛𝐵𝑎𝑔 |𝑌 |  then 

6 clone 𝐷 ← 𝐷 , 𝐿 𝐿 , 𝐿 𝐿  

7               D D D D , D D D D is a decoupled dataset  

8 D D D , D D 

9 While SCUMBLE D 0.1 or samplesToResampling 0 

10 Randomly select label y 

11 If |y| MeanSamples and y ∈ minBags then 

13             x Random 0, MeanSamples |y|  Select x samples from the samples of label y 

14      Add x to D , D  x, 

16 If |y| MeanSamples and y ∈ majBags then 

18             x Random 0, |y| MeanSamples  Select x samples from the samples of label y 

19 Remove x from D , D x, 

20        samplesToResampling x, Recalculate MeanIR and IR 

21 Return D  
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3. Experiments 

We evaluate the proposed intelligent diagnosis model using COEMR datasets, and verifies the 
effectiveness and universality of the model in two benchmark multi-label text classification datasets: 
AAPD and RCV1. Table 2 shows the descriptive statistics of the datasets used in the experiment. In 
the presentation learning stage, the data filter widths of CNN are set to (2, 3, 4) and the number of 
each filter is 25. When training the classifier, the Xaiver method [23] is used to randomly initialize 
the classifier parameters. The resampling rate P of DRIL is set to 0.1, which is the best resampling rate 
for multi-label data [24]. Adam [25] is employed as the optimizer and the learning rate set to 0.001, 
batch size set to 32 and dropout set to 0.3. 

Table 2. Statistical information of COEMR, AAPD and RCV1 datasets. 

Dataset Total Train Test Label MeanIR SCUMBLE 
COEMR 24,339 21,905 2434 73 246.5693 0.3028 
AAPD 55,840 54,840 1000 54 16.9971 0.1158 
RCV1 804,414 23,149 781,265 103 279.6319 0.3497 

Table 3. Sample of an obstetric COEMR datasets. 

Title Content 

Sex Female 

Age Thirty-six years old 

Chief 

complaint 

Taking “rest of June, vaginal bleeding for 4 hours” as the chief complaint, the pregnant woman had regular 

menses with normal menses, and the urine HCG was positive by self-measurement for 30 days after menorrhea. 

After rest of January, the patient was diagnosed with ectopic pregnancy by B-ultrasound examination, and 40 

days of menorrhea showed nausea and vomiting and other early pregnancy reactions... 

Admission 

physical 

examination 

T：36.6 ℃. P: 80/min R: 20/min BP:120/80 mm Hg. 

Normal development, nutrition medium, Clear headed, spirit can, walk into the ward, autonomous body position, 

check body cooperation. the whole-body skin mucous membrane is rudimentary and without yellow stain, rash, 

bleeding points, not touch the enlarged superficial lymph nodes... 

Obstetric 

examination 

Extrapelvic measurements is: 24.0 cm IC: 27.0 cm ec19.0 cm to: 9.0 CM. Uterine height: 29.0 cm abdominal 

circumference: 93.0 cm fetal heart 144 beats/min fetal estimated weight 2600 g, no contractions 

Auxiliary 

examination 

Fetal color ultrasound: BPD: 74.0 mm, FL: 53.0 mm, AFI: 165.0 mm, fetal orientation: breech s/D 2.2 placenta 

grade I 

Admission 

diagnosis 

Threatened preterm birth 

Placenta previa (marginal) 

Intrauterine pregnancy 28+2 weeks 

G3P1 

Breech presentation 

One week around umbilicus 

Diagnostic 

basis 

Pregnancy greater than or equal to 28 weeks and less than 37 weeks 

Presence of irregular or regular contractions with or without distension of the endocervical OS 

Minimal vaginal bleeding 
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COEMR: In this dataset, 24,339 EMRs were randomly selected from the inpatient departments 
of several hospitals. EMRs are mainly composed of structured and unstructured text data. Structured 
data includes basic patient information, such as age, ethnicity, and laboratory test data. Unstructured 
data mainly refers to patients’ statement, condition of hospitalization and objective examination, etc. 
In order to protect the privacy of patients, the patient’s name, ID number and other privacy information 
were removed. Table 3 shows the detailed description of the obstetric COEMR. 

The distribution of COEMR datasets diagnostic results is visualized and shown in Table 4. In the 
COEMR datasets, more than 90% of the diagnostic results have “head position”, while “gestational 
hypertension” accounts for less than 10%. According to the diagnostic results of 73 diseases with high 
coupling degree, all 24,339 samples were divided into training set (21,905) and test set (2434) 
according to 9∶1. 

