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Abstract: Cardiac arrest (CA) is a fatal acute event. The development of new CA early warning 
system based on time series of vital signs from electronic health records (EHR) has great potential 
to reduce CA damage. In this process, recursive architecture-based deep learning, as a powerful tool 
for time series data processing, enables automatically extract features from various monitoring 
clinical parameters and to further improve the performance for acute critical illness prediction. 
However, the unexplainable nature and excessive time caused by black box structure with poor 
parallelism are the limitations of its development, especially in the CA clinical application with strict 
requirement of emergency treatment and low hidden dangers. In this study, we present an explainable 
and efficient deep early warning system for CA prediction, which features are captured by an 
efficient temporal convolutional network (TCN) on EHR clinical parameters sequence and explained 
by deep Taylor decomposition (DTD) theoretical framework. To demonstrate the feasibility of our 
method and further evaluate its performance, prediction and explanation experiments were 
performed. Experimental results show that our method achieves superior CA prediction accuracy 
compared with standard national early warning score (NEWS), in terms of overall AUROC (0.850 
Vs. 0.476) and F1-Score (0.750 Vs. 0.450). Furthermore, our method improves the interpretability 
and efficiency of deep learning-based CA early warning system. It provides the relevance of 
prediction results for each clinical parameter and about 1.7 times speed enhancement for system 
calculation compared with the long short-term memory network.  

Keywords: early warning system; temporal convolutional network; electronic health records; cardiac 
arrest; deep taylor decomposition; deep learning 
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1. Introduction 

Cardiac arrest (CA) is a fatal acute event caused by almost any heart disease, such as heart’s 
electrical system malfunctions and cardiomyopathy [1]. Complicated with abrupt loss of heart 
function and failure of respiratory, this illness causes 58−61% mortality rate in admitted CA patients 
and even 25−75% long-term side effects proportion in survivors [2]. To reduce the damage of this 
event, the necessity of CA preventing is emphasized by European Resuscitation Council guidelines, 
and the early identification of patients at CA risk is considered an effective measure [3]. Traditional 
studies, such as national early warning score (NEWS) and modified early warning score (MEWS), 
commonly evaluate the warning score for each vital-sign to quickly determine patient’s degree of CA 
risk [4,5]. However, these methods make each evaluated variables independent and identically 
distributed, which loses the spatiotemporal information from the vital signs and makes the CA 
prediction incomplete [6]. Hence, the efficient, precise, and complex data pattern analysis-supported 
methods are being constantly required for the identification of patients at CA risk. 

Currently, deep learning (DL) is the state-of-the-art method used in clinical field to predict 
adverse events a few hours before their occurrence [6–8]. DL can automatically extract features from 
various monitoring parameters usually in electronic health records (EHR) and can achieve higher 
accuracy, by using a neural network structure and a propagation train mechanism [9,10]. For model 
construction, recursive architectures that are naturally suitable for temporal data processing, such as 
recurrent neural networks (RNN), long short-term memory (LSTM) and gated recurrent unit (GRU), 
are widely used to extract event-related features from parameter sequences [11,12]. Applying a RNN-
based deep early warning system, Kwon et al.[7] and Hong et al. [13] achieved up to 24.3 and 23.6% 
higher sensitivity for detection of CA patients compared with a traditional MEWS, respectively. 
Notably, Kim et al. [8] and Lee et al. [14] proposed an LSTM-based method to predict CA from 1 to 6 
h before event, and obtained 20.2 and 15.2% AUROC improvement compared to NEWS, respectively. 
Moreover, Park et al. [15] applied Bi-LSTM based method, which achieved up to 20.0% higher 
AUROC for CA prediction compared with a pediatric early warning score. However, the prediction of 
CA by current DL methods is usually unexplainable, which cannot give an intellectual link between 
clinical signs parameters and predicted outcomes. Even if the CA alarm is accurately sounded, medical 
staff is not clear on which indicator to take corresponding action. Revalidation of alarm-related bed 
sign parameters will take time and adversely affect the effectiveness of CA interventions. On the other 
hand, the recursion-based algorithm is also an time-consuming method, limited by its inability to 
perform massively parallel processing, which brings an adverse impact on the dynamic detection of 
CA and the rapid converge of model training [16].  

