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Abstract: In the field of ophthalmology, retinal diseases are often accompanied by complications, and 

effective segmentation of retinal blood vessels is an important condition for judging retinal diseases. 

Therefore, this paper proposes a segmentation model for retinal blood vessel segmentation. Generative 

adversarial networks (GANs) have been used for image semantic segmentation and show good 

performance. So, this paper proposes an improved GAN. Based on R2U-Net, the generator adds an 

attention mechanism, channel and spatial attention, which can reduce the loss of information and 

extract more effective features. We use dense connection modules in the discriminator. The dense 

connection module has the characteristics of alleviating gradient disappearance and realizing feature 

reuse. After a certain amount of iterative training, the generated prediction map and label map can be 

distinguished. Based on the loss function in the traditional GAN, we introduce the mean squared error. 

By using this loss, we ensure that the synthetic images contain more realistic blood vessel structures. 

The values of area under the curve (AUC) in the retinal blood vessel pixel segmentation of the three 

public data sets DRIVE, CHASE-DB1 and STARE of the proposed method are 0.9869, 0.9894 and 

0.9885, respectively. The indicators of this experiment have improved compared to previous methods. 

Keywords: deep learning; retinal image segmentation; generative adversarial networks; attention; loss 

functions 

 

  



9949 

Mathematical Biosciences and Engineering  Volume 19, Issue 10, 9948–9965. 

1. Introduction  

Retinal blood vessels are continuous and have dendritic structures. The branches start from the 

optic disc, and the width of the blood vessel decreases as it moves away from the optic disc. At the 

same time, the optic disc is the confluence of the main blood vessels. Vascular caliber is important for 

assessing cardiovascular disease risk [1]. The diameter, size and morphology of retinal blood vessels 

are closely related to diabetes, macular disease, glaucoma and other diseases, and there will be hard 

exudate and other pathological features in the diseased retina. Therefore, the challenges faced by retinal 

vessel segmentation technology include low capillary and background contrast, mis-segmentation of 

optic disc boundaries and interference from pathological spots. In the past, doctors determined the 

morphology of retinal blood vessels by manual segmentation, but this method is time-consuming and 

laborious, and the efficiency is very low. Therefore, it is of great significance to segment the 

morphology of retinal blood vessels by computer vision. Over the years, many scholars worldwide 

have studied automatic retinal segmentation algorithms. At present, there are supervised and 

unsupervised methods to segment retinal vessels according to whether labeled or unlabeled data are 

required. Common unsupervised retinal vessel segmentation methods include conventional matched 

filtering, image morphology processing, vessel tracking, threshold segmentation, region growth, active 

contour-based methods and graph-based methods. 

Based on the centerline of blood vessels, Mendoca et al. [2] adopted an iterative region growing 

method in the segmentation, which combined images generated by morphological filters and achieved 

good results. Based on probability tracking, Yin et al. [3] used a Bayesian method to detect blood 

vessel edge points and achieved good segmentation accuracy on three publicly available retinal 

datasets. Ye et al. [4] proposed a three-dimensional multi-scale enhancement filter. This method uses 

three-dimensional Hessian matrix eigenvalues, which can improve the saliency of tiny blood vessels 

and increase the speed of calculation. Lazar et al. [5] proposed a new region growth method that defines 

the pixel response as a vector, and the nearest neighbor classifier is used to filter the seed points. In 

order to overcome the false response of the optic disc boundary, a symmetrically constrained multi-

scale filtering technique was also proposed. Neto et al. [6] proposed a coarse-to-fine retinal vessel 

segmentation method, which uses spatial correlation, probability and statistics data, curvature analysis, 

morphological reconstruction and adaptive local thresholds to improve segmentation accuracy on 

multiple datasets. A method proposed by Nguyen et al. [7] is to obtain line detectors of different scales 

by changing the length of a basic line detector and linearly combining the line responses of different 

scales. This method is efficient and scalable. 

