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Abstract: In this paper, firstly we define the concept of h-preinvex fuzzy-interval-valued functions
(h-preinvex FIVF). Secondly, some new Hermite-Hadamard type inequalities (H-H type inequalities)
for h-preinvex FIVFs via fuzzy integrals are established by means of fuzzy order relation. Finally,
we obtain Hermite-Hadamard Fejér type inequalities (H-H Fejér type inequalities) for h-preinvex
FIVFs by using above relationship. To strengthen our result, we provide some examples to illustrate
the validation of our results, and several new and previously known results are obtained.
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1. Introduction

Hermite-Hadamard inequality (H-H inequality, in short) was firstly introduced by Hermite and
Hadamard [1,2] for convex functions are well-acknowledged significant in literature. Since H-H
Inequality has been regarded as one of the useful techniques in optimization and mathematical
analysis, and for developing the quantitative and qualitative properties of convexity and generalized
convexity. Due to applications of this inequality in different directions, there has been continuous
growth of interest in such an area of research. As a result, several applications of convex and
generalized convex functions have been developed. Following inequality is known as H-H
inequality:

+v 1 4 v + ¥Y(v
w(“Y) < 2 [ W )dw <TI0 (1)

2

where ¥: K — R is a convex function on the interval K = [, v] with u < v. Noor [3] presented
the following H-H inequality for h-preinvex function in 2007:

o V) saan LT aode s [ + YOI HO @)

where W:K - R* is a preinvex function on the invex set K = [u,u+ 6(v,u)] with u < u +

O(v,u) and h:[0,1] » R* with h G) # 0. A step forward, Marian Matloka [4] constructed H-H

Fejér inequalities for h-preinvex function and investigated some different properties of differentiable
preinvex function. For convex and nonconvex functions, various extensions and generalizations of
the H-H inequality have recently been derived. See [5-9] and the references therein for more
information.

On the other hand, due to a lack of applicability in other sciences, the theory of interval analysis
languished for a long period. Moore [10] and Kulish and Miranker [11] introduced and examined the
notion of interval analysis. It is the first time in numerical analysis that it is utilized to calculate the error
boundaries of numerical solutions of a finite state machine. We direct readers to the papers [12—14]
and their references for basic facts and applications. In 2018, Zhao et al. [15] developed h-convex
interval-valued functions (h-convex IVFs) and demonstrated the following H-H type inequality for
h-convex IVFs, based on the above literature.

Theorem 1. [15] Let ¥:[u,v]c R—-> X, be an h-convex IVF given by ¥W(w) =

[V, (w), ¥*(w)] for all w € [u,v], with h:[0,1] > R* and h(%) # 0, where ¥,(w) and

Y*(w) are h-convex and h-concave functions, respectively. If ¥ is Riemann integrable (in sort,
[R-integrable), then

2 v-u

o ¥ ()25 R Ya)dw 21960 + YL [y ) ds. 3)

Yanrong An et al. [16] took a step forward by introducing the class of ((h4, h,)-convex IVFs and
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establishing interval-valued H-H type inequality for (hq, h,)-convex IVFs. We suggest readers to
[17-21] for more examination on generalized convex functions and [22-27] for more examination of
on H-H integral inequalities. Also, the reader can find applications and properties on them.

Since its inspection five decades ago, the theory of fuzzy sets and system has advanced in
variety of ways, see [28]. Therefore, it plays an important role in the study of a wide class problems
arising in pure mathematics and applied sciences including operation research, computer science,
managements sciences, artificial intelligence, control engineering and decision sciences. The convex
analysis has played an important and fundamental part in development of various fields of applied
and pure science. Similarly, the concepts of convexity and non-convexity are important in fuzzy
optimization because we get fuzzy variational inequalities when we characterize the optimality
condition of convexity, so variational inequality theory and fuzzy complementary problem theory
established powerful mechanisms of mathematical problems and have a friendly relationship. This
fascinating and engaging area has been enriched by the contributions of many authors. Furthermore,
Nanda and Kar [29] and Chang [30] developed the concept of convex fuzzy mapping and used fuzzy
variational inequality to derive its optimality condition. Fuzzy convexity generalization and extension
play an important role in a variety of applications. Let us mention that preinvex fuzzy mapping is one
of the most widely studied nonconvex fuzzy mapping classes. Noor [31] presented this concept and
demonstrated certain findings using a fuzzy variational-like inequality to identify the fuzzy
optimality condition of differentiable fuzzy preinvex mappings. We suggest readers to [32-36] and
[37-40] and the references therein for more examination of literature on the applications and
properties of variational-like inequalities and generalized convex fuzzy mappings, respectively. The
fuzzy mappings are fuzzy interval valued functions (FIVFs, in short). There are certain integrals that
deal with FIVFs, with FIVFs as the integrands. Oseuna-Gomez et al. [41] and Costa et al. [42] built
Jensen's integral inequality for FIVF, for example. Costa and Floures provided Minkowski and
Beckenbach's inequalities, where the integrands are FIVFs, using the same approach. Costa et al
established a relationship between elements of fuzzy-interval space and interval space, and
introduced level-wise fuzzy order relation on fuzzy-interval space through Kulisch-Miranker order
relation defined on interval space. This was motivated by [15,41,42], especially [43], because Costa
et al established a relationship between elements of fuzzy-interval space and interval space, and
introduced level-wise fuzzy order relation on fuzzy-interval space through Kulisch-Miranker order
relation. For further literature review related to fuzzy integral inequalities, fuzzy interval-valued
inequalities, fuzzy fractional integral inequalities, see [44—49], [50-55], [56—62] and the references
therein.

