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Abstract: Epidemic spread models are useful tools to study the spread and the effectiveness of the 

interventions at a population level, to an epidemic. The workhorse of spatially homogeneous class 

models is the SIR-type ones comprising ordinary differential equations for the unknown state variables. 



9854 

Mathematical Biosciences and Engineering  Volume 19, Issue 10, 9853–9876. 

The transition between different states is expressed through rate functions. Inspired by -but not 

restricted to- features of the COVID-19 pandemic, a new framework for modeling a disease spread is 

proposed. The main concept refers to the assignment of properties to each individual person as regards 

his response to the disease. A multidimensional distribution of these properties represents the whole 

population. The temporal evolution of this distribution is the only dependent variable of the problem. 

All other variables can be extracted by post-processing of this distribution. It is noteworthy that the 

new concept allows an improved consideration of vaccination modeling because it recognizes 

vaccination as a modifier of individuals response to the disease and not as a means for individuals to 

totally defeat the disease. At the heart of the new approach is an infection age model engaging a sharp 

cut-off. This model is analyzed in detail, and it is shown to admit self-similar solutions. A hierarchy of 

models based on the new approach, from a generalized one to a specific one with three dominant 

properties, is derived. The latter is implemented as an example and indicative results are presented and 

discussed. It appears that the new framework is general and versatile enough to simulate disease spread 

processes and to predict the evolution of several variables of the population during this spread. 

Keywords: disease severity; epidemiological model; finite differences; integrodifferential equations; 

probability density function; vaccination model 

 

1. Introduction  

The dramatic effect of infectious diseases in health, social and economic aspects of human society 

is highlighted by epidemics and most notable the recent COVID-19 pandemic. In this respect, 

mathematical modeling is a valuable tool (i) to understand the transmission and impact of a disease to 

a population (ii) to make predictions for a disease future evolvement and (iii) to develop strategies for 

controlling a disease (e.g. by enforcing social distances or by vaccination). The corresponding models 

can be classified to zero-dimensional ones (no spatial consideration) and to distributed ones (with 

spatial consideration). The distributed models in most of the cases focus on pattern formation (e.g., 

network modeling [1–3]) but also there are several models which assume the spatial transmission of a 

disease as a diffusion process [4]. A general review of mathematical modeling of epidemics can be 

found in [5] and [6] whereas a very interesting and comprehensive work in spatial modeling of the 

transmission in terms of Chemical Reaction Engineering can be found in [7]. In the present work the 

discussion is restricted to zero dimensional models (i.e. spatially well-mixed population). A different 

approach than that introduced by Chemical Reaction Engineering in [7] for the homogeneous problem 

is proposed here. 

Zero dimensional models can be classified into three categories. The first category includes all 

models based on a system of Ordinary Differential Equations (ODEs). This type of modeling is the 

most extensively used in epidemiology literature and practice [8], (i.e. the well-known SIR model 

standing for Susceptible, Infected and Recovered individuals). These models use time as the 

independent variable and as dependent variables employ the different possible states of individuals 

with respect to the disease. Several extensions of the model by considering additional states of 

individuals can be found in literature. A few of such models are the SEIR, SEIRS, SIRS, SEI, SEIS, 

SIS, SEIRIS, where E denotes the Exposed individuals [9–11]. Another extension was made by 

considering Asymptomatic, Hospitalized and Dead individuals [7]. Several additional states like 
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classification of the infected and recovered individuals depending on their response to the disease have 

been also considered. Consideration of reinfection leads to the addition of whole new branches to the 

models repeating the states of the first infection [10]. A slight modification with respect to the ODEs 

models is the time delayed models accounting for a time-delay between the infection of an individual 

and the time to become infectious [12,13].  

The second category of the zero-dimensional epidemic models is the age-structured models. This 

type of models classifies the population according to age. Such models in the case that infection 

dynamics are fast with respect to the population ageing time scale, consist of ordinary differential 

equations with dependent variables distributed among age classes [14]. However, for time scales 

comparable to population age, the mathematical model consists of hyperbolic type partial differential 

equations having as continuous dependent variable the age of individuals [15]. A detailed mathematical 

analysis and a review on this type of models (which are also known as demographic models) can be 

found in [16].  

The third category of the zero-dimensional epidemic models refers to time scales much smaller 

than the age of population and accounts for variation in the transmission behavior depending on the 

time of infection of each individual. These models are much more powerful than those employing a 

single time delay since they permit calculation of the complete distribution of infection age of the 

infected population [17]. Detailed mathematical analysis of these type of models can be found in 

several literature sources (e.g. [18]). 

Parameters in all categories of models are rate constants. These can be assumed to vary across a 

population in a discrete (compartmentalization) way [19,20] or in a continuous way [21]. Kinetic rate 

expressions are common in many fields of medical, industrial, and engineering research to describe 

interactions between physical conditions and interferences originating from multiphase 

dependencies [22]. Of course, in the general case the rate constants are time dependent, and this 

dependency must be determined by fitting to experimental (empirical) data. Very sophisticated 

approaches exist for this purpose [23].   

The above analysis refers to classical developments in epidemiological models field. The recent 

outbreak of COVID-19 yielded a wealth of empirical data for disease spreading which combined with 

significant funding led to the development of many new epidemiological models [24]. In [24] 100 

recent papers (published in the first 12 months of emergency) on epidemiological models are reviewed. 

A more general review on mathematical modeling related to COVID-19 covering not only 

epidemiology but also drug repurposing and vaccine design can be found in [25]. A comprehensive 

view point on the COVID-19 related mathematical modeling is given in [26]. 

The extensive application of quarantine and the social distancing measures applied for first time 

in history at this extend motivated the creation of a new generation of epidemiological models. Some 

of them (belonging to class (i) of the spatially homogeneous models) are reviewed here. The 

SVIAKUR model and its generalization employing fractional derivatives is developed in [27]. In this 

case, V, A, K, U stands for Vulnerable, Asymptomatics, Quarantined and Under treatment individuals, 

respectively. A large number of models has been developed, mathematically analyzed and calibrated 

using data from several regions of India. Among these we refer to the SAIU [28], SAIUQR [29] and 

SEAIHR [30] models, where U, Q, H designate Unreported symptomatic, Quarantined and 

Hospitalized individuals, respectively. It is noted that in the presence of A and U, then I includes only 

reported symptomatic individuals. Somewhat more sophisticated are the SSqAIIqR [31] and 

SEIs,Ia,Q,Ah,Al,H [32] models where Sq, Iq, Is, Ia, Ah, Al are the Susceptible quarantined, Infected 
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isolated, Infected symptomatic, Infected asymptomatic, Highly Active aware and Less Active aware 

individuals. A very important extension of the above models is the incorporation of the effect of media 

awareness [33] and social media advertisement [34]. An excellent example of using optimal control 

theory to extract the optimal intervention strategies in terms of efficiency and cost can be found in [35]. 