The supervised method is to first extract the features of retinal blood vessels, then train the 

classifier with manually labeled images and finally use the trained classifier to segment retinal blood 

vessels. Feature extraction methods include discrete wavelet change, Gaussian filtering, vascular 

filtering, etc., and the classifier usually adopts a support vector machine, artificial neural networks, or 

the k-nearest neighbor algorithm. Staal et al. [8] proposed a supervised model based on ridge lines for 

automatic segmentation of retinal vessels. The method uses the sequential forward selection algorithm 

to get the best eigenvalue of the pixel on the ridge, and it then uses the k-nearest neighbor algorithm 

to classify each pixel. Ricci et al. [9] proposed a retinal vascular segmentation method combining line 

operations with a support vector machine algorithm. In this method, two orthogonal detectors are 

combined with the gray values of pixels to extract feature images, and then the support vector machine 

algorithm is used to complete the classification of pixels. Wilfred et al. [10] used the structure of an 
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artificial neural network with multiple hidden layers to segment the retinal vascular structure and 

experiments show that the accuracy of this method on the DRIVE data set is good. 

2. Related works 

In recent years, the deep learning method has been widely applied in various fields. Due to its 

good segmentation effects and high computational efficiency, more and more researchers have used 

the deep learning method to segment retinal vessels. Scholars have proposed AlexNet [11], VGG [12], 

GoogLeNet [13], Residual Net [14], DenseNet [15] and other models. In terms of semantic 

segmentation, the fully convolutional neural network proposed by Long et al. has achieved better 

performance than other convolutional neural networks. Since 2015, the U-Net model proposed by 

Ronneberger et al. [16] is a kind of fully convolutional neural network. The U-Net model is composed 

of an encoder and decoder as well as skip connections, and it has the abilities of pixel location and 

feature extraction. Based on the U-Net model, many derivative methods have been produced. Zhou et 

al. [17] proposed UNet++ for lung nodule segmentation, colon polyp segmentation, cell nucleus 

segmentation and liver segmentation. The core idea is to use dense connection modules in the skip 

connection part to fuse the semantic gap. Jin et al. [18] introduced deformable convolution in retinal 

image segmentation. The model combines the advantages of deformable units and U-shaped networks. 

Oktay et al. [19] proposed attention U-Net. Its core idea is to introduce an additive attention gate (AG) 

at the skip connection, which can suppress the feature response of irrelevant background areas. Ding 

et al. [20] proposed a multi-channel neural network that can accurately segment the end of blood 

vessels and achieved good results on retinal datasets. Sun et al. [21] proposed two new data enhancement 

modules, channel random gamma correction and channel random blood vessel enhancement, so that the 

model can recognize more features globally and locally. The dense connection network proposed by Li et 

al. [22] extracted retinal vascular information through dense connection blocks, which could alleviate the 

gradient disappearance in the feature extraction process. Alom et al. [23] proposed a cyclic residual 

network based on the U-Net model, in which residual connections can alleviate gradient disappearance 

and train deep network information. Combined with a recurrent neural network (RCNN), it can 

accumulate features and achieve high performance in segmentation tasks, and it performed well on 

retinal data sets. 

To produce a composite image that more closely matches the real data, Goodfellow et al. [27] 

proposed GAN, which generally consists of a generator and discriminator. These two models compete 

against each other in the process of training and learning and finally reach a game equilibrium. The 

purpose of a discriminator is to determine whether the input data comes from real data or from a 

generator. The purpose of a generator is to learn the characteristics of a sample to produce data that 

confuses the judgment of the discriminator. In the traditional GAN, the input of the generator is a 

random noise signal. Through the training, finally the generator can output a high quality sample; 

however, because the random noise of input is uncontrollable, the sample type obtained by the 

generator is difficult to control. This is not suitable for an accurate-to-pixel task. Therefore, the 

conditional GAN proposed by Mirza and Osindro [28] adds conditional information to both the 

generator and the discriminator to guide the training of the model, realizing the controllable generated 

content. FCN and U-Net are mature models, which are widely used in various computer vision tasks 