We investigate a novel class of generalized convex FIVFs dubbed h-preinvex FIVFs in this
study. We analyze integral inequality (Eq 2) by creating fuzzy-interval integral inequality, also
known as fuzzy-interval H-H integral inequality, with the help of this class. Fuzzy integrals are also
used to introduce some H-H Fejér inequalities for h-preinvex FIVFs.

2. Preliminaries
In this section, we recall some basic preliminary notions, definitions and results. With the help
of these results, some new basic definitions and results are also discussed.

We begin by recalling the basic notations and definitions. We define interval as, [w,, w*] =
fweRw, <w < o and w,w* €R }, where w, < w*.
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We write len[w,, w*] = w* — w,, If len [w,, ®*] =0 then, [w,, w*] is called degenerate. In
this article, all intervals will be non-degenerate intervals. The collection of all closed and bounded
intervals of R is denoted and defined as X, = {[w,, w*]: w,,w* €ER and w, < w*}. If w, =0
then, [w,, w*] is called positive interval. The set of all positive interval is denoted by K. and
defined as K" = {[w,, w*]: [w,, w*] € K, and w, > 0}.

We’ll now look at some of the properties of intervals using arithmetic operations. Let
[0.,07],[8.,8"] € K and p € R, then we have

[0., 0] + [8.,8°] = [0, + 8., 0"+8"],

[Q*r Q*] X [5*; '5*] = min{g*é*'Q*é*, Q*ﬁ*' 0*5*} ’
max{0,8,,0%8,,0.8", 08"}
[po., po’] if p>0,

p.lo., 0] = {0} if p=0

[po™, pe.] if p <O.

For [o.,0%],[8., 8] € K, the inclusion " € " is defined by [g.,0"] € [8.,8"], if and only if &, <
0., 0" < 8%,
Remark 1. The relation " <; " defined on K by [o.,0"] <; [8.,8"] if and only if g, < 8,,0" <
8*, forall [g,,0%],[8. 8°] € K, itis an order relation, see [11].

Moreover [10] initially proposed the concept of Riemann integral for IVF, which is defined as
follows:
Theorem 2. [10,15] If ¥:[u,v] € R - K is an IVF on such that ¥(w) = [¥,(w), ¥*(w)].
Then ¥ is Riemann integrable over [y, v] if and only if, ¥, and ¥* both are Riemann integrable
over [u,v] such that

UR) [} ¥ (w)dw = |(R) [ ¥.(w)dw , (R) [ ¥* (w)dw |

A mapping {: R - [0,1] called the membership function distinguishes a fuzzy subset set A
of R. This representation is found to be acceptable in this study. F(R) also stand for the collection
of all fuzzy subsets of R.

A real fuzzy interval ( is a fuzzy setin R with the following properties:

1) ¢ is normal i.e. there exists 2 € R such that {(w) = 1;
2) ¢ is upper semi continuous i.e., for given w € R, for every wr € R there exist € > 0 there
exist 6 > 0 suchthat {(w) — {(y) < & forall y € R with |w —y| < §;

3) ( is fuzzy convex i.e., Z((l - Hw + fy) > min({(w),((y)), V w,y €R and ¢ € [0,1];
4) ¢ is compactly supported i.e., cl{w € R| {(w) > 0} is compact.

The collection of all real fuzzy intervals is denoted by [F,.
Let { € F, be real fuzzy interval, if and only if, B-levels [{]? is a nonempty compact
convex set of R. This is represented by

[¢1F = {w € R| {(w) = B}

From these definitions, we have
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[<17 = 13.(8), ¢ (8],

where
¢.(B) = inflw € R| {(w) =B},
*(B) = sup{w € R| {(w) = B}.

Thus a real fuzzy interval ¢ can be identified by a parametrized triples

{(6.(8), ¢*(B), B): B €10, 1]}

These two end point functions {,(8) and {*(B) are used to characterize a real fuzzy interval as a
result.
Proposition 1. [43] Let {,0 € F,. Then fuzzy order relation " <" given on [, by

{ < @ ifand only if, [{]# <, [@]F forall B € (0,1],

it is partial order relation.
We’ll now look at some of the properties of fuzzy intervals using arithmetic operations. Let
(,0 € F, and p € R, then we have

[(F61F =[¢1f +[0]F “4)
[(X0]F =[{1fx[ 6] %)
[p.C1F =p.[C1F (6)

For ¢ € F, such that { = ®F1, we have the existence of the Hukuhara difference of ¢ and 6,
which we call the H-difference of { and @, and denoted by ¢{=6. If H-difference exists, then

W) (B) = ((=6)(B) = (B) —0°(B)

).(8) = (=0).(8) = L.(B) — 0.(B) @
Theorem 3. [23] The space F, dealing with a supremum metric i.e., for 1,0 € [,
D(,0) = sup H([)P,[ 61F) ®)

0<pBs1

it is a complete metric space, where H denote the well-known Hausdorff metric on space of
intervals.
Definition 1. [43] A fuzzy-interval-valued map ¥Y:K c R — [F, is called FIVF. For each f§ €

0,1], whose f-levels define the family of IVFs Ws5: K € R — K are given by Ws(w) =
B B

¥, (w, B),¥*(w,B)] for all w € K. Here, for each B € (0,1], the end point real functions
Y.(.,B8),¥*(,B):K - R are called lower and upper functions of ¥ .