An extension of the above described deterministic epidemiological models arises by adding to them 

stochastic terms and transforming them to the so called stochastic epidemic models [36,37]. 

In the present work an alternative progressive way to model the spread of an epidemic is explored. 

The key feature is that the transition time from the state of infection to the state of recovery is not 

dictated by a rate coefficient, but it is a property assigned to every individual (prescribed by his organic 

and physical conditions). Apart from this transition time, other response features of individuals to the 

disease can also be handled in this way, defining a multidimensional probability function of these 

features among the population. The computation of the evolution of this function in time is the main 

scope of the proposed framework. Despite the simplicity of the idea and of the multitude of disease 

spread models in mathematical biology, it appears that this idea has never been exploited/adopted before.  

The main motivation of the proposed approach is the need to overcome the increasing number of 

kinetic constants appearing in the typical ODEs epidemiological models and replace them by 

probability density functions over the population. So, issues such as severity of the disease, duration 

of the disease, amount of virus in stools etc can be more efficiently and sophisticated parameterized 

than simply increasing the number of ODEs and adding rate coefficients to the ODEs model. A further 

motivation is the need for a model where vaccination appears as a modifier of the severity of the 

disease distribution and not as a means of transition from Susceptible to Recovered compartments 

being typically the case in ODEs models. 

Based on the above idea, a model that is mathematically and numerically simple as the 

conventional ODEs models is developed. This new model admits the calculation of infection age 

distribution and of properties variability across the population whereas it avoids the explicit reformulation 

and addition of dependent variables required for each extension of the classical ODEs model.    

The structure of the present work is the following: At first (Sections 2.1, 2.2) the modification of 

the standard SIR model to account for an infection age distribution with sharp cut-off aspect is 

illustrated. In the next section (Section 2.3), the new model is presented using a top-bottom approach; 

from the more general with generalized coordinates describing the state of the population to the more 

specific situation of a set of three completely correlated variables based on their significance. Finally, 

several indicative results are presented to demonstrate the features of the new model. 

2.  Model formulation 

2.1. The standard SIR model 

The new model is presented in a stepwise way focusing on novel characteristics. The original SIR 

model divides the population in Susceptible, Infected and Recovered individuals (their number is 

denoted as S, I, R, respectively). The evolution equations for the three populations are  

𝑑𝑆

𝑑𝑡
= −𝑐𝑠𝐼

𝑆

𝑁
                 (1) 

𝑑𝐼

𝑑𝑡
= 𝑐𝑠𝐼

𝑆

𝑁
− 𝑐𝐼𝐼                                        (2) 
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𝑑𝑅

𝑑𝑡
= 𝑐𝐼𝐼                      (3) 

where t is time, N is the total population number (N = S + I + R) and cs, cI are model parameters. 

In chemical reaction terms the above scheme can be represented by the reaction S→I→R where 

the first from the two consecutive reactions is an autocatalytic one (i.e. its rate depends not only on the 

reactant but on the product, too [38]). The meaning of the parameters cS, cI has been extensively 

discussed [5,6] so it will not be repeated here.   

Let us attempt to further simplify the mathematical problem. It is observed that R can be found by 

postprocessing of I, i.e., there is one way coupling between R and variables S and I. This means that 

only the first two equations of the system need to be solved at a first stage. In addition, if a weak spread 

of the disease (in terms of fraction of the total population i.e. I + R << N) is considered, the value of S 

can be assumed to be constant and equal to N (the term "weak spread" henceforth implies this situation). 

In this case the evolution of infection can be described by the simple equation 

𝑑𝐼

𝑑𝑡
= (𝑐𝑠 − 𝑐𝐼)𝐼                 (4) 

which leads to exponential increase or decrease of I depending on the sign of the quantity cs-cI (or 

equivalently by the relative value of constants cs, cI). A further simplification refers to the period of no 

disease spread (complete lockdown or hospitalized patients). Then the model describes just the 

recovery process and it can be written as 

𝑑𝐼

𝑑𝑡
= −𝑐𝐼𝐼                  (5) 

2.2. Introducing infection age with sharp cut-off  

Let us introduce here the concept of infection age to the model development. The governing 

equation for pure recovery dynamics (replacing Eq (5) in the case of no disease spread) takes the form: 

𝜕𝐼(𝜏,𝑡)

𝜕𝑡
+

𝜕𝐼(𝜏,𝑡)

𝜕𝜏
= −𝑏(𝜏)𝐼(𝜏, 𝑡)              (6) 

where I(τ,t) is the number of infected individuals having infection age τ at time t. The function b(τ) 

determines the rate of recovery. The above equation yields a distribution of infection times for the 

recovered individuals. This distribution cannot be written explicitly but depends implicitly on the 

function b(τ).   

The first feature of the proposed approach (at least in the present context) is to replace the above 

recovery term by a strict one corresponding to an exact duration of infection time Τ for all individuals. 

The governing equation is in this case: 

𝜕𝐼(𝜏,𝑡)

𝜕𝑡
+

𝜕𝐼(𝜏,𝑡)

𝜕𝜏
= 0           for 0<τ<T             (7) 

The parameter cI is defined as the inverse infection time, that is, cI = 1/T. Assuming an initial 

number of infected individuals Io the solution of the lumped Eq (5) is I = Ioexp(-t/T) whereas the 

solution of the distributed Eq (7) is I(τ,t) = Io(τ-t) (for t<Τ) where Io(τ) = I(τ,0) is the initial infection 
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age distribution. The total number of infected individuals I in the distributed case is given as 𝐼𝑡(𝑡) =

∫ 𝐼𝑜(𝜏)𝑑𝜏
𝑇−𝑡

0
.  

Comparing I(t) and It(τ) the following inferences are made: 1) The computation of It(t) needs the 

complete initial infection age distribution of the infected individuals Io. 2)The evolution of I is always 

exponential but the evolution of It can take several shapes depending on the shape of Io(τ) (with the 

exponential being one of them). Some limiting cases are: i) uniform Io(τ) leading to It/Io = 1-t/T (for t 

< T), (ii) initially all individuals being at the inception stage (Io = δ(0) where δ is the Dirac function) 

of infection leading to sudden end of the disease at t = T (iii) initially all individuals being at the end 

of infection (Io = δ(T)) leading to sudden end of disease at t = 0. This variety of behaviors adds 

versatility to the model at the cost of additional input data. 