with remarkable effects. However, it can be found that the detail features of images are often ignored 

in previous studies, while GAN can improve the image synthesis performance of the convolution 
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model [29]. Radford et al. [30] proposed a deep convolutional generative adversarial network. By 

combining a deep convolutional network with GAN, GAN can be more stable in the training process 

and accelerate its training, which performs well in various fields of medical image processing. Since 

then, deep convolutional GANs have been widely used. For example, Pix2Pix proposed by Isola et 

al. [31] is a general framework for image translation based on conditional GAN, which realizes the 

generalization of model structure and loss function, and it has achieved remarkable results on many 

image translation data sets. Isola et al. designed a generator structure similar to U-Net and a 

convolutional discriminator structure, PatchGAN, which inputs local image blocks into the 

discriminator and achieves superior performance on various data sets. The convolutional GAN 

proposed by Yang et al. [32], which combines short and dense connections, can detect more tiny vessels 

and is superior to many methods previously proposed in terms of sensitivity and specificity. The GAN 

proposed by Son et al. [33] was used in retinal vascular segmentation and optic disc segmentation. The 

results showed that the indexes in the vascular segmentation task were significantly improved, while 

optic disc segmentation was not. In the GAN proposed by Dong et al. [34], U-Net was used as the 

generator, and a fully convolutional neural network was used as the discriminator to perform 

segmentation experiments on multiple thoracic organs, which proved the reliability and feasibility of 

GAN for medical images. Zhang et al. [35] proposed an improved dense GAN combined with U-Net 

and proposed a multi-layer attention mechanism for lung CT image segmentation, which improved the 

segmentation accuracy compared with other methods. 

Although there are extensive studies on GAN in medical image processing in the field of 

radiology, there are few applications of GAN in retinal image processing in the field of ophthalmology. 

In previous studies on retinal vascular segmentation, it can be found that conditional GAN performs 

better than U-Net and other convolutional models [33]. GAN can deliver important performance in the 

absence of large tagged datasets and data shortages [36,37]. Therefore, this paper proposes a 

conditional GAN model based on deep convolution for retinal vascular image segmentation, in which 

a controllable variable is used as an additional input of the generator and discriminator, so as to control 

the output types of the generator. In our network, this controllable variable is the original fundus image. 

This setting ensures that the samples generated by the generator in our network are controllable, and 

the input image pair of the discriminator ensures the mapping between the original fundus image and 

the vascular segmentation image. Figure 1 shows the overall network structure, where x represents the 

original fundus image, G represents the generator, G(x) is the segmentation image generated by the 

generator, D represents the discriminator, and y is the manually labeled image. In the network we 

designed, the input of the generator is the original fundus image, and the output is the probability map 

of the same size as the fundus image we input. Obviously, the value range on the probability graph 

is 0–1, where the value corresponding to each pixel point represents the probability value of a 

blood vessel. The input of the discriminator is an image pair, namely, the original image and vascular 

diagram. The task of the discriminator is to distinguish whether the vascular diagram in the image pair 

is artificially annotated or generated by the generator. 

The main work of this paper includes the following: This generator combines a residual unit and 

cyclic unit, and it uses the R2U-Net model, which can accumulate characteristic information and 

alleviate gradient disappearance. In the last layer of convolution, spatial attention and channel attention 

are used to extract global information features and reduce the interference of redundant information. 

In previous studies, densely connected networks have realized high accuracy in the classification task, 

so we use dense connection modules in the discriminator. They can alleviate the gradient dissipation 
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problem in the process of training, and due to the large number of features reused, a large number of 

features can be generated using a small amount of convolution kernels. According to previous 

experience, we usually mix the loss function of the GAN with the traditional loss function to get good 

results. However, we cannot guarantee that the generated blood vessel map and the original fundus 

image correspond pixel by pixel, that is, the generated blood vessel map is not very close to our labeled 

results, so we also need a loss function that makes the results of the generator correspond to the labeled 

map. Kamran et al. [38] proposed using the mean square error loss function to generate a probability 

segmentation graph that is closer to ground truth through RV-GAN. Therefore, we adopted this loss in 

this experiment. 