With advantages of simple calculation procedures and efficient parallel nature, the temporal 
convolutional network (TCN) maybe a good alternative model to further improve the performance 
of DL for CA events prediction [17]. The TCN is based on convolutional network, which can be 
viewed as a combination of convolutional and recurrent architectures, and has been successfully 
applied in many other clinical acute events prediction, such as the sepsis and kidney injury [18,19]. 
In practice, the TCN was found to provide accurate results, and was computationally faster than 
traditional recursion-based methods [17,20]. However, the research of the TCN for CA prediction is 
in its infancy. Most of the current study focuses on the other acute critical illness and has not yet 
been developed for CA event. 

In addition, the improvements in transparency and interpretability make the DL algorithms more 
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acceptable to clinicians. Despite the highly value of these methods, the standard DL algorithms 
including TCN are black box, which makes users unclear on how they arrive at a particular 
classification decision [21]. Particularly in the clinical field, it hinders clinicians from verifying, 
explaining and understanding the predictions of the DL system, which has huge hidden dangers [22,23]. 
In the context of explainable artificial intelligence (XAI), numerous methods have been proposed to 
improve the interpretation of DL, involving a series of theoretical frameworks such as Shapley values, 
Taylor expansions and the deep Taylor decomposition (DTD) [24]. Compared with the Shapley value, 
the recent XAI methods based on the DTD framework have better calculation accuracy and derive a 
series of layer-wise relevance propagation variant methods [25−27]. For clinical application, the DTD 
is also combined with TCN, which can be used to perform correlation interpretation while performing 
temporal events prediction to enhance the clinical translation of DL [28]. Nevertheless, the research of 
the XAI for CA event prediction is still a new direction. As far as our knowledge, the explainable DL 
research based on DTD theory framework for CA event prediction has not been reported yet. 

In this work, we present an explainable and efficient deep early warning system for CA prediction 
from EHR. Feeding time series of vital signs from EHR to DL model of TCN for CA event prediction 
task, this method is expected to improve model calculation efficiency while maintaining well precision. 
Based on predicted results, the interpretability in our architecture is introduced through DTD 
theoretical framework. Capturing input features by applying Taylor expansions on each layer neurons, 
this approach is hoped to establish a more transparent prediction process to improve the clinician 
acceptance of DL. The major contributions of this work are two-fold: 1) The temporal convolutional 
network was first used as the CA prediction model through the analysis of time series of vital signs 
from EHR; 2) The deep Taylor decomposition of theoretical framework is first introduced in temporal 
convolutional network for interpretability of CA prediction. 

2. Methods 

 

Figure 1. Explainable and efficient deep learning model combined with temporal 
convolutional network and deep Taylor decomposition for cardiac arrest prediction on 
electronic health record. 
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Our deep early warning system consists of two components and is performed as follows. Each 
selected EHR clinical parameters sequence intercepted with 12-hour window is fed to TCN of deep 
early warning system, and the probability of the CA event occurrence is predicted through the trained 
model. Next, these predicted results are back-forward fed to TCN, which combined with DTD 
explainable theoretical framework to calculate the relevance of clinical parameter to the predicted 
results. The overall processing flow of our system is shown in Figure 1. 

2.1. Cardiac arrest predication model 

A TCN-based deep early warning system is introduced in our CA perdiction study, and the 
computational details of components are described below. 

2.1.1. Temporal convolutional network 

TCN is the convolutional network-based model which we consider for CA predication. It provides 
powerful time series processing and maintains a good parallel structure by using causal convolution, 
dilated convolution, and identity mapping. The concrete architecture is shown in Figure 2. For a given 
time series input of 𝑇 length 𝑋 = ሼ𝑥ଵ, 𝑥ଶ, . . . , 𝑥்ሽ, causal convolution layer is first used to trace their 
historical characteristics at the each position 𝑥௧: (𝐹 ∗ 𝑋)(௫೟) = ∑ 𝑓௞𝑥௧ି௄ା௞௄௞ୀଵ ,        (1) 

where 𝐹 = ሼ𝑓ଵ, 𝑓ଶ, . . . , 𝑓௞, . . . , 𝑓௄ሽ  is the convolution kernel; 𝐾  is the size of convolution kernel. 
Combined with the dilatation scheme, the result of causal convolution contains a larger feature capture 
range without causing the information loss like pooling layer. With dilatation rate of 𝑑, the dilated 
causal convolution result can be calculated as follows: (𝐹 ∗ௗ 𝑋)(௫೟) = ∑ 𝑓௞𝑥௧ି(௄ି௞)ௗ௄௞ୀଵ ,       (2) 