Arxiv academic papers datasets (AAPD): AAPD datasets is a large dataset of MLTC constructed 
by Yang et al. [26]. It includes 55,840 abstracts from Arxiv1 on computer science. 

Reuters Corpus1 (RCV1): RCV1 is provided by Gleviset et al. [27] and consists of artificially 
annotated Reuters news from 1996 to 1997. Each piece of news can be assigned multiple topics, a total 
of 103 topics. 

Table 4. Distribution diagnostic results in COEMR datasets. 

Label Number Label Number Label Number 

Head position 18,139 Fetal dysplasia 1249 Induced labor 265 

Threatened labor 6257 threatened abortion 1112 RH negative blood 259 

Pregnancy with 

uterine scar 

5757 Placenta previa 1033 Fetal distress 257 

Premature rupture 

of membranes 

3239 Preeclampsia 1029 Pregnancy induced 

hypertension 

251 

Oligohydramnios 2897 Precious child 819 Cervical 

insufficiency 

217 

Gestational 

diabetes mellitus 

2661 Polyhydramnios 496 Pregnancy 

complicated with 

hysteromyoma 

201 

Threatened preterm 

birth 

2130 Intrauterine fetal 

growth restriction 

405 Diabetes 

complicated with 

pregnancy 

189 

Umbilical cord 

around neck 

2054 Group B 

streptococcal 

infection 

374 Pregnancy 

complicated with 

hyperthyroidism 

182 

Breech 1806 Pregnancy with 

hypothyroidism 

335 Pregnancy 

complicated with 

anemia 

178 

Twin pregnancy 1329 Low placental 287 Inevitable abortion 177 

 
1 https://arxiv.org/ 
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4. Results 

This paper compares DDN model with common multi-label text classification methods: Binary 
Relevance (BR) [28], Label Powerset (LP) [29] and CNN. BP algorithm establishes a two classifier 
for each tag in the tag data set to predict, which has the advantages of simplicity and efficiency. LP 
algorithm regards the combination of each label as a new class, and transforms the multi label problem 
into a multi classification problem. Its advantage is that it pays attention to the semantic correlation 
between each label. Chen [30] used CNN for the first time in the text classification task. The key 
information in the sentence is extracted by multiple filters of different sizes in CNN, and the local 
correlation of the text can be better captured. 

In addition, in order to verify the effectiveness of the proposed decoupled module, DDN is 
compared with BR + DRIL, LP + DRIL and RS + CNN + DRIL is to use the datasets balanced by the 
DRIL algorithm proposed in this section for classification. RS + CNN means that the data after class 
rebalancing is directly input into CNN for classification. 

From the mean IR value in Table 2, it can be seen that the three datasets are imbalanced, so 
theoretically, the three datasets can benefit from the rebalancing method. It can be seen from the 
SCUMBEL value that the SCUMBEL value of COEMR datasets and RCV1 datasets is larger, which 
belongs to the difficult multi-label datasets, and has high coupling on the labels of different imbalance 
levels. Tables 5–7 show the experimental results on COEMR datasets, AAPD and RCV1 datasets 
respectively. In each column, the best results are expressed in bold. 

Table 5. Experimental results of DDN in COEMR datasets. 

Model HL P R F1 
BR 0.0307 0.6114 0.5442 0.5758 
LP 0.0305 0.6073 0.5030 0.5503 

BR+DRIL 0.0281 0.6438 0.5581 0.5979 

LP+DRIL 0.0293 0.6352 0.5176 0.5704 

CNN 0.0266 0.8065 0.5427 0.6488 

RS+CNN 0.0251 0.8134 0.5496 0.6560 
DDN 0.0241 0.8417 0.5534 0.6678 

Table 6. Experimental results of DDN in AAPD datasets. 

Model HL P R F1 

BR 0.0316 0.6642 0.6476 0.6558 

LP 0.0312 0.6624 0.6082 0.6344 
BR+DRIL 0.0433 0.6665 0.6491 0.6576 
LP+DRIL 0.0320 0.6630 0.6113 0.6361 
CNN 0.0256 0.8491 0.5456 0.6643 
RS+CNN 0.0253 0.8540 0.5587 0.6755 
DDN 0.0243 0.8635 0.5986 0.7071 
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Table 7. Experimental results of DDN in RCV1 datasets. 