The following conclusions can be drawn from the preceding literature review [10,23,24,43]:
Definition 2. Let ¥: [y, v] € R — F; be a FIVF. Then fuzzy integral of ¥ over [u,Vv], denoted by

(FR) f: Y (w)dw, it is given level-wise by
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B
[(FR) [} w(w)dw|” = UR) [} Wp(w)dw = ([ ¥ (w, pdw : ¥ (w,B) € Ryump} ©)
for all g € (0,1], where R(,v)p) denotes the collection of Riemannian integrable functions of

IVFs. ¥ is FR -integrable over [u,v] if (FR) f:‘l’(w)dwE]FO. Note that, if

Y (w,B),V*(w,B) are Lebesgue-integrable, then ¥ is fuzzy Aumann-integrable function over
[u, v], see [10,23,24].
Theorem 4. Let ¥:[u,v] c R—>F, be a FIVF, whose [-levels define the family of IVFs

Yp:[u,v] € R > K¢ are given by Yp(w) = [V, (w, B), ¥ (w, )] for all w € [u,v] and for all

B € (0,1]. Then ¥ is FR-integrable over [u,v] if and only if, ¥,(w,B) and ¥*(w,B) both
are R-integrable over [u,V]. Moreover, if ¥ is FR-integrable over [u,V], then

(R [ v ] = [® .G Bdw, R [ ¥, Hiw]

= (IR) [ Yp(w)dw (10)

for all g € (0,1]. For all € (0,1], FR(uv)p) denotes the collection of all FR-integrable

FIVFs over [u,v].
Definition 3. Let K be an invex set and h:[0,1] - R such that h(w) > 0. Then FIVF ¥:K —
F-(R) is said to be:

e h-preinvex on K with respectto O if

Y(w+ (1 -8y, w)) S h@P(w)Fh(1 - P(y) (11)

for all w,y € K,& € [0,1], where ¥(w) =0, 6:K XK - R.
e Jfi-preconcave on K with respectto O if inequality (Eq 11) is reversed.
e affine h-preinvex on K with respectto 6 if

Y(w + (1 -0y, w) ) =h@¥Pw)Fh(1-H¥Y) (12)

forall w,y € K,& € [0,1], where ¥ (w) > 0,0:K x K —» R.

Remark 4. The h-preinvex FIVFs have some very nice properties similar to preinvex FIVF,

1) if ¥ is h-preinvex FIVF, then Y is also h-preinvex for ¥ > 0.

2) if ¥ and J both are h-preinvex FIVFs, then max(¥ (w),J(w)) isalso h-preinvex FIVF.
Now we discuss some new special cases of h-preinvex FIVFs:
If h(¢) = &7, then h-preinvex FIVF becomes s-preinvex FIVE, that is

If 6(y,w) =y —w, then ¥ iscalled s-convex FIVF.
If h(¢) =&, then h-preinvex FIVF becomes preinvex FIVF, that is

Y(w + Q-0 w)) <P (w)FA-HYO),V w,y €K § €[0,1].

Mathematical Biosciences and Engineering Volume 19, Issue 1, 812-835.
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If 6(y,w) =y —w, then ¥ is called convex FIVF.
If h(§) =1, then h-preinvex FIVF becomes P-preinvex FIVF, that is

P(w +(1-8)0@,w)) S V(w)F¥P(),V w,y€K,&e]0,1].

If 6(y,w) =y —w, then ¥ is called P-FIVF.
Theorem 6. Let K be an invex set and h:[0,1] € K - R* such that h > 0, and let ¥:K —

F-(R) be a FIVF with ¥(w) > 0, whose fS-levels define the family of IVFs Ys:KcR -

K.t < K, are given by
Yo(w) = [Y.(w, B), ¥ (w,B)],V w EK (13)

forall w € K and forall 8 € [0,1]. Then ¥ is h-preinvex FIVF on K, if and only if, for all g €
[0,1], ¥,(w,B) and ¥*(w,B) both are h-preinvex functions.

Proof. Assume that for each g € [0,1], ¥,(w,B) and ¥*(w,B) are h-preinvex on K. Then
from Eq (11), we have

and

P(w+(1A-80W,w),B) <h@¥ (w,p)+h(1 - ¥ (y,p),V w,y €K €[0,1]
Then by Eqgs (13),(4) and (6), we obtain

Yp(w + (1 -0, w)) = [H(w + (1 =8Oy, w),B), ¥ (w + (1 -6y, w),B)]

< [h() W(w, B), h(E) W™ (w, B)] + [h(1 = ) ¥.(y, B), h(1 = ) ¥ (¥, B)],
that is
P(w + (1 -0, w)) S h@OPw)Fh(1-OP(Yy), vV w,y €K, & €[0,1].

Hence, ¥ is h-preinvex FIVF on K.
Conversely, let ¥ be a h-preinvex FIVF on K. Then for all w,y € K and ¢ € [0,1], we
have ¥(w + (1 —&)0(y,w)) < h(&) ¥ (w)F h(1 — &) W(y). Therefore, from Eq (13), we have

Yp(w + (1 -0, w)) = [F(w + (1 -0, w),B), ¥ (w + (1 - Oy, w), p)I.