As a convolutional network-based DL model, the TCN can extract richer features at different 
levels through the layers’ increase. The identity mapping is thus added to the result, which is 
processed by two rounds of dilated causal convolution, ReLU and Dropout layers, to reduce the 
influence of model overfitting and network degradation when the number of model layers’ increases. 
Considering the layers transformations F , the identity mapped temporal block of the TCN can be 
expressed as follows: 𝐻(𝑥) = 𝐹(𝑥) + 𝑥.         (3) 
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Figure 2. Architecture of temporal convolutional network for cardiac arrest prediction 
with causal convolution, dilated convolution and residual block. 

2.1.2. Temporal convolutional network for cardiac arrest prediction 

TCN is followed by fully connected layer with sigmoid function. Sigmoid map the output of 
multiple neurons (temporal block) to the interval [0, 1], which can be regarded as the probability of 
being classified into a certain category. For the 𝑇 length input 𝑋 = ሼ𝑥ଵ, 𝑥ଶ, . . . , 𝑥்ሽ and the binary 
output, the result of the fully connected layer with Sigmoid score is as follows: 𝑦௝ = sigmoid൫𝑧௝൯ = sigmoid൫𝑊௝ ⋅ 𝑋 + 𝑏௝൯,      (4) 

where 𝑊, 𝑏 are the weight and the bias term of the fully connected layer, respectively; the sigmoid 
score can be defined as:  

sigmoid൫𝑧௝൯ = ଵଵା௘ష೥ೕ.          (5) 

2.2. Cardiac arrest explanation model 

2.2.1. Deep Taylor decomposition 

DTD is an explainable theoretical framework, which is used to recursively decomposes the 
network output into the contributions of the previous layer network until the input unit [21]. Assuming 
the layer adjacent neurons 𝑢௜, 𝑢௝ (the 𝑢௝ is close to the network output), the relevance of the neuron 𝑢௝ associated with the neuron output 𝑥௝ can be Taylor decomposed as follows: 𝑅௝ = ቀ డோೕడሼ௫೔ሽ |ሼ௫෤೔ሽ(ೕ)ቁ் ⋅ ൫ሼ𝑥௜ሽ − ሼ𝑥෤௜ሽ(௝)൯ + 𝜀௝ = ∑ డோೕడ௫೔ |ሼ௫෤೔ሽ(ೕ) . ൫𝑥௜ − 𝑥෤௜(௝)൯ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥோ೔ೕ

ூ௜ୀଵ + 𝜀௝,   (6) 
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where 𝜀௝ is the Taylor residual; 𝑅௜௝ identified the redistributed relevance from neuron 𝑢௜ close to 

the network input to 𝑢௝; 𝐼 is the number of neurons in layer 𝑖; |ሼ௫෤೔ሽ(ೕ) indicates that the derivative 

has been evaluated at the root point ሼ𝑥෤௜ሽ(௝), which satisfy the following condition: 𝐻௜,௝(ሼ𝑥෤௜ሽ(௝)) = 0,          (7) 

where 𝐻௜,௝ is the network calculation function between layers 𝑖 and 𝑗. On the other hand, through 
the collection of the relevance contributions from all neurons in the upper layer 𝑗, the relevance of the 
neuron 𝑢௜ can be defined as follows: 𝑅௜ = ∑ 𝑅௜௝௃௝ୀଵ ,          (8) 

where 𝐽 is the neurons number in layer 𝑗. Combining the Eqs (6) and (8), the relevance of the neuron 𝑢௜  associated with the upper layer can then be presented as follows: 𝑅௜ = ∑ డோೕడ௫೔ |ሼ௫෤ሽ(ೕ) .௃௝ୀଵ ቀ𝑥௜ − 𝑥෤௜(௝)ቁ.       (9) 

Through the Eq (9), the relevance result of each neuron about forward output can be back 
propagated to the input of the network. 