Model HL P R F1 
BR 0.0086 0.9043 0.8160 0.8578 
LP 0.0087 0.8956 0.8244 0.8585 
BR+DRIL 0.0081 0.9192 0.8225 0.8682 
LP+DRIL 0.0084 0.9034 0.8251 0.8625 
CNN 0.0089 0.9223 0.7984 0.8559 
RS+CNN 0.0086 0.9244 0.7986 0.8569 
DDN 0.0076 0.9387 0.8231 0.8771 

5. Discussion 

It can be seen from the results in Tables 5 and 6 that after the application of the proposed DRIL on 
COEMR and RCV1 datasets, all measurements have been improved. Compared with the traditional BR 
algorithm, BR + DRIL algorithm improves the P, R and F1 by 5.30, 2.55 and 3.84% respectively. 
Compared with the traditional LP algorithm, LP + DRIL algorithm improves the P, R and F1 by 4.59, 2.90 
and 3.65% respectively. For RCV1 datasets, due to the large number of labels and the complex 
hierarchical structure between labels, the improvement of each index is relatively small. Compared 
with the traditional BR algorithm, the F1 value of BR + DRIL algorithm is increased by 1.21%, and 
that of LP + DRIL algorithm is increased by 0.27%. This is because the DRIL algorithm decouples the 
high coupling labels, and combines the over-sampling and under-sampling methods to balance the 
distribution of the datasets, which makes it easier for the multi-label classification algorithm to process. 
In addition, the smaller  SCUMBLE  value of AAPD datasets indicates that there is almost no 
imbalanced label concurrency in the datasets, so the impact of using DRIL algorithm on the results is 
relatively small. DDN model is based on CNN. CNN is suitable for extracting local features. Using 
Bert and other models can have higher recall than DDN model, but F1 value may be reduced. 

The neural network model can capture more abundant features and deeper semantic information, 
so CNN has a certain improvement in most of the evaluation indexes than the traditional classification 
methods BR and LP. Because CNN model is suitable for extracting local features, CNN model tends 
to select features favorable to high-frequency samples for unbalanced data, so the recall increment of 
CNN is relatively low. For the RS + CNN model, the traditional class resampling method can improve 
the frequency of low-frequency class samples, but without considering the high coupling between 
labels, the performance is only slightly improved. Compared with CNN model, the P value and F1 
value of DDN are improved by 4.36 and 2.93%, respectively, reaching 84.17 and 66.78%, and the 
Hamming loss is reduced by 9.40%. 

DDN model can solve the problem of high coupling of imbalanced labels by decoupling of 
representation learning from classifier learning and high coupling label so that the model can learn 
high-quality text feature representation, and performance has been further improved. DDN also 
performs well on AAPD and RCV1, which indicates that DDN model can also be applied to other 
multi-label text classification tasks. 

This paper further evaluates the COEMR datasets to explore the effect of DDN model on different 
parts of the dataset distribution. As shown in the Figure 4, the horizontal axis is the diagnostic result 
sorted in descending order according to the number of corresponding samples, and the vertical axis is 
the accuracy increment of each category. 
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Figure 4. DDN increases the accuracy of diagnostic results on COEMR datasets. 

It can be seen that DDN has a certain improvement in the diagnostic performance of low-
frequency diseases. Taking the disease “Pregnancy with hypothyroidism” as an example, after label 
decoupling, the number of electronic medical records containing the disease will increase, and the 
model is more sensitive to the characteristics of this type of disease, such as “Excessive serum TSH”, 
“Edema” and other disease-related signs and symptoms. The decoupled low-frequency labels will not 
be restrained by the high-frequency labels. In addition, DDN does not improve the performance of 
low-frequency diseases by sacrificing the diagnostic accuracy of high-frequency diseases. After label 
decoupling, the performance of the model can be improved on most diseases. As mentioned above, the 
resampling method often results in over fitting of low-frequency data, and DDN decouples 
representation learning from classifier learning to learn good feature representations, and improve the 
generalization ability of low-frequency data. In conclusion, the DDN model including representation 
and classifier learning decoupling and label decoupling proposed in this paper has good performance 
for the diagnosis of low-frequency diseases. 

6. Conclusions 

This paper proposes a DDN model for intelligent diagnosis based on imbalanced EMRs. A two-
stage training method is proposed to decouple the representation learning and classifier learning: in 
the representation learning stage, CNN model is used to learn the original features of data. In the 
classifier stage, considering the high coupling diagnostic results of EMRs, a DRIL algorithm is 
proposed to decouple the high coupling diagnostic results and balance the data distribution. The 
experimental results on COEMR datasets show that DDN can effectively improve the performance of 
intelligent diagnosis based on imbalanced EMRs, especially the precision of low-frequency disease 
diagnosis. In the future, we will try to use DDN for intelligent diagnosis in diseases with more 
complications such as diabetes. 