Again, from Eqs (13), (4) and (6), we obtain
h(§) W (w)F h(1 = &) Wg(w) = [h(§) P.(wr, B), h(E) W (w, )] + [h(1 = O . (¥, ), h(1 —

L NCA]P
for all w,y € K and & € [0,1]. Then by h-preinvexity of ¥, we have for all w,y € K and
& €[0,1] such that

P.(w+ (1 =80,w),B) <h(@)¥.(w,B) +h(1 - ¥.(y,B),

and
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P'(w+ (1=, w),B) <h(Q) ¥ (w,B) +h(1 =5 ¥ (y,p),

for each B € [0, 1]. Hence, the result follows.
Example 1. We consider h(§) = ¢, for € € [0,1] and the FIVF ¥:R* - F.(R) defined by,

(Q;iw 0 € [e%,2e%]
W) (o) = i e et
0 otherwise,

then, for each f €[0,1], we have Wp(w) =[(1+p)e*,2(2—p)e™ ]. Since ¥,(w,p),

¥*(w,B) are h-preinvex functions O(y,w) =y —w for each B €[0,1]. Hence W(w) is
h-preinvex FIVF.

3. Main results

Now, the application of inequality (Eq 2), Proposition 1, Definition 3, Theorems 2—4 and 6 gives
the followings results.
Theorem 7. Let W:[u,u+ 6(v,u)] » F-(R) be a h-preinvex FIVF with h:[0,1] - R* and

h G) % 0, whose pB-levels define the family of IVFs Wp: [, u+ 6 (v, )] € R - K" are given by
Yo(w) = [V (w, B), ¥ (w, )] for all w € [u,u+ O(v,u)] and for all F€[0,1]. If ¥ €

FR(uu+rowm)p- then

1
e

() < g R ade < (W00 F YOI [y hE dE (1)

If ¥ is h-preinvex FIVF, then Eq (14) is reversed such that

Zhl(%) v () 2 oo (FR) [T W) dw 2 [P F PO [ h@ dE. (19)

Proof. Let W:[u,u+ 6(v,u)] » F-(R) bea h-preinvex FIVF. Then, by hypothesis, we have

%lp (zu+62(v.u)) KP(u+1 -6 w) F Yu+6(v,w).

Therefore, for every B € [0, 1], we have

Tokk (BEERp) < W+ (1= OO, ), B) + Wi + 0, ), B),

1

T () S ¥ G+ (L= 00,08 + ¥ (u+ $6 (0,10, ).

Then
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2

@f; w (—2’”6(”"‘),3) d§ < [J¥*(u+ (1= 9O, 1), F)dE + f, W (u + EO (v, ), F)dE .

@f(} w, (2208 g de < [ W(u+ (1= 9O, ), F)dE + [} W.(u + E0(v, 1), B)dE,

2
It follows that
2 u

1 2u+e(v,u) u+e(v,u)
T (L) < g [T (w, B durr,

1 s (20O puto(v,u)
v (B g) < L [ (o, Y dunr

That is

@ [lp* (2u+6(v.u)”8) Ty (2u+6(v,u)'ﬁ)] <, ﬁ [f:+6(v.u) W (w, B)dw,f:w(v'”) v (w, ,B)dw].

2 2
2

Thus,
1 2u+o(v,u) u+oe(v,u)
0 v () < o (FR) [ Y (w)dw. (16)
In a similar way as above, we have
6 1
5o FR) W) dw < [P T YW fy hE) dé. (17)

Combining Egs (16) and (17), we have

(FR) [P w () < [ () F YW1, h(E) dE,

1 2u+6(v,u)
ag Y <

which complete the proof.
Note that, inequality (Eq 14) is known as fuzzy-interval H-H inequality for h-preinvex FIVF.
Remark 5. If h(¢) = &5, then Theorem 7 reduces to the result for s-preinvex FIVF:

_ 2u+6((v, 1 +6(v, 1 ~
2071y (2B < o PR Yy w)dw < [P F YOI (18)

If h(¢) = &, then Theorem 7 reduces to the result for preinvex FIVF:

2pu+6(v,1) 1 put+oe(v,u) Y F ¥
w () < o (FR) [} Y (w)dw < ZETED (19)

If h(¢) = 1, then Theorem 7 reduces to the result for P-preinvex FIVF:

(FR) [ W (w)dw < W () F ). (20)

% ¥ (21“-62(%”)) e(v )

If ¥, (w,B) =¥*(w,B) and B = 1, then Theorem 7 reduces to the result for h-preinvex function,
see [4]:
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+o(v.1) to(v.u)
o Y () sqap (R < e+ YL@ @D

Note that, if 6(v,u) = v — u, then integral inequalities (Eqs 18-21) reduce to new ones.

Example 2: We consider h(§) =¢, for £ € [0,1] , and the FIVF W:[u,u+06(v,u)] =
[0,0(2,0)] = F(R) defined by,

0
50 0 € [0,2w?]
Y (w ={ 4w —
(w)(e) . e e Quw?, 4uw?]
k 0 otherwise.

Then, for each B € [0,1], we have Ws(w) = [2Bw?, (4 — 2B)w?]. Since ¥, (w,B) = 2pw?,

P*(w, B) = (4 — 2B)w? are h-preinvex functions with respect to O(v,u) =v —u for each
B € [0,1]. Hence ¥ (w) is h-preinvex FIVF with respect to 6(v,u) = v — u. Since ¥, (w,B) =
2Bw? and Y*(w,B) = (4 — 2B)w? then, we compute the following

1 2u+oe(v,u)

o () Sqan LT G Bdw < [.G0p) + W1 hE)

1

2u+6(v,u) _ _
i (0 0) < 20

)
e(vu) f;iﬁ U (w, B)dw—— f Zﬁwzdw——ﬁ

Y. B) + Vv, D] [ h(®) dE = 45,
for all B € [0,1]. That means

2ﬁs?s4ﬁ.