2.2.2. Deep Taylor decomposition for temporal convolutional network explanation 

Combined with the DTD theoretical framework, the training-free relevance model for TCN 
explanation is introduced [21]. The training of each neuron is not needed by our model, which saves 
the cost of CA relevance evaluation. Considering the basic unit of feature extraction as shown in 
Figure 3. 

⎩⎨
⎧𝑥௧,௝ = 𝑚𝑎𝑥 ቀ0，∑ ∑ 𝑓௞,௜,௝ ቀ𝑥௧ି(௄ି௞)ௗ,௜ + 𝑟𝑒𝑠௧,௝(𝑋)ቁூ௜ୀଵ + 𝑏௜௄௞ୀଵ ቁ𝑥௧,௡ = 𝑚𝑎𝑥൫0，∑ ∑ 𝑓௞,௝,௡൫𝑥௧ି(௄ି௞)ௗ,௝൯ + 𝑏௝௃௝ୀଵ௄௞ୀଵ ൯𝑥௧,௣ = sigmoid൫𝑥௧,௢൯ ,   (10) 

where subscripts 𝑖, 𝑗, 𝑛, 𝑜 present adjacent network layers, which contain 𝐼, 𝐽, 𝑁, 𝑂 neurons 
number, respectively; 𝑟𝑒𝑠௧,௡(𝑋) is the residual term which related to the output of the previous 
layer of the entire network 𝑋. In that case, we assume that the upper layer has been explained by 

z+-rule [21]. For the output unit of 𝑥௧,௣ = sigmoid൫𝑥௧,௢൯ , the total number of correlations of 

backpropagation is equivalent to the predicted output: 𝑅௧,௣ = 𝑥௧,௣, and the relevance 𝑅௧,௢ of the 
neuron 𝑢௢ can be obtained associated with the output layer neuron 𝑢௣ as follows (according to 
Eq (9)): 𝑅௧,௢ = డ௫೟,೛డ௫೟,೚ |൛௫෤೟,೚ൟ൫𝑥௧,௢ − 𝑥෤௧,௢൯ = 11+𝑒−ೣ೟,೚ ቀ1 − 11+𝑒−ೣ೟,೚ቁ |൛௫෤೟,೚ൟ൫𝑥௧,௢ − 𝑥෤௧,௢൯,   (11) 
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where 𝑥෤௧,௢ is the root point of the neuron ou , which is set to 0 value in our work. For the basic TCN 

unit of 𝑥௧,௡ = 𝑚𝑎𝑥൫0，∑ ∑ 𝑓௞,௝,௡൫𝑥௧ି(௄ି௞)ௗ,௝൯ + 𝑏௝௃௝ୀଵ௄௞ୀଵ ൯, the relevance 𝑅௝ of the neuron 𝑢௝ can 

be obtained associated with the upper layer neuron 𝑢௡ as follows: 𝑅௧,௝ = ∑ ∑ ௫೟ష(಼షೖ)೏,ೕ௙ೖ,ೕ,೙శೖ಼సభ∑ ∑ ௫೟ష(಼షೖ)೏,ೕ′௙ೖ,ೕ′,೙శ಻ೕ′సభೖ಼సభே௡ୀଵ 𝑅௧,௡,      (12) 

where 𝑓௞,௝,௡  is the weight of dilated causal convolution; 𝑓௞,௝,௡ା   represents the positive part of the 𝑓௞,௝,௡ . For the TCN unit of 𝑥௧,௝ = 𝑚𝑎𝑥 ቀ0，∑ ∑ 𝑓௞,௜,௝ ቀ𝑥௧ି(௄ି௞)ௗ,௜ + 𝑟𝑒𝑠௧,௝(𝑋)ቁூ௜ୀଵ + 𝑏௜௄௞ୀଵ ቁ , the 

relevance 𝑅௜ of the neuron 𝑢௜ can be obtained associated with the upper layer neuron 𝑢௝ as follows: 𝑅௧,௜ = ∑ ∑ (௫೟ష(಼షೖ)೏,ೕା௥௘௦೟,೔(ோ))௙ೖ,೔,ೕశೖ಼సభ∑ ∑ ௫೟ష(಼షೖ)೏,೔′௙ೖ,೔′,ೕశ಺೔′సభೖ಼సభ௃௝ୀଵ 𝑅௧,௝,     (13) 

where 𝑟𝑒𝑠௧,௜(𝑅) is the residual term which related to the relevance 𝑅 of the previous layer of the 
entire network. According to the Eqs (11)−(13), the relevance terms of the basic unit are modeled, and 
the training-free relevance is given. 