Acknowledgments 

We thank the anonymous reviewers for their constructive comments, and gratefully acknowledge 
the support of Major Science and Technology Project of Yunnan Province (202102AA100021), 



10019 

Mathematical Biosciences and Engineering  Volume 19, Issue 10, 10006–10021. 

Zhengzhou City Collaborative Innovation Major Projects (20XTZX11020), National Key Research 
and Development Program (2017YFB1002101), National Natural Science Foundation of China 
(62006211),Henan Science and Technology Research Project (192102210260), Henan Medicine 
Science and Technology Research Plan: Provincial and Ministry Co-construction Project 
(SB201901021), Henan Provincial Key Scientific Research Project of Colleges and Universities 
(19A520003, 20A520038), The MOE Layout Foundation of Humanities and Social Sciences (Grant 
No. 20YJA740033), Henan Social Science Planning Project (Grant No. 2019BYY016). 

Conflict of interest 

The authors declare there is no conflict of interest. 

References 

1. Y. Han, M. Tong, L. Jin, W. Meng, A. Ren, Maternal age at pregnancy and risk for gestational 
diabetes mellitus among Chinese women with singleton pregnancies, Int. J. Diabetes Dev. 
Countries, 41 (2021), 114–120. https://doi.org/10.1007/s13410-020-00859-8 

2. K. Zhang, H. Ma, Y. Zhao, H. Zan, L. Zhuang, The comparative experimental study of multilabel 
classification for diagnosis assistant based on Chinese obstetric EMRs, J. Healthcare Eng., (2018), 
1–9. https://doi.org/10.1155/2018/7273451 

3. C. Xu, P. Liu, Y. Sun, Research on disease prediction model for unbalanced medical datasets, 
Chin. J. Comput., 42 (2019), 596–609. https://doi.org/10.11897/SP.J.1016.2019.00596 

4. Y. Liu, H. Loh, A. Sun, Imbalanced text classification: A term weighting approach, Expert Syst. 
Appl., 36 (2009), 690–701. https://doi.org/10.1016/j.eswa.2007.10.042 

5. J. Stefanowski, Dealing with data difficulty factors while learning from imbalanced data, in 
Challenges in Computational Statistics and Data Mining, Springer, Cham, (2016), 333–363. 
https://doi.org/10.1007/978-3-319-18781-5_17 

6. B. Zhou, Q. Cui, X. Wei, Z. Chen, BBN: Bilateral-branch network with cumulative learning for 
long-tailed visual recognition, in Proceedings of the IEEE/CVF Conference on Computer Vision 
and Pattern Recognition, (2020), 9719–9728. https://doi.org/10.1109/CVPR42600.2020.00974 

7. B. Kang, S. Xie, M. Rohrbach, Z. Yan, A. Gordo, J. Feng, et al., Decoupling representation and 
classifier for long-tailed recognition, preprint, arXiv:1910.09217. 

8. Q. Yin, D. Shen, Y. Tang, Q. Ding, Intelligent monitoring of noxious stimulation during 
anaesthesia based on heart rate variability analysis, Comput. Biol. Med., 145 (2022), 105408. 
https://doi.org/10.1016/j.compbiomed.2022.105408 

9. T. Yan, P. Wong, C. Choi, C. Vong, H. Yu, Intelligent diagnosis of gastric intestinal metaplasia 
based on convolutional neural network and limited number of endoscopic images, Comput. Biol. 
Med., 126 (2020), 104026. https://doi.org/10.1016/j.compbiomed.2020.104026 

10. S. Wang, Y. Zhang, X. Cheng, X. Zhang, Y. Zhang, PSSPNN: PatchShuffle stochastic pooling 
neural network for an explainable diagnosis of COVID-19 with multiple-way data augmentation, 
Comput. Math. Methods Med., (2021), 1–18. https://doi.org/10.1155/2021/6633755 

11. A. Rajkomar, E. Oren, K. Chen, A. Dai, N. Hajaj, M. Hardt, et al., Scalable and accurate deep 
learning with electronic health records, NPJ Digital Med., 1 (2018), 1–10. 
https://doi.org/10.1038/s41746-018-0029-1 



10020 

Mathematical Biosciences and Engineering  Volume 19, Issue 10, 10006–10021. 