The next step is to consider the new model in the presence of a weak spread of the disease. The 

governing equations take the form    

𝜕𝐼(𝜏,𝑡)

𝜕𝑡
+

𝜕𝐼(𝜏,𝑡)

𝜕𝜏
= 0           for 0<τ<T              (8) 

𝐼(0, 𝑡) = 𝑐𝑠 ∫ 𝐼(𝜏, 𝑡)𝑑𝜏
𝑇

0
                  (9) 

It will be shown that the above equation has asymptotic solutions (i.e., self-similar ones) where 

the shape of the distribution with respect to τ remains the same and only the total number of infected 

individuals varies in time. This variation is exponential (increasing or decreasing depending on the 

values of parameters T and cs). Let us assume that Eq (8) has a solution of the form I(τ,t) = M(t)F(τ) 

where M(t) is the total number of infected individuals at time t and ∫ 𝐹(𝜏)𝑑𝜏 = 1
𝑇

0
. Introducing these 

terms in Eq (8) and (9) leads to   

𝐹(𝜏)
𝜕𝑀(𝑡)

𝜕𝑡
+ 𝑀(𝑡)

𝜕𝐹(𝜏)

𝜕𝜏
= 0              (10) 

𝐹(0) = 𝑐𝑠                  (11) 

Taking the integral with respect to τ of all terms of Eq (10) from τ = 0 το τ = Τ gives: 

𝑑𝑀(𝑡)

𝑑𝑡
+ 𝑀(𝑡)(𝐹(𝑇) − 𝐹(0)) = 0             (12) 

Denoting F(T) as k, one can find by combining Eq (11) and (12) and integrating: 

𝑀 = 𝐼𝑜𝑒(𝑐𝑠−𝑘)𝑡                 (13a) 

Solving Eq (10) for the time derivative of M, substitution in Eq (12) and integration employing 

Eq (11) as initial condition leads to 

𝐹(𝜏) = 𝑐𝑠𝑒−(𝑐𝑠−𝑘)𝜏                (13b) 

Applying the above equation at τ=T leads to  

𝑘 = 𝑐𝑠𝑒−(𝑐𝑠−𝑘)𝑇                 (13c) 

Integrating F(τ) in Eq (13b) for τ between zero and T and using Eq (13c), it confirms that the 

requirement of the integral of F(τ) to be equal to unity holds. Eq (13c) is a transcendental one giving 
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the value of k as a function of cs and T. This algebraic equation can be set in a universal basis by 

considering the new variables k/cs and csT. The universal relation between these two variables is shown 

in Figure 1. In case of csT values larger than unity the ratio k/cs is smaller than unity, which means that 

the number of infected individuals increases exponentially with time. On the contrary, for csT values 

smaller than unity the number of infected individuals decreases exponentially. In this model the 

number Ro = csT is the basic reproduction number denoting the effective number of secondary 

infections produced by a single infection [39]. The distribution F(τ) decreases or increases 

exponentially in the opposite direction from the total number M(t). Furthermore, one can add that the 

shape of function F(τ) is always the aforementioned asymptotic one except in periods of external 

forcing. Such a period is the initial one when the distribution is affected by its initial prescribed form. 

The asymptotic distribution is reached fast after a short transient. As the initial distribution is closer to 

the asymptotic one, the transient becomes shorter and it totally vanishes when the initial distribution 

equals the asymptotic one. Except from the initial period, the system loses its similarity when becomes 

non-autonomous (i.e. time dependence of the parameters). As an example, let us assume a disease at 

the self-similar growing regime. A change in the parameter cs occurs leading to the decreasing regime 

of the infection. After this change, the distribution F(τ) exhibits a transient between its two self-similar 

asymptotes corresponding to the two cs values. 
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Figure 1. Universal curve for determination of parameter k as function of cs and T. 

A nice feature of the sharp cut off model is that the equation for R takes the following simple form 

𝑑𝑅

𝑑𝑡
= 𝐼(𝑇, 𝑡)                  (14) 

2.3. Introducing a generalized parametric population dependence 

2.3.1. Generalized formulation 

The second innovation in the present modeling effort is the description of the whole population in 

terms of its response to the disease. Let us say that α is an n-dimensional vector containing all the 

parameters defining the response of a particular individual to the specific disease. For each individual, 

this could include for example the severity of the disease (native immune response; vaccination 
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induced response will be dealt in a next section), the duration of the disease, the virus load in the body 

etc. The probability of an individual to have a specific value of α is described through the joint 

probability density function P(α). The state of the population is described in this case by the functions 

S(α,t), I(α,τ,t), R(α,t) for susceptible, infected and recovered population, respectively. The 

mathematical problem for these functions takes the following form: 

𝜕𝑆(𝒂,𝑡)

𝜕𝑡
= −𝐼(𝒂, 0, 𝑡)                (15a) 

𝜕𝐼(𝒂,𝜏,𝑡)

𝜕𝑡
+

𝜕𝐼(𝒂,𝜏,𝑡)

𝜕𝜏
= 0      0<τ< Ω(α)                          (15b) 

𝐼(𝒂, 0, 𝑡) = ∫ ∫ 𝐾(𝒂, 𝒂′, 𝜏, 𝑡)𝐼(𝒂′, 𝜏, 𝑡)𝑆(𝒂, 𝑡)𝑑𝜏
ϒ(𝒂)

𝛵

0
𝑑𝒂′                (15c) 

𝜕𝑅(𝒂,𝑡)

𝜕𝑡
= 𝐼(𝒂, 𝛺(𝒂), 𝑡)                                                  (15d) 

where Ω(α) is a generalized function of the vector α (in the simplest case it refers to a single 

coordination of the vector) and Y(α) is the subdomain of the n-dimensional space of α designating the 

infected individuals which can transmit the decease. The double integral in Eq (15c) reminds the 

collision integral of the Boltzmann Eq [40] or the first of the two integrals in the coagulation Eq [41]. 

The function K is the rate of infection transmission from an infected individual with state vector α' 

and infection age τ to a susceptible individual with state vector α. The time dependence in K stands 

for seasonal changes and for external (non-autonomous) contributions (e.g., lockdown, change of 

social behavior etc). The initial condition for the above system is S(α,0) = P(α), R(α,0) = 0. Some 

initial seeding is needed for the function I but as discussed in the previous section (in the context of 

self-similar behavior) the solution of the system is (after a short initial transient) independent from the 

initial condition. 