 

Figure 3. Architecture of temporal convolutional network used deep Taylor 
decomposition theoretical framework for cardiac arrest explainable prediction. 

3. Materials and experiments 

3.1. Materials 

Our research used electronic health records (EHR) collected from the MIMIC-III, a freely 
available critical care database [26]. We checked data integrity and randomly selected 486 samples, 
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including 107 CA positive and 379 negative patients. Furthermore, the synthetic minority over 
sampling technique (SMOTE) was used in our datasets to alleviate the impact of data imbalance on 
model training. 

In detail, the vital-sign measurements in the above records were extracted according to NEWS 
selection, and basic information of age and sex were also included in our datasets. Each sample 
contains 7 continuous clinical variables, and the overall of the clinical parameters in our dataset are 
shown in Table 1. 

Table 1. Clinical parameters summary. 

Parameters Unit CA positive (N = 107) CA negative (N = 379) 
Respiratory rate bpm 20.9 20.1 
SpO2 % 94.7 96.8 
Any supplemental oxygen? % 58.5 62.8 
Systolic blood pressure  mmHg 109.3 119.4 
Body temperature ◦C 36.4 36.8 
Heart rate  bpm 91.2 88.1 
Conscious Level - 0.99 0.99 
Age - 68.2 63.0 
Male sex % 61.6 54.4 

Table 1 shows the mean value of each selected clinical parameter in different CA categories. 
Data pre-processing focuses on the generation of EHR event sequence. Taking the time points 

of 0, 6, 8, 9, 10, and 11 h before CA event as the end point, the records of each clinical variable were 
intercepted backward with a 12-hour time window, respectively. Among them, the clinical 
parameters in time window were each divided into one-hour periods, and the data that occurs in 
which time period were represented by their average values. On the other hand, through the 
observation of the experimental datasets, the data missing is seriously. To ensure the data integrity 
and the subsequent calculations can be properly progressed, generative adversarial nets of AL 
method was used to imputed missing values. For CA prediction by deep early warning system, we 
set the ratio of training set, test set and validation set to 3:1:1. 

3.2. Experimental setup 

In this work, we designed two experiments: 1) prediction experiment compared the CA 
recognition accuracy from EHR sequence before event occurrence to evaluate the performance of 
TCN-based early warning system for CA prediction. The F1-Score of the results were calculated, 
which consisted on classifying EHR sequence belonging to CA positive or negative. 2) explanation 
experiment presented the back-propagated CA relevance corresponding to clinical parameters to 
evaluate the interpretability of DTD theoretical framework-based TCN. Mean relevance of each 
clinical parameter were calculated, which evaluates explainable model from global perspective. In 
above experiments, the prediction model of TCN and the explainable theoretical framework of DTD 
were the objects to be verified. 
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3.2.1. Prediction experiment 

In this experiment, the TCN-based CA prediction model was the object to be verified, and the 
commonly applied early warning system of NEWS, machine learning method of random forest (RF) 
and the deep learning prediction models of LSTM and GRU were used as the contrast. During the 
evaluation process, we set up a series of experimental tasks. First, the indicators of sensitivity, 
specificity, positive value (PPV), negative predictive value (NPV), area under the receiver operating 
characteristic curve (AUROC), and F1-Score from different models for CA prediction were calculated 
to evaluate the model feasibility. Then, prediction time and training time of CA prediction from 
different deep learning models with same layer distribution were calculated to evaluate the model 
efficiency. Prediction time counts the time it takes for the model to complete CA predictions on a 
validation dataset. Training time calculates the time it takes for the model to run in a training epoch. 

