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Abstract: Coronoid systems are natural graph representations of coronoid hydrocarbons associated
with benzenoid systems, but they differ in that they contain a hole. The Hosoya index of a graph G is
defined as the total number of independent edge sets, that are called k-matchings in G.
The Hosoya index is a significant molecular descriptor that has an important position in QSAR and
QSPR studies. Therefore, the computation of the Hosoya index of various molecular graphs is needed
for making progress on investigations. In this paper, a method based on the transfer matrix technique
and the Hosoya vector for computing the Hosoya index of arbitrary primitive coronoid systems is
presented. Moreover, the presented method is customized for hollow hexagons by using six parameters.
As a result, the Hosoya indices of both each arbitrary primitive coronoid system and also each hollow
hexagon can be computed by means of a summation of four selected multiplications consisting of
presented transfer matrices and two vectors.
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1. Introduction

Benzenoid hydrocarbons are defined as unsaturated, condensed and fully conjugated hydrocarbons
formed by just hexagons [1]. Hexagonal systems, in other words benzenoid systems, are molecular
graphs of benzenoid hydrocarbons. They are defined as finite 2-connected graphs in which all closed
regions are mutually congruent regular hexagons.

Benzenoid systems have vertices that can belong to one, two or three hexagons. Vertices belonging
to three hexagons are called internal vertices, otherwise are called external vertices. A benzenoid
system in which all vertices are external vertices is called a catacondensed benzenoid system, otherwise
it is called a pericondensed benzenoid system. An unbranched catacondensed benzenoid system is
called a benzenoid chain.
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The plane can be fully covered by a hexagonal lattice consisting of an infinite number of mutually
congruent regular hexagons. A hexagonal lattice can be seen in the background in the first graph of
Figure 1, and honey combs are a clear example of this. Let C be a cycle on the hexagonal lattice. Then,
all vertices and edges lying on C and in the interior of C constitute a benzenoid system. Coronoid
systems are molecular graphs of coronoid hydrocarbons, also called benzenoid-like systems. The
definition made for benzenoid systems can be easily adapted to coronoid systems. Let us assume that
C1 and C2 are two cycles on the hexagonal lattice, where C2 is fully embraced by C1. The vertices
and edges lying on C2 and in the interior of C2 are called the corona hole. The number of vertices
and edges of C2 must be at least 10, so each coronoid system must have at least eight hexagons. A
coronoid system is formed by the vertices and edges lying on C1 and C2 as well as in the interior of
C1, but outside of C2 as shown in Figure 1. The cycles C2 and C1 are the inner perimeter and the outer
perimeter of the coronoid system, respectively. Moreover, the dualist graph of the coronoid system
presented in the first and second graphs of Figure 1 can be seen in the third graph of Figure 1.

Figure 1. Hexagonal lattice, coronoid system and dualist graph of the coronoid system.

A coronoid system having no internal vertices is called a catacondensed coronoid system, otherwise
it is called a pericondensed coronoid system [1].

In general, 12 hexagon fusion types are allowed in a coronoid system [2]. In this paper, two types
will be needed, A2 and L2 shown in Figure 2.

Figure 2. A2 and L2 types.

A catacondensed coronoid system consisting of annelated hexagons with A2 and L2 fusion types,
that is, angular and linear annelated hexagons, is called a primitive coronoid system [1]. Each hexagon
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having A2 fusion type is called a corner. There exist two corner types that are called intruding and
protruding. While a corner having three edges on the inner perimeter is called intruding, a corner
having three edges on the outer perimeter is called protruding.

A primitive coronoid system with exatly six corners is called hollow hexagon and all corners of
it are protruding. A segment of a primitive coronoid system is defined as a linear benzenoid chain
between two corners inclusive. The number of hexagons in a segment is defined as the length of the
segment. In a hollow hexagon there are six segments with length a + 1, b + 1, c + 1, d + 1, e + 1 and
f + 1. Note that a, b, c, d, e and f are the numbers. An example of a hollow hexagon can be seen in
Figure 3, where a = 1, b = 4, c = 3, d = 2, e = 3, f = 4. We denote by HH(a, b, c, d, e, f ) the hollow
hexagon with parameters a, b, c, d, e, f .