The nice attribute of the above model is that it can be expanded without additional differential 

equations coupled to it, contrary to the typical case for extensions of the SIR model (e.g. [10]). 

Let us say that the model must be augmented for computation of the number of deaths D(t). Let 

us define as Y(α) the subdomain corresponding to individuals with fatal effect of infection. Then the 

equation for deaths is simply: 

𝑑𝐷(𝑡)

𝑑𝑡
= ∫ 𝐼(𝒂′, 𝛺(𝒂′), 𝑡)𝑑

𝑌(𝒂)
𝒂′                    (16) 

In this case, the subdomain Y(α) must be excluded from the domain of application of Eq (15d) for 

recovered individuals. Other categories of population can be found in an even simpler way by simply 

post-processing the function I(α,τ,t). As a matter of fact, the whole required information is contained 

in this function. In order to find the number of hospitalized individuals H(t) one has to integrate the 

function I at the subdomain of α and τ characterizing hospitalization O(α,τ): 

𝐻(𝑡) = ∫ 𝐼(𝒂′, 𝜏, 𝑡)𝑑𝜏𝑑𝒂′
𝑂(𝒂,𝜏)

              (17)     

In principle, the methodology can handle different modes of transmission at different exposure 

conditions, e.g. hospitalized patients. Although several airborne diseases may be transmitted in 

hospitals, e.g. COVID-19 at infectious stages, there are also diseases, e.g. bacterial pneumonias, that 
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may not be transmitted. This has to be accounted in the integration domain of Eq (15c). The subdomain 

O(α,τ) has to be subtracted from the integration domain of Eq (15c).  

A discussion exists in literature on the possibility of estimating the spread of the disease in the 

population (not only temporal [42] but also spatial [43]) based on the analysis of virus parts 

concentration in wastewaters. Thus, it is important for an epidemic spread model to has as output the 

expected evolution of total shedding rate of virus parts.   

The shedding rate of virus parts (fragments) in stool (highest amount from all other human excreta) 

per individual is a strong function of infection age as it has been extensively discussed in [44]. This 

function, in general, varies across the population. Let us denote this function as C(α,τ). To be precise, 

in practice C depends only on some components of vector α but we leave the particular notation to 

account for the most general case. The evolution of shedding rate of VP (virus parts) in the wastewater 

of a city can be found as: 

𝐸(𝑡) = ∫ ∫ 𝐶(𝒂′, 𝜏)𝐼(𝒂′, 𝜏, 𝑡)𝑑𝒂′∞

0𝛷(𝒂)
               (18) 

where the domain Φ(α) is selected equal to Υ(α) if all the infected people contribute to shedding 

rate or to a subset of this if, for example, the unprocessed wastewater of hospitals does not end up at 

the city sewerage system. In order to decrease the number of parameters in the problem, the 

parametrization of S(τ) introduced in [41] has been employed. It is noted that other expressions for C 

proposed in literature, e.g. [45,46], can be easily incorporated in the present model. The employed 

equations following [44] are:  

C(τ;τa,Τ)=ABs(τ;τa,Τ)               (19) 

where s(τ;τa,Τ) is 

s=0.01exp(4.6τ/τa)    τ<τa            (20) 

s=exp(-4.6(τ-τa)/(Τ-τa))   τ>τa            (21) 

where stool amount produced by a person per day is denoted as A (gramsstool/day) and the maximum 

virus concentration in stool along the total duration of infection is denoted as B (gramsvirus/gramsstool). 

The value of τa denotes the day of the infection (infection age) corresponding to the maximum shedding 

rate of an individual and T is the total duration of the infection for an individual. In the general case 

A,B,τa,T are components of vector α.  

2.3.2.  A specific 3 parameters example 

In order to illustrate the benefits of the above analysis an example in 3-dimensional parameter 

space is presented. The three parameters are: 1) a parameter α denoting the response of a person to a 

disease. It takes values between 0 and 1. Its values smaller than α1 denote asymptomatic response, 

values larger than α2 denote hospitalization and values larger than α3 denote a fatal end of the infected 

person. 2) a parameter B denoting the maximum concentration of virus parts in the stool of an 

individual and 3) the duration T of the disease (total infection period) for an individual. Considering a 

distribution of the above three parameters over the population implies that constant values are taken 

for all other possible parameters (e.g., A, τa). These values are average ones over the whole population. 

It must be mentioned that regarding shedding rates in stool the parameters A, τa vary much less than B 

across the population so taking constant values is a satisfactory educated guess.     



9862 

Mathematical Biosciences and Engineering  Volume 19, Issue 10, 9853–9876. 

The joint probability density function describing the population is P(α,Β,Τ). The unknown 

functions are S(α,Β,Τ,t), Ι(α,Β,Τ,τ,t), R(α,Β,Τ,t), H(t), D(t) (as defined previously). The governing 

equations are 

 
𝜕𝑆(𝛼,𝐵,𝑇,𝑡)

𝜕𝑡
= −𝐼(𝛼, 𝐵, 𝑇, 0, 𝑡)              (22a) 

𝜕𝐼(𝛼,𝐵,𝑇,𝜏,𝑡)

𝜕𝑡
+

𝜕𝐼(𝛼,𝐵,𝑇,𝜏,𝑡)

𝜕𝜏
= 0      0<τ<Τ           (22b) 

𝐼(𝛼, 𝐵, 𝑇, 0, 𝑡) =

∫ ∫ ∫ ∫ 𝛩(𝜏, 𝛼)𝐾(𝛼, 𝛼′, 𝜏, 𝑡)𝐼(𝛼′, 𝐵′, 𝑇′, 𝜏, 𝑡)𝑆(𝛼, 𝐵, 𝑇, 𝑡)𝑑𝜏𝑑𝑇′
𝑇′

0

𝛵

0
𝑑𝛼′𝑑𝐵′

𝛼𝛣
 (22c) 

𝜕𝑅(𝛼,𝛣,𝛵,𝑡)

𝜕𝑡
= 𝐼(𝛼, 𝛣, 𝛵, 𝛵, 𝑡)            for α<α3         (22d) 

𝑑𝐷

𝑑𝑡
= ∫ ∫ ∫ 𝐼(𝛼 ′, 𝛣′, 𝛵 ′, 𝛵 ′, 𝑡)

𝛵
𝑑𝑇 ′𝑑𝛼 ′𝑑𝐵′1

𝛼3𝐵
           (22e) 

The initial conditions for R and S is zero and S(α,Β,Τ,0) = P(α,Β,Τ) 

The basic reproduction number for this model can be found at any moment in time by the product 

KαυTαυ where Kαυ is the average value of function K and Tαυ is the average value of infection duration 

over the state of the population at the particular moment in time. 