The concrete CA prediction standards of NEWS ware shown in Table 2 [4]. It is considered as a 
high-risk object of CA when NEWS score is higher than 7 points. For LSTM and GRU, a deep 
prediction model was constructed by multi-layer LSTM and GRU respectively, which combined with 
processing of ReLU, dropout, fully connected layer and Sigmoid to obtain the CA prediction result. 
The models hyperparameters followed the settings in O. Almqvist [20].  

For TCN, the overall model architecture and the calculation process are described in Section 2.1. 
In detail, the TCN was constructed by four temporal blocks, each of which contains two rounds 
processing of dilated causal convolution, ReLU, dropout successively. The total eight dilated causal 
convolution layers were composed of [9, 9, 6, 6, 3, 3, 2, 2] size convolution kernels, with dilatation 
rate of [1, 1, 2, 2, 2, 2, 1, 1], respectively. The architecture configuration of deep learning models were 
described in Table 3. Training optimization was performed using the Adam algorithm with a batch size 
of 128 and a learning rate of 1e-3. Furthermore, we set the dropout rate to 0.4 to reduce overfitting of 
deep model.  

The all construction and calculation of CA prediction models were completed on Pytorch using 
NVIDIA GEFORCE RTX 2080 GPU, and the calculation was terminated without significant changes 
in training accuracy.  

Table 2. National Early Warning Score (NEWS). 

NEWS 3 2 1 0 1 2 3 
Respiratory rate  ≤ 8  9-14 15-20 21-29 ≥ 30 
SpO2 ≤ 91 92-93 94-95 ≥ 96    
Any supplemental oxygen?  Yes  No    
Body temperature ≤ 35  35.1-36 36.1-38 38.1-39 ≥ 39.1  
Systolic blood pressure  ≤ 90 91-100 101-110 111-219    
Heart rate ≤ 40  41-50 51-90 91-110 111-130 ≥ 131 
Level of consciousness 
using the AVPU system 

   A   V, P or U 

Note: Level of consciousness: A = Alert; V = Responds to voice; P = Responds to pain; U = Unresponsive. 
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Table 3. Architecture configuration of deep learning models. 

Parameter LSTM GRU Our 
Layers 8 8 8 
Units per layer [9, 9, 6, 6, 3, 3, 2, 2] [9, 9, 6, 6, 3, 3, 2, 2] [9, 9, 6, 6, 3, 3, 2, 2] 
Batch size 128 128 128 
Activation Function ReLU, Sigmoid ReLU, Sigmoid ReLU, Sigmoid 
Learning rate 1e-3 1e-3 1e-3 
Dropout rate 0.4 0.4 0.4 
Trainable parameters 2543 1914 750 

3.2.2. Deep Taylor decomposition for temporal convolutional network explanation 

For TCN explanation, the overall model architecture and the specific calculation process are 
presented in Section 2.2. Fast training-free DTD method was used to explain the CA prediction made 
by TCN on the dataset of EHR event sequence. The structure of TCN was maintained, in which the 
back-propagation calculation based on DTD was performed to obtain the relevance of clinical 
parameters. For all unit of TCN and FC layers, the z+-rule is applied, which corresponds to the αβ-rule 
with α = 1 and β = 0 in positive input spaces [27]. 

4. Results 

4.1. Prediction results 

In the prediction experiment, the performance of deep early warning system for CA prediction 
using TCN are shown in Table 4. During this process, the items of sensitvity, specificity, PPV, NPV 
AUROC and F1-Score were used as the evaluation indicators to validate the model performance. 
Overall, the prediction results based on our method (AUROC: 0.850, 0.833, 0.801, 0.770; F1-Score: 
0.75, 0.694, 0.680, 0.622) are better than those based on NEWS (AUROC: 0.622, 0.579, 0.580, 0.571; 
F1-Score: 0.476, 0.418, 0.416, 0.399), RF (AUROC: 0.751 0.751, 0.751, 0.751; F1-Score: 0.615, 0.611, 
0.564, 0.511) and other DL models of GRU (AUROC: 0.758, 0.751, 0.669, 0.669; F1-Score: 0.631, 
0.607, 0.553, 0.507) and LSTM (AUROC: 0.827, 0.767, 0.758, 0.645; F1-Score: 0.698, 0.656, 0.615, 
0.537). Figure 4 shows the receiver operating characteristic curves of our method, LSTM, GRU and 
MEWS, predicting CA event within 1 h. 