12. A. Maxwell, R. Li, B. Yang, H. Weng, A. Ou, H. Hong, et al., Deep learning architectures for 
multi-label classification of intelligent health risk prediction, BMC. Bioinf., 18 (2017), 523. 
https://doi.org/10.1186/s12859-017-1898-z 

13. Z. Yang, Y. Huang, Y. Jiang, Y. Sun, Y. Zhang, P. Luo, et al., Clinical assistant diagnosis for 
electronic medical record based on convolutional neural network, Sci. Rep., 8 (2018), 6329. 
https://doi.org/10.1038/s41598-018-24389-w 

14. H. Liang, B. Tsui, H. Ni, C. Valentim, S. Baxter, G. Liu, et al., Evaluation and accurate diagnoses 
of pediatric diseases using artificial intelligence, Nat. Med., 25 (2019), 433. 
https://doi.org/10.1038/s41591-018-0335-9 

15. N. Liu, E. Qi, M. Xu, B. Gao, G. Liu, A novel intelligent classification model for breast cancer 
diagnosis, Inf. Process. Manage., 56 (2019), 609–623. https://doi.org/10.1016/j.ipm.2018.10.014 

16. C. Huang, X. Huang, Y. Fang, J. Xu, Y. Qu, P. Zhai, et al., Sample imbalance disease 
classification model based on association rule feature selection, Pattern Recognit. Lett., 133 
(2020), 280–286. https://doi.org/10.1016/j.patrec.2020.03.016 

17. B. Krawczyk, Learning from imbalanced data: Open challenges and future directions, Prog. Artif. 
Intell., 5 (2016), 221–232. https://doi.org/10.1007/s13748-016-0094-0 

18. X. Liu, X. Sun, Y. Meng, J. Liang, F. Wu, J. Li, Dice loss for data-imbalanced NLP tasks, in 
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, (2020), 
465–476. https://doi.org/10.48550/arXiv.1911.02855 

19. J. Yang, Z. Qu, Z. Liu, Improved feature-selection method considering the imbalance problem in 
text categorization, Sci. World J., (2014), 625342. https://doi.org/10.1155/2014/625342 

20. F. Charte, A. Rivera, M. Jesus, F. Herrera, A first approach to deal with imbalance in multi-label 
datasets, in International Conference on Hybrid Artificial Intelligence Systems, (2013), 150–160. 
https://doi.org/10.1007/978-3-642-40846-5_16 

21. F. Charte, A. Rivera, M. Jesus, F. Herrera, Concurrence among imbalanced labels and its 
influence on multilabel resampling algorithms, in International Conference on Hybrid Artificial 
Intelligence Systems, (2014), 110–121. https://doi.org/10.1007/978-3-319-07617-1_10 

22. F. Charte, A. Rivera, M. Jesus, F. Herrera, Resampling multilabel datasets by decoupling highly 
imbalanced labels, in International Conference on Hybrid Artificial Intelligence Systems, (2015), 
489–501. https://doi.org/10.1007/978-3-319-19644-2_41 

23. X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, 
in Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 
JMLR Workshop and Conference Proceedings, (2010), 249–256. 
http://proceedings.mlr.press/v9/glorot10a 

24. F. Charte, A. Rivera, M. Jesus, F. Herrera, Addressing imbalance in multilabel classification: 
Measures and random resampling algorithms, Neurocomputing, 163 (2015), 3–16. 
https://doi.org/10.1016/j.neucom.2014.08.091 

25. D. Kingma, J. B. Adam, A method for stochastic optimization, preprint, arXiv:1412.6980. 
26. P. Yang, X. Sun, W. Li, S. Ma, W. Wu, H. Wang, SGM: Sequence generation model for multi-

label classification, in Proceedings of the 27th COLING, (2018), 3915–3926. 
https://doi.org/10.48550/arXiv.1806.04822 

27. D. Lewis, Y. Yang, T. Rose, F. Li, Rcv1: A new benchmark collection for text categorization 
research, Mach. Learn. Res., (2004), 361–397. https://research.gold.ac.uk/id/eprint/29758 



10021 

Mathematical Biosciences and Engineering  Volume 19, Issue 10, 10006–10021. 

28. M. Boutell, J. Luo, X. Shen, C. Brown, Learning multi-label scene classification, Pattern 
Recognit., 37 (2004), 1757–1771. https://doi.org/10.1016/j.patcog.2004.03.009 

29. G. Tsoumakas, I. Katakis, Multi-label classification: An overview, Int. J. Data Warehous. Min., 
3 (2007), 1–13. https://doi.org/10.4018/jdwm.2007070101 

30. Y. Chen, Convolutional neural networks for sentence classification, in Proceedings of 2014 
Conference on Empirical Methods in Natural Language Processing (EMNLP), (2014), 1–62. 
http://hdl.handle.net/10012/9592 

©2022 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 