 

Figure 1. The overall structure of SRV-GAN. 

3. Methods 

3.1. Generator 

RCNN and its variants have shown superior performance in target recognition tasks using 

different benchmarks [39,40]. Alom et al. proposed R2U-Net and applied it to medical image 

segmentation, which has excellent segmentation performance in a variety of data sets. Therefore, we 

take R2U-Net as the basic model of our generator. As shown in Figure 2, R2U-Net uses recurrent 

residual blocks instead of the traditional conv+relu layer in the encoding and decoding process, which 

can effectively increase the network depth; using feature summation at different time steps to obtain 

more expressive features helps to extract lower levels. In skip connections, instead of cutting in the 

original U-Net, a cascading operation is used. The loop structure deepens the network level, and the 

residual structure avoids the problem of gradient disappearance as the depth increases. The advantages 

of U-Net, residual network and RCNN are combined. 

In previous studies, we can see that attention mechanism has been widely used in image 

segmentation tasks. Liu et al. [24] proposed a residual network model fused with an attention 

mechanism, which highlights shallow details in channel and spatial dimensions through a reverse 
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attention mechanism, thereby effectively fusing deep local features and shallow global information, 

and high segmentation indexes were obtained on three retinal data sets. The multi-scale fusion network 

proposed by Yang et al. [25] introduces both channel attention and spatial attention, which adapts the 

weights through the channel attention module to improve the segmentation performance, and it 

captures long-range feature dependencies through the position attention module. It is superior to other 

methods on publicly available retinal data sets. Based on R2U-Net, this generator introduces a channel 

attention module and position attention module to reduce the redundancy of information in the physical 

signs and extract more effective information. As shown in Figures 3 and 4, we adopt the dual-attention 

module proposed by Fu et al. [26] to establish the interdependence relationship in the channel and 

spatial dimensions, respectively. 

 

Figure 2. The structure of the generator. 

Feature A ∈ RC × H × W, and after feature A is subjected to the convolution operation, features B, C, 

D are obtained, {B, C} ∈ RC × H × W. B is subjected to reshape and transpose operations, and C is subjected 

to reshape operation. N = H × W, where N refers to pixels, so RC × N is obtained. The new features obtained 

by B and C are matrix multiplied and then go through softmax to obtain S, S ∈ RN × N, as shown in 

formula (1).  

               
 
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exp

exp
ji

i j
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B C
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
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Feature D ∈ RC × H × W. Reshape feature D to get RC × N, and then matrix multiply with S. Then, 

reshape them into RC×H×W, and finally element-wise sum it with feature A to get the final feature E, which 

is multiplied by the scale parameter α. α learns weight from 0, E ∈ RC × H × W, as shown in formula (2). 
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Figure 3. Position attention module. 

First, the reshaped feature A and the reshaped and transpose A are matrix multiplied and then go 

through softmax to obtain X, X ∈ RC × C. Then, X and the reshaped A are matrix multiplied, and get 

RC × H × W after reshaping. Then, element-wise sum it with feature A to get the final feature E, which 

is multiplied by scale parameter β. β learns weight from 0, E ∈ RC × H × W, as shown in formulas (3) 

and (4).  

               
 

 1

exp

exp
ji

i j

C
i i j

A A
x

A A





 (3) 

                
1

C

j ji i j

i

E x A A


   (4) 

 

Figure 4. Channel attention module. 

3.2. Discriminator 

If the discriminator is slow to respond, the resulting images will converge, and the patterns will 

start to collapse. Conversely, when the discriminator performs well, the gradient of the generator's loss 

function vanishes, and learning is slow. Earlier, we mentioned that R2U-Net has a high segmentation 

accuracy in the retina datasets. Therefore, we should explore an excellent discriminator, compared to 

the deep residual network (ResNet), to achieve the same accuracy. The number of parameters to be 

learned by DenseNet is much lower than that of the ResNet, so the learning efficiency is higher. 