Table 4. Accuracy comparison for cardiac arrest prediction methods. 

Time Methods Sensitvity Specificity PPV NPV AUROC F1-Score 

1 h 

NEWS 0.628 0.680 0.383 0.852 0.622 0.476 
RF 0.666 0.869 0.571 0.909 0.751 0.615 
GRU 0.529 0.901 0.782 0.741 0.758 0.631 
LSTM 0.550 0.977 0.956 0.709 0.827 0.698 
Our 0.750 0.902  0.750 0.902 0.850  0.750 

2 h NEWS 0.552 0.656 0.337 0.822 0.579 0.418 
Continued on next page
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Time Methods Sensitvity Specificity PPV NPV AUROC F1-Score 

2 h 

RF 0.733 0.861 0.523 0.939 0.751 0.611 
GRU 0.531 0.870 0.708 0.758 0.751 0.607 
LSTM 0.525 0.933 0.875 0.688 0.767 0.656 
Our 0.708 0.869 0.680 0.883 0.833 0.694 

5 h 

NEWS 0.533 0.674 0.341 0.820 0.580 0.416 
RF 0.611 0.855 0.523 0.893 0.751 0.564 
GRU 0.439 0.866 0.750 0.629 0.685 0.553 
LSTM 0.500 0.888 0.800 0.666 0.758 0.615 
Our 0.680 0.869 0.680 0.869 0.801 0.680 

11 h 

NEWS 0.504 0.677 0.331 0.812 0.571 0.399 
RF 0.578 0.808 0.458 0.873 0.751 0.511 
GRU 0.414 0.800 0.653 0.600 0.648 0.507 
LSTM 0.450 0.800 0.666 0.620 0.645 0.537 
Our 0.560 0.901 0.700 0.833 0.770  0.622 

 

Figure 4. The receiver operating characteristic of methods for detecting cardiac arrest.  

For CA detection, the best performance is achieved by our method with sensitivity of 0.750, 0.708, 
0.680, 0.560 at time points of 1, 2, 5 and 11 h before the event occurrence, respectively. The best 
sensitivity improvements of our method compared with NEWS and LSTM have achieved 28.2% (time 
point of 2 hour before CA event) and 36.3% (time point of 1 hour before CA event), respectively. As 
expected, the TCN-based deep early warning system can capture more suitable information in EHR 
clinical parameter sequence to improve the CA prediction.  
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More detailed accuracy performance of CA early warning system based on different prediction 
methods are investigated by reporting the changes of F1-Score over time in 12-hour window. 
Corresponding to the compared NEWS, LSTM and GRU, the performance at each checked time 
point of CA early warning system is shown in Figure 5. It is observed that the result curves based on 
TCN are higher than the results based on other models, and the height gap of result curve also 
maintains stable with the increase of the time interval between the occurrence of CA events. The 
above results indicate that the deep early warning system based on convolutional units may capture 
more useful information from the sequence of EHR clinical parameters to improve the performance 
of CA prediction.  

 

Figure 5. Results of the cardiac arrest prediction experiment within 12-hour window 
before event occurrence: the prediction results evaluated by F1-Score. 

For the model training, it can be seen from Figure 6(a) that the loss change gradually stabilized 
when the number of training epochs > 3000. In the training epoch interval, all methods tends to 
converge and the F1-Score based on the TCN is higher than the result of the other deep learning 
methods, as shown in Figure 6(b). However, the F1-Score of all methods tend to decrease with 
increasing epoch at the end, which may be due to overfitting of the deep model with many parameters 
and small training dataset. 
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Figure 6. Performance of the deep learning methods for cardiac arrest prediction during 
model training: (a) the Loss curves with train dataset. (b) the F1-Score curves with 
validation dataset. 

Furthermore, the computational times of the three deep learning models for CA prediction 
was listed in Table 5. It can be seen that the TCN reduced the CA prediction time consumption by 
about 76 and 46% compared with the LSTM and GRU respectively. This means that the TCN has 
huge potential for efficiency improvement in CA prediction.  