Similarly, it can be easily show that

o ) s g LT pdw < [0 Gup) + W00 By G d.

forall B € [0,1], such that

2h1(1) p (2u+62(v,u),ﬁ) —W.(1,p8) = (4—2p),
fﬂ+9(vlt)q, (w, B)dw =+ f (4 — 2B)widw = 4(4-2B) 25)

6(1/ w “u 3

[ (wB) + (v, D] [, h(®) dE = 2(4 - 2p).
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From which, it follows that

(4-2p) <22 <204 - 2p),

that is
[28, (4 — 2B)]< [83 A 2’”]< [48,2(4 — 2/)] forall B € [0,1].
Hence,
S () s qom PRI v dw < (W6 F R A ds,

and the Theorem 7 is verified.
Theorem 8. Let W¥,J:[uu+0(,uw)] - F:(R) be two h; and h,-preinvex FIVFs with

hy,hy:[0,1] » Rt and h1( )hz()EEO whose B -levels define the family of IVFs ¥,

Ig:lwu+O0(w,w]cR- K.* are given by Yo(w) = [V (w, ), ¥ (w, )] and Jp(w) =
[J.(w, B), T (w, B)] for all w € [u,u+ 6O(v,u)] and for all B €[0,1]. If ¥,J and ¥J €

FR(uu+rowm1p- then

6(1/;4) (FR) fuw(vmq’(w) X J(w)dw <

M (V) [ 1 (§) hy(€) dE FN (u,v) [ i (§) hy(1— &) dg,

where M(u,v) =¥ XJWw) ¥ YO XJW), Nwv) =¥ XJWw) ¥ P(v) XJ(u) with
Mg(/l, V) = [M*((.u' V), ﬂ),M*((M, V)' ﬁ)] and Nb(:ur V) = []V;((,Ll, V)' ﬁ)rN*((.u' V)' B)]

Example 3. We consider h(§) =&, h,(¢§) =1, for £ € [0,1], and the FIVFs ¥,J:[u,u+
O(v,uw)] =10,6(1,0)] » F-(R) defined by,

50 0 € [0,2w?]
y ={ 4w —
(’LU’)(Q) sz Q Q € (24/0’2,4"1/0’2]
k 0 otherwise,
[
(= ¢ € [0,w]
2 —
Ia@ =4 2w =0
w
0 otherwise,

Then, for each B €[0,1], we have ¥Wp(w)=[2fw? (4—-2f)w?] and Jpg(w) =
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[Bw, (2 — P)w]. Since ¥, (w,B) = 2fw? and Y*(w,f) = (4 — 28)w? both are h,-preinvex
functions, and J,(w, B) = fw, and J*(w,B) = (2 — B)w both are also h,-preinvex functions
with respect to same O(v,u) =v —u, for each B €[0,1] then, ¥ and J both are h; and
h,-preinvex FIVFs, respectively. Since ¥,(w,B) = 2fw? and ¥*(w,B) = (4 — 2f)w?, and
J.(w, B) = pw, and J"(w,B) = (2 — p)w, then

ﬁ f:+e(v,u) Y. (w,B) X J,(w, B)dw = fol(Zﬁwz)(ﬁW)dw _ %

ﬁ f:+6(v’”) lp*(w, ﬂ) X J*(W,ﬂ)dw = fol((4 — 2,8)/,[2)((2 _ ﬁ)ﬂ)dw — (2—23)2,

M), B) fy (€ hy() dE =22 = p2,
M (), B) fy @) b (©) g =222 = 2 - g2,

N((wv), B) [y hi@ h(1 -8 dE =0
N (@), B) fy (©) hy(1 - &) dE =0,

for each B € [0,1], that means
ﬁ_z < ,82 +0= ﬁZ
2 = - )
2_B)2
ER<@-p+0=2-p?

Hence, Theorem 8 is verified.

Following assumption is required to prove next result regarding the bi-function 6: K X K - R
which is known as:
Condition C. (see [36]) Let K be an invex set with respect to 6. Forany u,v € K and & € [0, 1],

O(v,u+é0(v,w) =1 -850, w,
O(u,u+s0(v,p)) =—-56(v, ).

Clearly for ¢ =0, we have 6(v,u) =0 if and only if, v = pu, for all u,v € K. For the applications
of Condition C, see [16,31,36-39].
Theorem 9. Let ¥, J: [u,u+60(v,u)] » F:(R) be two h; and h, -preinvex FIVFs with

hy,hy:[0,1] » R* and hy G) h, G) Z 0, respectively, whose f-levels define the family of IVFs
s, Jp:lu+ 0w, )l cR-> K" are given by We(w) =[¥(w,B),¥*(w,B)] and
Jg(w) = [J.(w, ), J"(w, B)] for all w € [u,u+ O(v,u)] and for all g €[0,1]. If ¥,J and

YJ € FRuu+erwp and condition Chold for 6, then
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1 2u+6(v,uw)\ ~ 2u+6(v,u)
@m0 v () % () <

o (FR) [0 W) X ) dwr F M) [ () b (1 -

) dE FN (,v) f, hy(€) hy(8) de,

where M(u,v) =¥ XJw) ¥+ YWMXIW), Npwv) =YW XJWv) ¥ Y(v) XJ(u), and
Mg(/l, V) = [M*((.u' V), ﬂ),M*((M, V)' ﬁ)] and Nb(:ur V) = []V;((,Ll, V)' ﬁ)rN*((.u' V)' B)]

Proof. Using condition C, we can write

1 1
pt50wm) = pu+800,p) + EG(u + (1 =80, W), 1+ E6(v, ).
By hypothesis, for each § € [0, 1], we have

Y (2u+6(v.u)”6,) x J. (2u+62(1/.u),ﬁ)