Figure 3. A hollow hexagon and its parameters.

More detailed and informative notions about benzenoid and coronoid systems can be found in [1–4].
The Hosoya index is one of the most significant tools in theoretical chemistry for predicting some

thermodynamic properties of molecules and is defined as

Z(G) =
∑
k≥0

p(G, k),

where p(G, k) is the total number of possible ways in which k mutually independent edges can be
selected in G, see [5]. We refer [6, 7] for chemical importance and further investigations.

Benzenoid and coronoid systems have been studied extensively, from simple to complex, by both
mathematicians and chemists due to their importance. In mathematical chemistry, there are important
studies on the effort to compute various properties of these systems, some of them listed in [8–21].

Different techniques have been utilized to study various topological indices. Some spectral tech-
niques have been used in the study of various topological indices, see [22, 23]. Besides, the transfer
matrix technique has made it easy to solve many combinatoric and enumeration problems in mathe-
matical chemistry so far. Two important studies in which this technique has been used can be seen
in [19, 20].

In this paper, we propose a method based on a summation of four appropriate multiplications of
some transfer matrices by some vectors to compute the Hosoya index of arbitrary primitive coronoid
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systems by using two important recurrence relations and the Hosoya vector defined in [12]. After that,
we customize the method for hollow hexagons by using the parameters a, b, c, d, e and f .

2. The Hosoya index of primitive coronoid systems

The most commonly used recurrence relations for computing the Hosoya index of G can be found
in [7] and they are as follows:

Z(G) =

k∏
i=1

Z(Gi), (2.1)

where G1,G2, . . . ,Gk are the connected components of G;

Z(G) = Z(G − cd) + Z(G − c − d), (2.2)

where cd is an edge of G.
Let us recall the definition of the Hosoya vector of G at an edge that has been introduced in [12].

Definition 2.1. [12] Let G be a graph with an edge e = cd. The Hosoya vector of G at e = cd is

Zcd(G) = [Z(G),Z(G − c),Z(G − d),Z(G − c − d)]T .

Figure 4. Graph G used in Lemma 2.1.

Proposition 2.1. [12] Let G be the graph given in Figure 4, where H is an arbitrary subgraph. Then

Zab(G) = Q · Zcd(H), where Q =


5 3 3 2
2 2 1 1
2 1 2 1
1 1 1 1


Proposition 2.2. [12] Let G be the graph given in Figure 4, where H is an arbitrary subgraph. Then

Zbe(G) =
[
Ei · Za f (K2)

]
i
Zdc(H), where K2 denotes the edge a f ,

i = 1, 2, 3, 4 and E1 =


2 1 0 0
1 0 0 0
1 1 0 0
1 0 0 0

 , E2 =


1 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , E3 =


0 0 2 1
0 0 1 0
0 0 1 1
0 0 1 0

 , E4 =


0 0 1 1
0 0 1 0
0 0 0 0
0 0 0 0
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The next lemma is a natural result of Proposition 2.1 and Proposition 2.2. The following matrices
play an important role in the next lemma:

Q =


5 3 3 2
2 2 1 1
2 1 2 1
1 1 1 1

 , P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , S 0 =


5 3 3 2
2 2 1 1
3 0 2 0
2 0 1 0

 . (2.3)

Lemma 2.1. Let G be the graph given in Figure 4, where H is an arbitrary subgraph. Then

1. Zab(G) = Q · Zcd(H).
2. Z f a(G) = P · S 0 · Zcd(H).
3. Zbe(G) = S 0 · P · Zcd(H).

Recall that if the subgraph H in Figure 4 is the edge cd, then

Zcd(H) = Zcd(K2) = X0 = (2, 1, 1, 1)T ,

where K2 denotes the graph consisting of only one edge.
Now we introduce an algorithm for computing the Hosoya index of an arbitrary primitive coronoid

system.

Figure 5. Three possible configurations of primitive coronoid systems.