Several other unknown functions are found by simply post-processing the distribution I. In this 

respect, the hospitalized number is given as (it is assumed that an individual stays in hospital for α>α2 

and τ > τ1):  

𝐻(𝑡) = ∫ ∫ ∫ ∫ 𝐼(𝛼 ′, 𝛣′, 𝛵 ′, 𝜏 ′, 𝑡)𝑑𝜏 ′𝛵′

𝜏1𝛵
𝑑𝑇 ′𝑑𝛼 ′𝑑𝐵′1

𝛼2𝐵
         (23) 

The function Θ in Eq (22c) puts restrictions on the transmission frequency. In the specific case 

that transmission from hospitalized individuals is ignored, it takes the form Θ = 0 for α > α2 and τ > τ1, 

Θ=1 elsewhere. As τ1 is designated the infection age for hospitalization of an infected person. The 

structure of function K suggests that the direct effects of B and T in the transmission process have been 

ignored. Yet, the T values affect indirectly the transmission process through the higher possibility of 

contact induced by the extended duration of disease. 

The number of asymptomatic infected people A(t) can be easily computed as 

𝐴(𝑡) = ∫ ∫ ∫ ∫ 𝐼(𝛼 ′, 𝛣′, 𝛵 ′, 𝜏 ′, 𝑡)𝑑𝜏 ′𝛵′

0𝛵
𝑑𝑇 ′𝑑𝛼 ′𝑑𝐵′𝛼1

0𝐵
         (24) 

The shedding rate in stool is given as 

𝐸(𝑡) = ∫ ∫ ∫ ∫ 𝐶(𝜏 ′; 𝜏𝑎, 𝑇)𝐼(𝛼 ′, 𝛣′, 𝛵 ′, 𝜏 ′, 𝑡)𝑑𝜏 ′𝛵′

0𝛵
𝑑𝑇 ′𝑑𝛼 ′𝑑𝐵′1

0𝐵
      (25) 

The above mathematical problem is defined in a 5-dimensional space. Even a coarse discretization 

for its numerical solution leads to several millions of algebraic equations. The immense computational 

effort needed restricts its usefulness. On the other hand, the problem is well-suited to a Monte Carlo 

stochastic solution approach. This is even more so since the Monte Carlo method scales linearly to the 

problem dimensionality so additional parameters can be easily considered (e.g. the day of 
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hospitalization τ1, the day of maximum shedding rate τa etc). However, here we seek a computationally 

efficient deterministic model so we will proceed in the opposite way of reducing the problem 

dimensionality.   

2.3.3. Reduced order problem 

Let us assume that the function P has such a form that for each value of α it takes non-zero values 

only for a narrow range of B and T. In this case the function P can be (quite accurately) approximated 

by the form  

P(α,B,T) = J1(α)δ(B-J2(α))δ(Τ-J3(α))            (26) 

It is reminded that δ takes non-zero values only when its argument equals to zero. The above 

definition implies that the information included in the three-dimensional function P can be 

approximated by three one dimensional functions Ji (i = 1,2,3) (only the first one is a probability density 

function whereas the other two are simple functions).  From the physical point of view, this means 

that the severity of the disease for an individual (including all possible native factors e.g. virus 

replication) completely determines the duration of his infection and his virus parts shedding rate in 

stool. 

The evolution of the disease is described by the functions S(α,t), I(α,τ,t), R(α,t), D(t), H(t), A(t). 

The evolution of these functions can be calculated by solving the following mathematical problem: 

𝜕𝑆(𝛼,𝑡)

𝜕𝑡
= −𝐼(𝛼, 0, 𝑡)                (27a) 

𝜕𝐼(𝛼,𝜏,𝑡)

𝜕𝑡
+

𝜕𝐼(𝛼,𝜏,𝑡)

𝜕𝜏
= 0      0<τ<Τ              (27b) 

𝐼(𝛼, 0, 𝑡) = ∫ ∫ 𝛩(𝛼, 𝜏)
𝐽3(𝛼)

0

1

0
𝐾(𝛼, 𝛼′, 𝜏, 𝑡)𝐼(𝛼′, 𝜏, 𝑡)𝑆(𝛼, 𝑡)𝑑𝜏𝑑𝛼     (27c) 

𝜕𝑅(𝛼,𝑡)

𝜕𝑡
= 𝐼(𝛼, 𝐽3(𝛼), 𝑡)          for α<α3           (27d) 

𝑑𝐷

𝑑𝑡
= ∫ 𝐼(𝛼, 𝐽3(𝛼), 𝑡)𝑑𝛼

1

𝛼3
                                                  (27e) 

The initial conditions for R and S is zero and S(α, 0) = J1(α). The rest of the unknown functions are 

calculated by a simple post processing of I: 

𝐻(𝑡) = ∫ ∫ 𝐼(𝛼, 𝜏, 𝑡)𝑑𝜏
𝐽3(𝛼)

𝜏1

1

𝛼2
𝑑𝛼             (28) 

𝐴(𝑡) = ∫ ∫ 𝐼(𝛼, 𝜏, 𝑡)𝑑𝜏
𝐽3(𝛼)

0

𝛼1

0
𝑑𝛼             (29) 

The virus parts shedding rate in stool is computed as 

𝐸(𝑡) = ∫ ∫ 𝑆(𝛼, 𝐽2(𝛼), 𝜏)𝐼(𝛼, 𝜏, 𝑡)𝑑𝜏
𝐽3(𝛼)

0

1

0
𝑑𝛼          (30) 
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The above modelling approach is ideally suited to be extended to cover additional phenomena. 