Compared with the ordinary convolutional neural network, the special structure of DenseNet can not 

only reduce the gradient disappearance problem faced by the deep network but also strengthen the 

“understanding ability” of the network due to the repeated use of feature graphs. Therefore, this paper 
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adopts the dense connection module in the discriminator. As shown in Figure 5, the discriminator is 

composed of two convolutional layers and four densely connected blocks. The structure of the 

convolutional layer is Conv3 × 3-BN-ReLU. The small convolution kernel can ensure the visual 

perception domain and reduce the parameters, and densely connected modules are composed of BN-

ReLU-Conv3 × 3. They improve the back propagation of the gradient, make the network easier to train 

and can achieve feature reuse, improve efficiency, reduce the amount of parameters and calculation 

costs and achieve superior performance. Through a series of operations, the sample features can be 

extracted, and finally the generated samples and the output real samples can be judged by sigmoid, so 

as to distinguish the ground truth and the generated retinal blood vessel segmentation images. 

 

Figure 5. The structure of the discriminator. 

On the basis of the residual network, Huang et al. proposed a densely connected network. The 

densely connected network is similar to the residual network. The input of the latter layer is related to 

the previous layer. Unlike the residual network, the input of each layer is the output of all previous 

layers, and the output of each layer is also the input of all subsequent layers. Because of this special 

structure, the densely connected network has the advantage of improving the effect when the number 

of parameters is reduced, and the densely connected network effectively alleviates the phenomenon of 

gradient disappearance and reduces the loss of feature information. Its specific formula is shown in 

formula (5). 

  0 1,i i iX H X X                               (5) 

In the formula, X0, X1, X2...Xi-1 refers to the feature maps fused by layer 0, layer 1, layer 2, layer 

i-1, and Hi is a composite function composed of BN-ReLU-Conv3 × 3. 

3.3. Objective function 

The loss function that removes the noise vector in the original GAN is Eq (6). 
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      L(G, D) = Ex,y~Pdata(x,y) 
[logD(x, y)] + Ex~Pdata(x) 

[log(1 − D(x, G(x)))]    (6) 

          Lrec(G) = Ex,y||G(X) − y||2 (7) 

x represents the input image, and y represents ground truth. However, the above formula is not 

our objective function. Based on the above formula, we introduce the reconstruction loss (mean 

squared error) in the generator to confirm the difference between the output images of the generated 

network and the real images, as shown in Eq (7). By using this loss, we ensure that the synthesized 

images contain more realistic blood vessels. 

Combining the loss function of formula (6) with this function, the loss functions of the generator 

and discriminator are obtained as formulas (8) and (9), respectively. 

     arg min , arg min max ,gen rec
G G D

G L G D L G D L G              (8) 

                   
   arg min , arg min max ,dis

D G D
D L G D L G D                   (9) 

In the formula, Lgen(G, D) is the generator loss, Ldis(G, D) is the discriminator loss, λ is a 

hyperparameter and is set to 10, and G and D are two opposing training processes. First, fix G to train 

D, and then fix D to train G, and so on. In the end, the capabilities of both sub-networks can be 

improved. When the sample image generated by G is judged by D to be an artificially annotated image, 

the training ends. At this time, after the newly input image passes through G, the image generated by 

G can be used as the correct segmentation image. 

4. Results and discussion 

To complete the implementation, we used the Pytorch and Tensorflow frameworks on a single 

GPU machine with 16GB of RAM and an NIVIDIA GEFORCE GTX-1650 SUPER. We tested them 

on three retinal image datasets: DRIVE [8], CHASE_DB1 [41] and STARE [42]. The optimizer uses 

the Adam optimizer with learning rate α = 0.0002, β1 = 0.5, β2 = 0.999, batch_size = 24, and the number 

of iterations of the three data sets is 100. It took 24–48 hours to train.  