It is known that any primitive coronoid system contains at least six hexagons with fusion type A2.
Thus, choosing an angular hexagon in a primitive coronoid system results in three possible configu-
rations G1,G2 and G3, as depicted in Figure 5. For i ∈ {1, 2, 3}, let Hi denotes the benzenoid chain
starting at the edge uy and ending at the edge bibi+1.

Note that for each i ∈ {1, 2, 3}, using the results in [12], one can compute the Hosoya vector of Hi

at the edge uy as follows
Zuy(Hi) = M · Zbibi+1(K2) = M · X0,

where M is a product of matrices of type Q, P, S 0.
We now present our main result.

Mathematical Biosciences and Engineering Volume 19, Issue 10, 9842–9852.



9847

Theorem 2.1. Let Gi be a primitive coronoid system with i ∈ {1, 2, 3}, depicted in Figure 5. Let Hi

denotes the benzenoid chain starting at the edge uy and ending at the edge bibi+1. If Hi has the Hosoya
vector

Zuy(Hi) = M · X0,

then

Z(Gi) =

4∑
k=1

eT
k · M · Zbibi+1(Fk),

where M is a product of matrices of type Q, P, S 0, the graphs F1, F2, F3, F4 are depicted in Figure 6
and e1, e2, e3, e4 are the canonical vectors in R4 .

Figure 6. Graphs F1 = F, F2 = F − v, F3 = F − x and F4 = F − v − x used in Theorem 2.1

Proof. Let Gi be the graph given in Figure 5 for i ∈ {1, 2, 3}. Using recurrence relation (2.2) we obtain

Z(Gi) = Z(Gi − xy − uv) + Z(Gi − xy − u − v) + Z(Gi − x − y − uv) + Z(Gi − x − y − u − v). (2.4)

It is easy to see that

1. Z(Gi − xy − uv) is the first component of the Hosoya vector of the graph Gi − xy − uv at edge uy.
Then

Z(Gi − xy − uv) = eT
1 Zuy(Gi − xy − uv) = eT

1 · M · Zbibi+1(F1).

2. Z(Gi − xy − u − v) is the second component of the Hosoya vector of the graph Gi − xy − v at edge
uy. Then

Z(Gi − xy − u − v) = eT
2 Zuy(Gi − xy − v) = eT

2 · M · Zbibi+1(F1 − v).

3. Z(Gi − x − y − uv) is the third component of the Hosoya vector of the graph Gi − x − uv at edge
uy. Then

Z(Gi − x − y − uv) = eT
3 Zuy(Gi − x − uv) = M · Zbibi+1(F1 − x).

4. Z(Gi − x− y− u− v) is the fourth component of the Hosoya vector of the graph Gi − x− v at edge
uy. Then

Z(Gi − x − y − u − v) = eT
4 Zuy(Gi − v − x) = eT

4 · M · Zbibi+1(F1 − v − x).

Replacing in (2.4) we are done. �
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In Table 1 we present the Hosoya vectors Zbibi+1(Fk) for i ∈ {1, 2, 3} and k ∈ {1, 2, 3, 4}. These values
are calculated using Lemma 2.1

Table 1. Hosoya vectors Zbibi+1(Fk) for i ∈ {1, 2, 3} and k ∈ {1, 2, 3, 4}.

i Zbibi+1(F1) Zbibi+1(F2) Zbibi+1(F3) Zbibi+1(F4)
1 [44, 21, 19, 13]T [26, 13, 11, 8]T [21, 9, 10, 6]T [13, 6, 6, 4]T

2 [44, 19, 20, 12]T [26, 11, 12, 7]T [21, 10, 8, 5]T [13, 6, 5, 3]T

3 [44, 20, 19, 12]T [26, 12, 11, 7]T [21, 10, 13, 8]T [13, 5, 8, 5]T

Example 2.1. Now we give an illustration of the use of Theorem 2.1. Let G be the primitive coronoid
system shown in Figure 7. Note that G corresponds to configuration G3 shown in Figure 5. The Hosoya
vector of H3 at uy is

Zuy(H3) = M · X0,

where

M = Q ·Q · P · S 0 · S 0 · P · S 0 · P ·Q · S 0 · P ·Q · S 0 · P ·Q · P · S 0 ·Q · S 0 · P ·Q · S 0 · P · S 0 · P ·Q · P · S 0.