Typically, a possible second infection can be modeled by adding a first order derivative term (age of 

recovery) to the equation of recovered individuals [10]. Using the present approach, the time spent in 

recovery can be registered for each individual and the transition to second infection is rendered when 

the effect of the first infection is eliminated. The time required for this can be different for different 

individuals. The equation for the evolution of function R(α,τ,t) standing for the recovered from the 

first infection people takes the form (τ is the time being in recovery) 

𝜕𝑅(𝛼,𝜏,𝑡)

𝜕𝑡
+

𝜕𝑅(𝛼,𝜏,𝑡)

𝜕𝜏
= 0                for α<α3         (31) 

with  𝑅(𝛼, 0, 𝑡) = 𝐼(𝛼, 𝐽3(𝛼), 𝑡)            (32) 

Let us say that the time needed to become susceptible to a second infection is a function of 

parameter α i.e., τv = J4(α). The reversion of recovered people to susceptible status is described by 

modifying the corresponding equation to   

𝜕𝑆(𝛼,𝑡)

𝜕𝑡
= −𝐼(𝛼, 0, 𝑡) + 𝑅(𝛼, 𝐽4(𝛼), 𝑡)           (33) 

The third innovation of the proposed approach is that the employed scheme automatically 

considers any number of reinfections and no explicit consideration of this number is needed. This is in 

contrast to the standard procedure in which new variables are introduced for each number of re-

infections. 

Let us introduce the variable τI which is the number of days from the infection to its registration 

(day of performing medical test). It is reasonable that it would be a function of α since it depends on 

the intensity of the disease symptoms. It is assumed that τI = J4(α). The number of officially registered 

infections every day L(t) is  

  𝐿(𝑡) = ∫ ∫ 𝛿(𝜏 − 𝐽4(𝛼))𝐼(𝛼, 𝜏, 𝑡)
𝐽3(𝛼)

0
𝑑𝜏𝑑𝛼

1

0
         (34) 

The basic reproduction number Ro is given through the product of Kαυ and Tαυ which in the present 

case takes the form: 

𝑇𝑎𝑣 =
∫ ∫ 𝐽3(𝛼)𝐼(𝛼,𝜏,𝑡)𝑑𝜏𝑑𝛼

𝐽3(𝛼)
0

1
0

∫ ∫ 𝐼(𝛼,𝜏,𝑡)𝑑𝜏𝑑𝛼
𝐽3(𝛼)

0
1

0

             (35a) 

𝐾𝑎𝑣 =
∫ ∫ ∫ 𝛩(𝛼,𝜏)

𝐽3(𝛼)
0

1
0

𝐾(𝛼,𝛼′,𝜏,𝑡)𝐼(𝛼′,𝜏,𝑡)𝑆(𝛼,𝑡)𝑑𝜏𝑑𝛼𝑑𝛼′1
0

∫ 𝑆(𝛼,𝑡)𝑑𝛼
1

0  ∫ ∫ 𝐼(𝛼,𝜏,𝑡)𝑑𝜏𝑑𝛼
𝐽3(𝛼)

0
1

0

           (35b)      

The typical way to model a vaccination campaign is through a first order reaction term with 

susceptible people as reactant and recovered people as product (e.g. [20]). More advanced models of 

vaccination include age dependent efficiency [47] or dependency of the vaccination efficiency from 

the time elapsed from vaccination [48]. 

The scheme proposed here allows a more sophisticated treatment of vaccination. In many cases 

(e.g. COVID-19) vaccination does not yield complete immunity but affects the temporal variation of 

individuals on the acquisition and severity of the infection based on the type of vaccine, pathogen and 
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pathogen evolution. The fourth innovation of the proposed approach is that such behavior can be 

represented as a modification of the distribution of α among the susceptible population. Let us say that 

the effect of vaccination is to reduce the value of α for a person, for a constant quantity αm. Persons 

with α less than zero are no more susceptible to infection. If a vaccination campaign proceeds at 

constant rate such that the whole initial population is vaccinated at time τv the governing equation for 

S(α,t) takes the form (the following equations hold only during vaccination period):  

𝜕𝑆1(𝛼,𝑡)

𝜕𝑡
= −𝐼(𝛼, 0, 𝑡) −

1

𝜏𝑣

𝑈(𝑆1(𝛼)>0)

∫ 𝑈(𝑆1(𝛼)>0)𝑑𝛼
1

0

          (36) 

𝜕𝑆2(𝛼,𝑡)

𝜕𝑡
=

1

𝜏𝑣

𝑈(𝑆1(𝛼+𝛼𝑚)>0)

∫ 𝑈(𝑆1(𝛼)>0)𝑑𝛼
1

0

             (37) 

S(α,t) = S1(α,t) + S2(α,t)              (38) 

where S1 and S2 refers to the non-vaccinated and vaccinated susceptible individuals, respectively. 

The function U is a step function equal to 1 for positive argument and 0 for negative argument.  

The second right hand term in Eq (36) ensures that the reduction of S1 occurs only when its value 

is non-zero. The outcome of S1 is equal to the income in S2 with the variable α shifted by the quantity 

αm. The mathematical representation of the vaccination process in this scheme is by far not trivial, and 

it is an essential feature of the present modeling approach. A good handling of vaccination modeling 

is essential to optimize vaccination strategy. As an example in [49] the effect of vaccination strategy 

with respect to the risk group ordering is considered. Further research regarding the formulation of 

vaccination in the present framework is needed. 

In summary, the algorithm behind the new approach is the following: 

1) Assign multidimensional probability density function to the population. 

2) Apply the vaccination operator to the probability density function of the susceptible population. 

3) Follow in time the evolution of the probability density function corresponding to infected 

population. 

4) Post-process the infected population probability density function in order to infer number of 

individuals in other compartments.  

3.  Indicative results 

In general, the governing equations of the model must be solved numerically. The main equation 

for function I has a hyperbolic form and so it must be discretized properly. The approach followed in 

literature is to transform it to a set of ordinary differential equations in time by applying a first order 

finite discretization with respect to infection age variable τ [17]. However, it is well known that this 

type of discretization leads to a numerical diffusion problem [50]. A different numerical approach is 

introduced here which in fact constitutes the fifth innovation of the proposed approach. The problem 

has a natural time scale for both variables t and τ, namely, that of a day. So, applying a combination of 

forward in time t and backward in infection age τ first order finite difference discretization, the main 

hyperbolic equation of the problem takes the quite simple form 

𝐼(𝒂𝑘, 𝜏𝑖, 𝑡𝑗+1) = 𝐼(𝒂𝑘, 𝜏𝑖−1, 𝑡𝑗)            (39) 

where i,j,k are the discretization indices of the corresponding  variables. This simple treatment of the 

hyperbolic partial differential equation renders the whole problem amenable to explicit integration 
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techniques (i.e. the Euler method is used for the differential equations and trapezoidal or orthogonal 

rules for the evaluation of the integrals). It is very important to stress that the above approach is the 

only one (and only for the specific hyperbolic equation), which is free of both numerical diffusion and 

dispersion errors typical for discretization of first order hyperbolic partial differential equations. The 

approach can accurately trace any discontinuity of the initial distribution and it was proved successful 

in the past for the mathematically similar problem of simulating cell cycles [51–53]. In principle, the 

required mathematical effort can be further reduced by using approximating techniques for the solution 

of population balances equation (e.g. method of moments [54,55]). This reduction has meaning only 

for the extension of the model to spatially distributed scenarios since for the present homogeneous case 

the numerical effort is quite affordable. The discretized system which arises here is just a set of 

differential equations which can be solved explicitly. The calculations are implemented in the 

VisualBasic programming language. The running time of the presented calculations in this work is of 

the order of 10 seconds.  