Table 5. Time computation of the CA prediction models. 

Models Prediction Time (ms) Training Time (s) 
LSTM 0.198 0.270 
GRU 0.163 0.265 
Our 0.112 0.229 

4.2. Explanation results 

In the explanation experiment, the performance of TCN for CA explainable prediction using DTD 
theoretical framework are reported in Figure 7. The mean relevance of each clinical parameter and 
relevance distribution with different parameter measurements are used as two explainable perspectives 
of CA prediction. The first explainable perspective points out which clinical parameters in the EHR 
sequence were relevant to CA prediction. The second explainable perspective points out the details of 
relevance changes corresponding to the magnitude of clinical parameter, which improved the 
transparency of deep early warning system for CA prediction and increased the clinicians' 
understanding of internal CA prediction mechanism of the DL model. 
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Figure 7. Results of the CA explanation experiment: the mean relevance of each clinical parameter. 

In Figure 7, with mean relevance of each clinical parameter, it can be seen that the importance of 
clinical parameter to CA prediction can be displayed through TCN based on DTD framework. It was 
observed that the three most important clinical parameters are “Respiratory rate”, “SpO2” and “Heart 
rate” with the corresponding relevance values of 0.11, 0.11 and 0.95, respectively.  

5. Discussion and conclusions 

We present a TCN-based deep early warning system for CA prediction and apply the DTD 
theoretical framework to improve the interpretability of the prediction results. Recapitulating previous 
studies about deep early warning system for CA prediction, these works do achieve the desired effect 
and enhance the model transparency. Nevertheless, such approaches usually use recursive methods, 
which cannot perform highly parallel degree accelerated combined with corresponding explainable 
theoretical framework to better improve the efficiency and interpretability of CA event prediction, 
whereas the ascendancy of our TCN based approach combined with DTD framework can make up the 
above deficiencies. 

Hitherto, many deep early warning studies of CA prediction have used recursive architecture-
based DL method, which may sacrifice or obscure the efficiency nature of CA prediction. Based on 
structure of convolutional network, TCN captures medical information from EHR sequences with 
higher parallelism, which is used as a supplement of deep early warning system to increase the 
performance of DL in CA prediction tasks. When making CA prediction from EHR sequences, we 
evaluated the capabilities of TCN to capture clinical features and the effectiveness of passing the 
convolutional network to deep early warning system. We found that proper use of TCN can further 
ameliorate the performance of CA prediction (see Tables 4, 5 and Figures 4−6). Specifically, it seems 
can achieve the better performance gains that building the convolution unit to CA prediction. In 
addition, we also found that explainable theoretical framework based on DTD can further improve the 
transparency of deep early warning system in the CA explanation task. Indeed, the TCN method 
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combining DTD explainable theoretical framework has advantages over traditional methods in CA 
prediction. In summary, we found that applying TCN and DTD to CA prediction is a convincing 
approach, with better performance compared with traditional NEWS and other common DL models of 
LSTM and GRU. 

However, our system still needs to be improved. For CA prediction from EHR clinical parameters 
sequences, the TCN-based method still has not obtained high-accuracy of prediction result, it may be 
that the ability of DL method to capture clinical parameters cannot be well released, limited by the 
insufficient amount of model training data. Meanwhile, the imputed missing values have a certain error 
with the actual data, which also creates uncertain factors for the model calculation. On the other hand, 
the model interpretability of TCN based on DTD theoretical framework needs to be further verified, 
especially the use of quantitative evaluation methods. 

Future work would attempt to collect more CA patient samples for the training of the TCN to 
improve the accuracy and generalization ability of the deep early warning system. Furthermore, a lot 
of work is required to transform the TCN into CA prediction and then prevent the occurrence of CA 
event, and the real-time performance of CA prediction would attempt to achieved correspondingly 
through TCN’s parallel computing acceleration optimization. Finally, more exploratory work, such as 
finding other CA-related clinical parameters, fine-tuning model parameters, medical demonstration of 
relevance calculation, etc., can allow us to better release the potential of deep CA prediction systems. 
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