2

e (2u+9(v,u)'ﬁ) x J* (2u+62(1/.u)”8)

=¥ (4 +£00 0 +30(u+ (1= O, 1,1 +E0(v, 1), B)

X J, (u +&0(v, 1) +§6(u +(A-80W,u),u+ fe(v.u)),ﬁ),
=¥ (1400w +50(n+ (1 - OO, L, u+E0(,w),B)
xJ' (u+¢00w,m +50(u+ (1= HOW, W, u+E6(W, 1), B),

<h (3)h (1) [‘1’*(#+(1—€)6(V,#),ﬁ)XJ*(M+(1—E)9(V;M);ﬁ)
=G| e+ A -9, B) x J.(u+E6(, 0, B)
1\2/ 722 TP (u+E0(v, 1), F) X J.(u+E0(v,w),B) I
<y (Y Q) U F 0= DO X Tt (0= DO 0.)
= 1\2/) "2\ +P (u+ 1 -800,w,B) X J (u+E0(v,w),p)
+ h (l)h (l) ['P*(H-l-fe(v,li),ﬁ)XJ*(/J+(1—S()9(V,M):ﬁ)
Y22 4+ E0(v, 1), B) X I (u + €6 (v, ), B)
<h (3)h (1) [‘1’*(#+(1—5)9(V.M).[5’)XJ*(M+(1—5)9(V,H),3)
AV 2\2 +IP*(’LL+EQ(V,H),B)XJ*(H‘FEQ(V;H);B)
(hl(f) lP*(‘u,ﬁ) +h1(1_€) ql*(v,ﬁ)) ]
+ oh (l)h (3) X (h,(1 =8 J.(u, B) + hy (&) J.(v, B))
1@ (- O W) + O ., B))
X (h,(8) 3., B) + h,(1 — &) J.(v, B))
<h (l)h (l) [‘P*(M-i-(1—5)9(1/,#)”8)XJ*(H+(1—E)9(V,M):,3)
EEACYARAT +P* (u+ 80, ), B) x I*(u+ &6 (v, 1), B)
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C(M@OP(wB)+h(A -, B)

h (2, (2 ><(hz(l—f)J*(#,ﬁ)+hz(€)J*(%ﬁ))'
i (2) (2) +(h A=Y WP +h P vB))
| X (hz(f)‘j*(ﬂ,ﬂ)+h2(1—€)(7*(1/,,8))

N2/ "2/ | TP (u+E0(v, 1), B) X J(u+E6(v, 1), B)
o (2, (2) [ (OO (= O a1 = (. 8) |
_h (l)h (1) [‘P*(u+(1—f)9(v,u),ﬁ)><<7*(u+(1—€)9(v,u),ﬁ)
T \2) "2\ TP (u+ 80 (v, 1), B) X J*(u+ &6 (v, ), B)
2h (D)1, (2 (i (€) ho(§) + (1 = ho (1= IV (W), B) |
i (2) (2) +{h1 (&) ho(1 = &) + hy (1 = &) hy(OIM* (1, ), B)

Integrating over [0, 1], we have

o (5 o (B2 p) x g. (B, ) < oo [E7O M W (a0, B) X 3. (w0, B)dr
+M. (V). B) [y 1 (§) ho (1 — &) dE
+N.((v), B) f, b (§) hy (D) d€,

1 « (2u+0(v,1) « (2ut+6(v,u) 1 ute,m) . .
2h1(3) ha(3) v ( 2 "B)XJ ( 2 ’B) Se(v,u) fu Y (w, B) x J*(w, B)dw

+ M (1), B) [y hi(§) ho(1 = §) dé
+N (V). B) fy h(§) hy(§) d€,

from which, we have

S () x 3 (g ) (B p) x a (5 )

< o [, ) x . (w0 ) [ (w0, ) X 3 B ]+
L hy(§) hy(1 = ©) dé M ((w,v), B), M* ((w,v), B)] +
[N (), B), N ((v), B)] fy 11(8) ha(8) dE,

that is
1 2u+0(V)\ &  (2p+6(V,)) 1 u+6(v,u) _
20 (D)3 w () % g (5 <zom FRJ, ¥ (w) X J(w)dw

F M) [ 0y () hy(1— &) dE FN () [, hy(€) hy () dE,
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this completes the result.
Example 4. We consider h(§) =&, h,(§) =1 —¢, for £ €[0,1], and the FIVFs ¥, J: [u, u +

O(v,w)] =10,6(1,0)] » Fc(R) defined by, for each g € [0, 1], we have ¥p(w) = [2Bw?, (4 —
2B)w?] and Jz(w) = [Bw, (2 — B)w], as in Example 3, and ¥(w), J(w) both are h; and

h, -preinvex FIVFs with respect to O(v,u) =v — u, respectively. Since W, (w,p) = 2pw?,
Y (w, B) = (4 = 2B)w? and J.(w,B) = pw, J*(w,B) = (2 — f)w then, we have

1 2u+6(v,1) 20+6(v,u) _B?
g () xa. () = 5

1 « (2u+6 (v, 1) « (2046 (v, 1) _ (2-p)?
2h1(%)/72(%) ’ ( 2 "B) xd ( 2 'ﬂ) o2

9(1,”) f!f-'-e(v“) Y (w, ) X J.(w, Bdw = B;

ptoe(v,u) . _ @-py?
G(Vu) fu V*(w, B) X J"(w, B)dw ==,

M, ((v), B) [ h(€) hy(1 — §) d&
M ((wv),B) fy hy(©) hy(1 - dg =& ’”,

N, (), B) [} 1 (&) hy(§) dE =0,
N*((wv), B) f 11 (&) ho(§) dE

for each B € [0,1], that means

2 2 2

BZ 'B +0+'B 5’;,
Y 2 2 _ 2
@ Zﬁ) i Zﬁ) +0+(2 ) 5(263),

hence, Theorem 9 is demonstrated.