The first example refers to a problem described by Eq (8) and (9). An initial seed of value I = 1 

with τ = 5 is employed (the seed patients supposedly arrived from a different place and are all on the 

5th day of disease). The absolute value of I has no special meaning since all the models presented here 

are linear in I so their values can be rescaled by properly rescaling the initial condition. The total 

duration of disease is assumed as T = 10 days. The parameter cs has initially the value 0.2 but at t = 50 

(i.e., 50th day after the seed patient’s arrival) it suddenly drops to 0.05, e.g. due to a lockdown. The 

evolution of the total number of infected individuals It and of the number of recovered R is shown in 

Figure 2. The delay of the recovered with respect to infected patients is obvious. 

 

 

 

 

Figure 2. Evolution of total infected It and recovered R numbers for a sudden reduction 

(e.g., due to a lockdown) of cs (from 0.2 to 0.05) at t = 50 day. 

 

After an initial transient of more than 15 days, self-similar exponential profiles both in time and 

in infection age are captured. The initial transient period is long because the monodisperse initial 

distribution in τ varies strongly from the exponential asymptotic one. After t = 70 a new self-similar, 

exponential distribution decreasing in τ, is gradually approached. Of great significance is the period i 

between t = 50 and t = 70 where most of the transition between the two self-similar distributions occurs. 

The evolution of the shape of the function F(τ) between the two asymptotic shapes appears in Figure 

3. It is noticed that the transition between the two shapes is never smooth. Instead, a singularity appears 
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and proceeds along the τ domain. Oscillations decaying in time t appears at the edge t = T. It is noted 

that the two numerical asymptotic distributions differ from the analytical solution described by Eq 

(13a), (13b), (13c) by less than 1%. 
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Figure 3. Snapshots of infection age probability density function F(τ) for a sudden 

reduction (e.g., due to a lockdown) of cs (from 0.2 to 0.05) at t=50 day. 

 

The next example refers to the reduced problem described in section 2.3.3. The probability density 

function has the parabolic form J1(α) = 6α(1-α). The function J2(α) = 10 + 10α is also considered (i.e., 

the higher the value of α the larger the duration of the disease for an individual). Finally, the function 

J3(α) = Βο(1+10α) (i.e., the virus load of an individual increase with the value of α). The parameter Bo 

is just a normalization factor employed to keep the problem dimensionless. The values of α for 

asymptomatic cases, hospitalized patients and deaths are taken as α1 = 0.3, α2 = 0.7 and α3 = 0.9, 

respectively. The mathematical model is described by Eq (27-30). In this particular example it is 

assumed that hospitalized individuals contribute to both the spread of disease and to shedding rate in 

wastewater. Three different shapes for the kernel K are considered: (i) uniform K, (ii) sum type K 

(proportional to α+α') which implies that the possibility of infection increases with the α value of two 

persons in contact, (iii) the otherwise uniform kernel denotes that the disease is transmitted only after 

the second day of infection. In all three cases the kernels are multiplied by 0.18 and 0.04 before and 

after the day t = 50, respectively, to account for transmission reduction.  

The evolution of the total number of infected people Ιt for the three kernels is shown in Figure 4. 

The sum kernel (despite it has an average value of K equal to the constant one) leads to higher number 

of infections. On the contrary, the assumption that the infection is transmitted only after the second 

day leads to much smaller number of infections. It is apparent that the spread of the disease is very sensitive 

not only to the average value but also to the shape of the function K with respect to its arguments.   

It is assumed that J4(α) = tr = 6 implying that the disease is registered (by medical testing) at the 

6th day of infection. The evolution of the numbers of total infected people, It, asymptomatic cases A, 

and recovered individuals, R, is shown in Figure 5a (for the uniform kernel case indicated above). The 

evolution of the number of hospitalized patients, registered and dead individuals appear in Figure 5b. 

It is clear that all the above indices exhibit a delay in recognizing the sudden reduction (e.g., lockdown) 

occurring at t = 50. The delay is smaller for the registered individuals (equal to 6 days which is the 
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time between infection and registration). In case of a uniform kernel, the dependence of I on α is 

uniform in time and it has the shape of J1(α). This means that the distribution I(α,τ,t) acquires a self-

similar shape during the spread of the disease. The shape of I in two dimensions (a and τ) can be seen 

in Figure 6a. In the case of a kernel depending on α (e.g., the sum kernel) the α-dependence evolves in 

time. Computations show that I also acquires a self-similar shape during the spread of the disease. The 

dependence of I on α for uniform and sum kernels Κ is showed in Figure 6b. The distribution appears 

to be skewed at large α for the sum kernel in contrast to the symmetric distribution for the constant kernel. 

0

2000

4000

6000

8000

1 10
4

0 20 40 60 80 100 120 140

uniform K

sum K
uniform/infection 

from second day

n
u

m
b

e
r 

o
f 

in
fe

c
te

d

t

 

Figure 4. Evolution of total number of infected people It for several forms of the 

transmission function K (i.e. uniform, sum and uniform but one day delayed). 
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Figure 5. Evolution of numbers of (a) recovered, infected and asymptomatic individuals, 

(b) hospitalized, registered and dead individuals for uniform K function undergoing a 

sudden reduction (e.g., due to a lockdown) at t = 50 day. 
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Figure 6. (a) A snapshot of the function I(α,τ,t) at the self-similar growing regime (b) 

asymptotic shapes of infected distribution with respect to α for the uniform and sum K 

functions. In case of sum K function the symmetry around α=1/2 is lost. 