4.1. Database and preprocessing methods 

Table 1 shows the pixel sizes of the three data sets and the numbers of training and test images.  

Table 1. Database. 

 DRIVE STARE CHASE_DB1 

Pixel size 565 × 584 700 × 605 999 × 960 

Training\test 20\20 15\5 21\7 

Preprocessing: In the fundus image, because the green channel has high contrast and clear blood 

vessels, the green channel of the fundus retinal image is selected for processing in the experiment. 
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Then, the image is preprocessed by histogram equalization, normalization and gamma transformation. 

Considering that the number of training sets is too small, the model is prone to overfitting, resulting in 

poor classification performance. Therefore, data expansion is required. The expansion methods used 

in this paper are rotation, mirroring, translation and so on. 

4.2. Experimental indicators and chart analysis 

In order to evaluate this experiment objectively, we used 5 evaluation indicators for analysis: 

sensitivity (SE), specificity (SP), accuracy (AC), F1-score and AUC. The formulas are as follows. 
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TP FN

P
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P P
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
                              (10) 
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P P
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
                              (11) 
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
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
                            (14) 

In order to explore whether the dual attention mechanism improves the segmentation performance 

in this experiment, we conducted comparative experiments. Figures 6–8 are the segmentation 

comparison images of the SRV-GAN model with and without the dual attention mechanism on the 

DRIVE, CHASE-DB1 and STARE data sets. The first column is the original image, the second column 

is ground truth, the third column is the segmentation graph with the dual attention mechanism, and the 

fourth column is the segmentation graph without attention. From the figures, we can see that the 

segmentation graph with the dual attention mechanism is closer to ground truth and has higher 

classification accuracy, which indicates that after the addition of the attention mechanism, the 

segmentation performance of the generator is indeed improved. The attention mechanism can pay 

attention to the important parts of feature information and suppress the interference of invalid 

information. Tables 2–4 are the index data in the experiment. It can be seen from the data in the tables 

that various segmentation metrics of the model have been improved when the attention mechanism is 

added, especially the F1-score and sensitivity on the STARE dataset, which further proves that adding 

an attention mechanism is very necessary. 
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(a)            (b)             (c)             (d) 

Figure 6. Retinal vessel segmentation map on DRIVE. (a) Fundus. (b) Ground truth. (c) 

SRV-GAN. (d) SRV-GAN without dual attention. 

Table 2. Indicators of SRV-GAN on DRIVE. 

Method Dual attention F1 SE SP AC AUC 

SRV-GAN × 0.8322 0.8214 0.9814 0.9669 0.9825 

SRV-GAN √ 0.8452 0.8337 0.9850 0.9702 0.9869 

 

(a)            (b)             (c)             (d) 

Figure 7. Retinal vessel segmentation map on CHASE-DB1. (a) Fundus. (b) Ground truth. 

(c) SRV-GAN. (d) SRV-GAN without dual attention. 

Table 3. Indicators of SRV-GAN on CHASE-DB1. 

Method Dual attention F1 SE SP AC AUC 

SRV-GAN × 0.8059 0.7998 0.9815 0.9652 0.9889 

SRV-GAN √ 0.8201 0.8132 0.9837 0.9673 0.9894 

 

(a)            (b)             (c)             (d) 

Figure 8. Retinal vessel segmentation map on STARE. (a) Fundus. (b) Ground truth. (c) 

SRV-GAN. (d) SRV-GAN without dual attention. 
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Table 4. Indicators of SRV-GAN on STARE. 

Method Dual attention F1 SE SP AC AUC 

SRV-GAN × 0.7787 0.7938 0.9812 0.9707 0.9881 

SRV-GAN √ 0.8102 0.8344 0.9884 0.9712 0.9885 

In this article, we applied our proposed model, U-Net, LadderNe and IterNet models to three 

publicly available retinal data sets, as shown in Figure 9. The first column shows fundus images, the 

second column shows the segmentation results of U-Net model, the third column shows the 

segmentation results of LadderNet, the fourth column shows the segmentation results of IterNet, the 

fifth column shows the segmentation results of SRV-GAN, and the sixth column shows ground truth. 