By Theorem 2.1, using Table 1, we obtain

Z(G) =

4∑
k=1

eT
k · M · Zb3b4(Fk)

= [1, 0, 0, 0] · M · [44, 20, 19, 12]T + [0, 1, 0, 0] · M · [26, 12, 11, 7]T

+ [0, 0, 1, 0] · M · [21, 10, 13, 8]T + [0, 0, 0, 1] · M · [13, 5, 8, 5]T

= 2 217 936 358 652 483 532.

Figure 7. Primitive coronoid system G.
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Next we find the Hosoya index of a hollow hexagon HH(a, b, c, d, e, f ). We may assume that a > 1
since the size of the corona hole must be at least 10. The general form of hollow hexagons is depicted
in Figure 8.

Figure 8. General form of a hollow hexagon.

Theorem 2.2. Let HH = HH(a, b, c, d, e, f ) be a hollow hexagon. Then

Z(HH) =

4∑
k=1

eT
k · M · Zb2b3(Fk),

where

M = Q f−1 · S 0 · P · Qe−1 · S 0 · P · Qd−1 · S 0 · P · Qc−1 · S 0 · P · Qb−1 · S 0 · P · Qa−2.

Proof. Let HH = HH(a, b, c, d, e, f ) be a hollow hexagon as shown in Figure 8 and H2 denotes the
hexagonal chain starting at the edge uy and ending at the edge b2b3. Since each hollow hexagon has
just protruding corners, using Lemma 2.1, the Hosoya vector of H2 at edge uy is

Zuy(H2) = M · X0,

where

M = Q f−1 · S 0 · P · Qe−1 · S 0 · P · Qd−1 · S 0 · P · Qc−1 · S 0 · P · Qb−1 · S 0 · P · Qa−2.

By Theorem 2.1 we are done. �
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Example 2.2. Now we find the Hosoya index of all the hollow hexagons with 12 hexagons by using
Theorem 2.2. These hollow hexagons are depicted in Figure 9.

Figure 9. Hollows hexagons with 12 hexagons.

Let

M1 = S 0 · P · S 0 · P · Q3 · S 0 · P · S 0 · P · S 0 · P · Q2,

M2 = S 0 · P · Q2 · S 0 · P · S 0 · P · Q2 · S 0 · P · S 0 · P · Q,

M3 = Q2 · S 0 · P · S 0 · P · Q · S 0 · P · Q2 · S 0 · P · S 0 · P,

M4 = Q · S 0 · P · Q · S 0 · P · Q · S 0 · P · Q · S 0 · P · Q · S 0 · P.

The Hosoya index of these hollow hexagons are

Z(HH1) = Z (HH(4, 1, 1, 4, 1, 1)) =

4∑
k=1

eT
k · M1 · Zb2b3(Fk) = 98034534619.

Z(HH2) = Z (HH(3, 1, 3, 1, 3, 1)) =

4∑
k=1

eT
k · M2 · Zb2b3(Fk) = 98366058276.

Z(HH3) = Z (HH(2, 1, 3, 2, 1, 3)) =

4∑
k=1

eT
k · M3 · Zb2b3(Fk) = 98902242744.

Z(HH4) = Z (HH(2, 2, 2, 2, 2, 2)) =

4∑
k=1

eT
k · M4 · Zb2b3(Fk) = 99914817684.

3. Conclusion

In this research, we have presented a method based on the transfer matrix technique and the Hosoya
vector by using two significant recurrence relations. The supremacy of the method is that the Hosoya
index of an arbitrary primitive coronoid benzenoid system and also an arbitrary hollow hexagon can be
computed by a sum of four products of 4 × 4 dimensional transfer matrices with some vectors. In the
implementation of the method according to a primitive coronoid system and a hollow hexagon, each
of the four multiplication selections of the transfer matrices and vectors must be chosen according to
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the primitive coronoid system and the hollow hexagon then the method is applied simply. Besides, the
method can be generalized for arbitrary catacondensed coronoid systems in further investigations.
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