We now give H-H Fejér inequalities for h-preinvex FIVFs. Firstly, we obtain the second H-H
Fejér inequality for h-preinvex FIVF.
Theorem 10. Let W:[u,u+ 6(v,u)] = F-(R) be a h-preinvex FIVF with u < u+6(v,n)

and h:[0,1] » R*, whose fS-levels define the family of IVFs Wp:[u,u+60(v,u)] € R - K"
are given by Wp(w) = [V, (w, ), V" (w, B)] for all w € [u,u + O(v,u)] and for all f € [0,1].
If Y€ FRuuurowwlp and 2:[u,u+ 60, u)] » R 2(w) =0, symmetric with respect to

u+ %Q(V, W), then

5o FR L)@ dw < [P F YOI hE 20+ 0w mdE  (22)
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Proof. Let ¥ be a h-preinvex FIVFE. Then, for each 8 € [0, 1], we have

Pu+1-8060,w, AN+ 1-86®(,n)
<(h@OP.WP) +hA-OP.W,R)2u+ (1 - O, W)
P u+1-80W,w, A2+ 1—-80(v,p)

<@ WP +hA =¥ @,R)ew+1-80(v,n) (23)
And

P +80(v, 1), B2 +$6(v,w) < (h(1 =) Pulw, B) + h(©) P.(v, )21 + £6 (v, 1)) (24)
P +E0(v, 1), B2 +E6(v,w) < (h(L =W (1 B) + h(©) ¥* (v, )2 + $6 (v, 1))

After adding Egs (23) and (24), and integrating over [0, 1], we get

f W+ (1 - DO, W, i+ (1= O, W) dé + Jy W+ E0 (v, 1), B2 + §6(v, 1)) dE
< [ V(B2 + (1 -80w,w) +h(1 -8 2(u+E6(v, u))}l s
|+, B - O+ (1 - OO, 1) + h(§) 2(u + E6(v, 1))}
[P+ &0, W+ 0w, w) dé + [ ¥+ A —0ow,w, A+ (1 - HOW,w)dé
< | W@+ A= DO, m) + (1 =) au +£6(v, 1)) l ac.
O [+¥ (v, B{hA - O2u + A - OO, 1) + h(§) 2(u + E6 (v, 1))}

= 20 (1, B) fy h(O)2(u + (1 — OO, W) d§ + 2,(v, B) [, h(©) 2 + E6(v, 1)) d¢,
=20 B) [ h(OQ(u + (1 — OO, 1) dE + 2% (v, ) [, h(E) 2 + E0(v, ) dé.

Since {2 is symmetric, then

= 2[%.( ) + V.(v, B)] f, h(©) 2(u +E0(v, ) dE,

(25)
=2[" (. B) + ¥ v, B f, h(®) 2(u + E6(v, 1)) dE.

Since

L e+ (1 -9e,w M+ A -HOw,w)dE = [J ¥+ 0w, w), ok +

§0(v, W) d¢ = 5o [ W (w, () dur

[+ €00, m), (u+E0(v,w)dé = [ ¥ (u+ A — oW, m), Ha(u+ (1 -

O, W) dE = 5o [ W (w, 2w dw (26)
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From Egs (25) and (26), we have

oz LT W, pandw < [ B) + ., ] fy (@) 2+ §6(v, ) &2,

s [y w p0G)de < W) + ¥, B [y B 0+ £0(v, ) dé,

that is

1 u+6e(v,u) 1 UHO(V,L) 1%
s [ v, ) 5 [0 W (o, B0 () du]

< [P B) + W, ), (B + ¥ (v, D] [ h(©) 2 + £6(v, ) dE,

hence

1
(v,

u+e(v,u) _ 1
R [ wanadw < (G F YO [ hE) 0+ 00 )ds,
u 0

this completes the proof.

Next, we construct first H-H Fejér inequality for h-preinvex FIVF, which generalizes first H-H
Fejér inequality for h-preinvex function, see [4].
Theorem 11. Let W:[u,u+ 6(v,u)] » F-(R) be a h-preinvex FIVF with u < u+6(v,un)

and h:[0,1] » R*, whose fS-levels define the family of IVFs Wp:[u,u+60(v,u)] € R - K"
are given by Wp(w) = [V, (w, B), V" (w, B)] for all w € [u,u + O(v,u)] and for all f € [0,1].
If Y€ FRyuurowwlp and Q:[u,u+ 60w, u)] » R 2(w) =0, symmetric with respect to

U+ %9(1/, w), and f:w(v'”) N(w)dw > 0, and Condition C for 6, then

2h(3)

flf+9(v‘”)n(w)dw

@ (u +200, u)) < (FR) f:“’(”‘) ¥ (w) 2 (w)dw. 27)

Proof. Using condition C, we can write

1 1
ptS 0, =p+500,u) +50(u+ (1= HOW, 1), p+E0(,1w).