According to the experimental results, it can be seen from Figures 10–12 that SRV-GAN has the 

highest AUC value, indicating that compared with these models, SRV-GAN achieves the best 

segmentation accuracy on retinal images. In addition, we list the results of various experimental 

indicators of other models on the same data sets in Table 5, including sensitivity (SE), specificity (SP), 

accuracy (AC), F1-score (F1) and AUC. It can be seen that our model is superior to U-Net derived 

architecture and recent models in AUC-ROC of DRIVE, SA-UNet [43] performs better in CHASE-

DB1, and R2U-Net performs best in the STARE data set. However, the whole, most of the indicators 

of the method proposed in this paper are not inferior to or even better than the original methods. 

Sensitivity and AUC-ROC are representative of segmentation performance, so we have to work harder 

to improve these two indicators. 

 

Figure 9. Segmentation results of SRV-GAN and other models. 
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Figure 10. The ROC curves of SRV-GAN and other models on DRIVE. 

 

Figure 11. The ROC curves of SRV-GAN and other models on CHASE-DB1. 

 

Figure 12. The ROC curves of SRV-GAN and other models on STARE. 
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Table 5. Performance comparison on DRIVE, CHASE-DB1 and STARE. 

Dataset Method Year F1 SE SP AC AUC 

 

 

 

DRIVE 

U-Net [18] 2018 0.8174 0.7822 0.9808 0.9555 0.9752 

R2U-Net [23] 2018 0.8171 0.7792 0.9813 0.9556 0.9784 

LadderNet [44] 2018 0.8202 0.7856 0.9810 0.9561 0.9793 

IterNet [45] 2019 0.8205 0.7735 0.9838 0.9573 0.9816 

FAU-Net [47] 2020 0.8320 – – 0.9698 0.9853 

SA-UNet [43] 2020 0.8263 0.8212 0.9840 0.9698 0.9864 

MRU-Net [46] 2020 0.8444 0.8618 – 0.9611 0.9837 

SRV-GAN  0.8452 0.8337 0.9850 0.9702 0.9869 

 

 

CHASE-DB1 

U-Net [18] 2018 0.7993 0.7841 0.9823 0.9643 0.9812 

R2U-Net [23] 2018 0.7928 0.7756 0.9820 0.9634 0.9815 

LadderNet [44] 2018 0.8031 0.7978 0.9818 0.9656 0.9839 

IterNet [45] 2019 0.8073 0.7970 0.9823 0.9655 0.9851 

SA-UNet [43] 2020 0.8153 0.8573 0.9835 0.9755 0.9905 

SRV-GAN  0.8201 0.8132 0.9837 0.9673 0.9894 

 

 

STARE 

U-Net [18] 2018 0.7595 0.6681 0.9915 0.9639 0.9710 

R2U-Net [23] 2018 0.8475 0.8298 0.9862 0.9712 0.9914 

IterNet [45] 2019 0.8146 0.7715 0.9886 0.9701 0.9881 

SUD-GAN [32] 2020 – 0.8334 0.9897 0.9663 0.9734 

MRU-Net [46] 2020 0.8143 0.7887 – 0.9662 0.9856 

SRV-GAN  0.8102 0.8344 0.9884 0.9712 0.9885 

5. Conclusions 

In this article, we propose an improved GAN for retinal image segmentation, and we achieved 

good segmentation results in three publicly available datasets. The experimental results show that, 

compared with U-Net, LadderNet and IterNet models, the SRV-GAN model proposed in this paper 

shows better performance in segmentation tasks. We found that GAN has not yet been used in clinical 

trials, so the performance of external data sets independent of training sets cannot be guaranteed. 

Whether GAN technology can improve the performance of machine learning in clinical diagnosis 

needs further research. In the future, we will explore more accurate and stable methods of adversarial 

training, so that they can be put into clinical trials more quickly. 
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