 

The evolution of virus parts shedding rate in wastewater normalized to the quantity ABo for several 

values of the parameter τa is shown in Figure 7. The maximum in the curves is sharper than the one of 

total infected people but less sharp that the number of registered individuals. The relative position of 

the maximum to the time of sharp reduction of transmission (e.g., lockdown) depends strongly on the 

parameter τa (+3, +5 and +7 days for τa = 3, 5, 8 respectively). The peak position of the registered 

individuals depends on τr. So, the relative position of peaks of shedding rate and registered infections 

is mainly determined by the difference τa-τr.   
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Figure 7. Evolution of virus parts shedding rate in wastewater for uniform K with sudden 

reduction (e.g., due to a lockdown) at t = 50 day, for three values of parameter ta. The delay 

of the maximum shedding rate with respect to lockdown time is evident. 

 

Next, let us study the implementation of a vaccination strategy. In the case of weak spreading of 

the disease considered here, the first term of the righthand side of Eq (36) can be ignored. The 

parameter αm is assumed to take the value 0.3, i.e., vaccination decreases the α value of an individual 

by 0.3. Negative α values implies that a person is not prone to the disease. One can proceed analytically 
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in the derivation of the functions S1 and S2. The final result reached after some algebra is (where t' is 

the time elapsed from starting of vaccination): 

𝜏

𝜏𝑣
=

3

2
(1 − (1 −

𝑡′

𝜏𝑣
)2/3)                  (40) 

𝑆1(𝛼, 𝑡′) = (6𝛼(1 − 𝛼) − 𝜏/𝜏𝑣)𝑈(6𝛼(1 − 𝛼) − 𝜏/𝜏𝑣)         (41) 

𝑆2(𝛼 − 0.3, 𝑡′) = 6𝛼(1 − 𝛼) − 𝑆1(𝛼, 𝑡′)    for α>0.3         (42) 

The shapes of function S for no vaccination and complete vaccination along with the shapes of S1 

and S2 for 80% vaccination of the population are shown in Figure 8. During the vaccination period, a 

transition between zero and complete vaccination curves occurs as described by the above model. 
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Figure 8. Distribution of susceptible individuals S (non-vaccinated S1 and vaccinated S2) 

with respect to α for several degrees of vaccination. The curves refer to 0%, 80% and 100% 

of the total population vaccinated. 

 

In the example of vaccination, no lockdown is accounted whereas K is considered constant and 

equal to 0.12. According to the scenario examined, the vaccination starts at day 50. The effect of 

vaccination rate is examined by assuming three different vaccination scenarios such that the total 

population is vaccinated in 50, 80 and 100 days, respectively. It must be stressed that the above 

selection of vaccination days is only to illustrate discrepancies for different vaccination rates and are 

not typical of real life infectious diseases. The evolution of the total infected people is presented in 

Figure 9(a). The vaccination cannot suppress the disease since most of the vaccinated people are 

amenable to it. However, the rate of vaccination strongly reduces the spreading rate of the disease. One 

should note that according to the employed scenario in the absence of vaccination the number of 

infected individuals at t = 150 would be equal to 800000. The corresponding number of deaths appears 

in Figure 9(b). In all cases of vaccination, the deaths stop at a time between t = 50 and t = 100 day (the 

higher the vaccination rate the smaller this time). The vaccination for this specific example almost 

eliminates deaths (which in absence of vaccination would be 5000 at t = 150).  
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Figure 9. Evolution of (a) total number of infected individuals It (b) total number of deaths 

D and (c) total number of hospitalized individuals H for several vaccination rates (uniform and 

constant in time transmission kernel K). The parameter τv is the vaccination period in days. 

Finally, in Figure 9(c) the evolution of the number of hospitalized individuals (assuming that they 

are admitted in the hospital at day 10 of infection) is presented. The curves display a bell shape with 

larger area for smaller rate of vaccination. The specific model parameters suggest that the number of 

deaths and hospitalization can be completely eliminated at the end of vaccination whereas the number 

of infected individuals continues to grow. This is an essential improvement from the typical 

epidemiological models based on ordinary differential equations which cannot incorporate such a behavior.  
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It is noted here that the new approach although being mathematically simple has as unknown 

several multidimensional functions (i.e., initial probability distribution among the population, 

transmission kernel) and constraints (i.e., conditions for asymptomatic cases, hospitalized cases etc). 

In this respect, its direct use to fit existing data and predict the near future is not possible. Its main use 

is that it allows parametric study of several scenarios and performance of sensitivity analysis. On the 

other hand, the unique implementation of the vaccination process, offers the possibility to optimize the 

vaccination strategy by selecting in a specified way the order by which individuals should be 

vaccinated (instead of randomly). The ambition for the future, that personal (medical and physical) 

record of individuals will be registered in big databases related to national security, health insurance 

etc, is that the α value of each individual for a specific disease will be directly estimated by employing 

its personal record. It is noted that after the completion of the present work a quite similar approach 

was found in the very recent literature [56]. In that work, the main idea is alike (proving its novel 

character), however the way of development, presentation and implementation differs. For example, 

in [56] the vector α is restricted to just one dimension and moreover the disease time does not depend 

on α. In addition, their partial focus is on the evaluation of numerical solution schemes for the solution 

of the resulting system of partial differential equations. The latter is not a priority in our work and has 

been overcome by defining the period of a day as the standard discretization period. Instead, our goal 

is about quantifying the effect of prominent epidemiological parameters and determining the 

sensitivity of the model on their variation.   

4.  Conclusions, limitations and further research 

A new framework for epidemiological modeling is proposed here. The basic element of the new 

approach is the infection age-structured model with a sharp definition of infection duration for each 

individual. The population is characterized by distributed properties such as the total duration of 

infection per individual, being more representative than simple process rate constants. Any degree of 

sophistication can be accommodated by retaining the main model structure and adding more 

independent variables (in contrast to dependent variables needed for the extension of the typical 

epidemiological ODEs model). The new model is naturally discretized with respect to a time increment 

of one day leading to a very simple replacement (yet, very accurate) of the governing partial differential 

equation to a set of explicit difference equations. Finally, the new model admits a much more general 

treatment of vaccination response of individuals than the one accounted by the typical ODEs methods 

(first order transition from Susceptible to Recovered). Several simple cases are examined using the 

new framework and several elementary results are presented to demonstrate the versatility and benefits 

of the proposed approach. The proposed approach can be served as the basis for the development of a 

new class of epidemic models. However, there is a limitation regarding its use since the model 

parameters are not only scalars but also functions. Their determination from empirical data is difficult. 

The true power of the approach is associated to the (possible in future) independent estimation of the 

functions determining the state of the population. The next step in the new approach development will 

be the generalization of the vaccination modeling.   
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