Since ¥ is a h-preinvex, then for S € [0, 1], we have
1 1
Y, (u +560, u),b’) =Y, (u +50, 1) +50(u+ (1= DO(, W, 1+ 69(%#)).3)

1
= h(g)(‘l’*(u + (1 =80, w),B) +¥.(u+¢6(v, 1), 8))
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1 1
W (# +500, H);ﬁ) — e (# +E0(v, 1) + 56(# + (1 -80(,u),u+56(, #))'ﬁ)
<h(3) (P @+ -OW,m,B) + ¥ (u+E0v,u),5)  (28)

By multiplying Eq(28) by .(2(# +(1-86(, u)) = .(2(,u + &6 (v, ,u)) and integrate it by & over
[0,1], we obtain
V(1 +300,0,8) fy 2(u+ 00, w)dé <
h() (fol P+ (1 -0, AA(u+ (1 -HOW, #))d€>
2 +Jy W+ 00, w), A1 + 0 (v, 1)) dE
W (u+300,,8) f; Qu+E0(v,w)dé <

A (1) <f01 P*u+ 1 -8, w),A2(u+ (1 —-86(, u))df)

1 (29)
? + [P (u+E0(v, 1), B (u + E0 (v, 1))dE

Since

L e+ (1 -0e,w M+ 1 -9Ow,w)dE = [J ¥lu+E0w,w), Ak +

1 u+6(v,u)
50w Y, (w, B)02(w)dw

§6(v, ) d¢ =

[P (u+ 00,0, RA(u+ 0w, w)dE = [[¥ (u+ Q- OwW,m,AHe(n+ 1 -

1 UHOWV,L) 115
som P (w, B2 (w)dw (30)

$OW,p) =

From Egs (29) and (30), we have

v (1 +200.10.8) < mmmend—— [F*"0Y, G 0@,

- fﬁwe(v'#) Q)dw “H

p (u + %6(1/, ,u),ﬁ) < Zh(%) f:+6(v’”) V* (w, B)2(w)dw .

- f;"'e(v’“)n(w)dw

From which, we have

['P* (u +§9(v,u),ﬁ), P (u + %9(%#),3)]

2| o0y o o, 008w, p 0w dw

<
! f£+e(v’”)!2(w)dw

Mathematical Biosciences and Engineering Volume 19, Issue 1, 812-835.



830

that is

2h(3)

flf-'-e(v”u) Q(w)dw

w (u +lo@, u)) < (FR) [0 W (w0 () due,

Then we complete the proof.
Remark 6. If h(§) = & then inequalities in Theorems 10 and 11 reduces for preinvex FIVFs which
are also new one.

If ¥,(w,B) =¥ (w,B) with B = 1, then Theorems 10 and 11 reduces to classical first and
second H-H Fejér inequality for h-preinvex function, see [4].

If Y(w,B)=¥"(w,B) with =1 and 6(v,u) =v — u then Theorem 10 reduces to
classical second H-H Fejér inequality for h-convex function, see [18].
Example 5. We consider h(é) =&, for £ € [0,1] and the FIVF ¥:[1,1+ 0d(4,1)] —» F(R)
defined by,

e, 0 € [e*,2¢"]
Y(w)(eo) = “e;;’_w—@ 0 € (2e™,4e"],
0, otherwise,

Then, for each B € [0,1], we have ¥Yg(w) = [(1+ p)e*,2(2 — B)e* ]. Since ¥,(w,pB) and

¥*(w,B) are h-preinvex functions O(y,w) =y —w for each f €[0,1], then ¥(w) is
h-preinvex FIVF. If

PP Cab LI B
4 — w, QE(E,‘}],

then, we have

Y. (w, B)2(w)dw = g . (w, () dwr = g ff ¥, (w, B)2(w)dw

+2 f;“ Y. (w, £ (w)dw

1 f1+ 6(4,1)
0(4,1) 71

D e, () dur = 2 [ (o, )0 )dwr = L 29 (o, £ du
+3 5w (w, B2 (w)dw,

=2(1+p) flgew(w —Ddw +(1+) 5 ¥ (4 — w)dw = 11(1 + ),
2 31)

= 2(2 -B) flgew(w - 1dw +§(2 -B) f; e"” (4 —w)dw =212 - p),

and
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[¥.( B) + V. (v, B)] f, h() 2(n + E6 (v, ) dé
(¥, B) + ¥ (v, D] f, h(E) (1 + E6 (v, ) dE
=1+ B)e+e* [fO% 38%dw + f;E(B - 3€)d5] =215(1+p)

1 (32)
=202 = B)[e + e*] [fg 3¢2dw + [ (3 - 35)(15] =432 - B)
From Eqs (31) and (32), we have
[11(1 + B),21(2 — B)] <;[21.5(1 + B),43(2 — B)], for cach B € [0,1].
Hence, Theorem 10 is verified.
For Theorem 11, we have
V. (n+300m.8)=1280+5) ,
p (u + %G(V, u),ﬂ) =2442-p) , (33)
f:w(v'”)!)(w)dw = flg(w — Ddw + f:+6(v’”)(4 —w)dw = %
2h(3) +O(VK) _
T gy [ e, (w0, pO(w)dw = 14.6(1+ )
' Zh(l) u+e(v,u) B9
TP i ¢ @ PAw)dw = 2932 - )

From Eqs (33) and (34), we have
[12.8(1 + B),24.4(2 — p)] <,[14.6(1 + ),29.3(2 — B)].

Hence, Theorem 11 is verified.
4. Conclusions

In this article, we proposed the class of h- preinvexity for FIVFs. By using this class, we
presented several fuzzy-interval H-H inequalities and fuzzy-interval H-H Fejér inequalities. Useful
examples that illustrate the applicability of theory developed in this study are also presented. In
future, we intend to discuss generalized h-preinvex functions. We hope that this concept will be
helpful for other authors to pay their roles in different fields of sciences.
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