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Abstract: In this paper, a novel bio-inspired trajectory planning method is proposed for robotic sys-
tems based on an improved bacteria foraging optimization algorithm (IBFOA) and an improved in-
trinsic Tau jerk (named Tau-J*) guidance strategy. Besides, the adaptive factor and elite-preservation
strategy are employed to facilitate the IBFOA, and an improved Tau-J* with higher-order of intrinsic
guidance movement is used to avoid the nonzero initial and final jerk, so as to overcome the computa-
tional burden and unsmooth trajectory problems existing in the optimization algorithm and traditional
interpolation algorithm. The IBFOA is utilized to determine a small set of optimal control points, and
Tau-J* is then invoked to generate smooth trajectories between the control points. Finally, the results of
simulation tests demonstrate the eminent stability, optimality, and rapidity capability of the proposed
bio-inspired trajectory planning method.
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1. Introduction

Robotic manipulators have been widely used in various fields such as electronics industries, auto-
mobile industries, military affairs, space exploration, and mining. Furthermore, the application fields
of manipulators continue to expand, such as riot control, health industries, catering industries, con-
struction industries, and explosion prevention. Trajectory planning, as one of the most imperative
topics on manipulators, has been investigated since the manipulators appeared. A considerable num-
ber of approaches have been proposed to solve the robot planning problem, such as artificial potential
field (APF) [1, 2], probabilistic roadmap [3], rapidly-exploring random tree (RRT) [4], configuration
space method [5], optimization algorithm [6, 7], reinforcement learning [8, 9], metaheuristics [10–13],
and Tau theory [14–21]. The goal of trajectory planning is to make robots move fast, accurately, and
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stably. Besides, researchers also dedicate to make robots safer to the circumstances, more intelligent,
and more compliant. In recent years, Tau theory has been utilized on robots to plan trajectories due to
the compliant feature [17–21].

Since many objectives need to be achieved in robot planning, the optimization algorithms provide
a promising way to solve the challenging issue. For example, the improved sparrow search algorithm
was proposed to plan the shortest path for mobile robots [22]. The modified particle swarm optimiza-
tion and the Tabu search algorithm were used to handle inverse kinematics and obstacle avoidance
problems [23]. A novel multi-group particle swarm optimization was proposed to achieve motion
planning [24]. The ant colony optimization algorithm was applied on unmanned air vehicles trajectory
planning tasks [25]. Huang et al. [26] employed the elitist non-dominated sorting genetic algorithm —
version II (NSGA-II) to optimize the 5th-order B-spline trajectory for an industrial robot manipulator.
NSGA-II was also adopted to tune the proportional-integral-derivative (PID) controller of the robotic
manipulator [27]. A hybrid differential evolution-based method was presented to address the 6-degree
of freedom (DOF) manipulator trajectory planning problem [28]. Most optimization algorithms are
imitated from the practical long-tested-by-nature behaviors of creatures. This inspired the design phi-
losophy of the algorithms, which are also called bio-inspired optimization algorithms. Among the
bio-inspired optimization algorithms, bacteria foraging optimization algorithm (BFOA) was success-
fully applied on liquid level control [29], which indicates the effectiveness of being employed on robot
planning.

In this paper, a novel bio-inspired trajectory planning method is proposed for robotic systems based
on the improved BFOA (IBFOA) and Tau-J*. The main contributions can be described as follows.

(1) The trajectory planning of the manipulator is considered as a multi-objective optimization prob-
lem. Then, the multi-objective optimization algorithm IBFOA is proposed to generate a set of op-
timal control points in the trajectory planning. Compared with the original BFOA, the IBFOA is
presented with decreased reproduction size, decreased elimination & dispersal probability, and the
elite-preservation strategy. In this way, the IBFOA can achieve better performance and more stable
optimization in comparison to the original BFOA. Besides, the IBFOA performance improvement can
be measured as the mean fitness change which is 6%. Similarly, the stability improvement can be
measured as the fitness standard deviation change which is 7%. The improvement requires nearly no
extra computation.

(2) A bio-inspired trajectory generation algorithm Tau-J* is proposed to interpolate the waypoints
between the control points, enabling the calculation burden to be alleviated and the collision-free com-
pliant trajectory of the manipulator to be obtained. Compared with other Tau-based guidance strategies,
Tau-J* has the benefits of zero initial and final jerk due to the usage of the high-order Tau function.
Next, a more compliant trajectory can be acquired using the proposed Tau-J* guidance strategy. Hence,
a novel IBFOA-Tau-J* algorithm is designed to facilitate robotic manipulator planning.

The rest of the paper is structured as follows. In Section 2, the related work is introduced. In
Section 3, the original BFOA, IBFOA, and the trajectory generation based on IBFOA are described.
In Section 4, the interpolation algorithm Tau-J* is presented. Afterward, the simulation tests on a 6-
DOF manipulator are conducted based on the proposed algorithm, and the test results are discussed in
Section 5. and the discussion is also given. Finally, the conclusions and our future work are drawn in
Section 6.
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2. Related work

BFOA, as a bio-inspired optimization algorithm, was proposed to imitate the foraging behaviors of
Escherichia coli, including chemotaxis, swarming, reproduction, and elimination & dispersal. Subse-
quently, the BFOA and its improved algorithms were presented to address the optimization problem.
For instance, an adaptive BFOA was presented by adding a constant parameter in the denominator of
the step size formula [30]. Similarly, Chen et al. [31] modified the chemotaxis behavior by introduc-
ing population diversity of the bacterial colony, universal iterations, mean fitness in two chemotaxis
processes. Different from the above adaptive BFOAs, the nonlinear decreasing methods, the roulette
gambling mechanism, and the linear decreasing adaptive regulation mechanism were introduced to
chemotaxis behavior, reproduction behavior, and elimination & dispersal behavior, respectively [32].
BFOA was applied to optimize the controller parameters [33], and the better results were obtained
compared to the conventional proportional-integral (PI) controller and genetic algorithm-based con-
troller. Abd-Elazim et al. [34] built the hybrid particle swarm optimization-BFOA (BSO) to optimize
the design of power system stabilizers and demonstrated the superiority of the proposed method to
BFOA and PSO. Additionally, BFOA was used to optimize the nonlinear load frequency controller pa-
rameters [35]. Panda et al. [36] introduced the principle of swarming to hybrid BFOA and PSO, which
was tested in automatic generation control. The BFOA was applied to real-time pose adjustment of
the Hexa robot [37]. Besides, the multi-subpopulation bacterial foraging optimization algorithm [38]
was proposed to facilitate unmanned surface vehicle path planning by constructing a new strategy that
protects the elite member in the subpopulation. The above investigations suggest that the BFOA and its
improved algorithms possess good performances in parameters optimization and searching extremum
value. However, the application of BFOA for trajectory planning of robotic manipulators needs to be
further investigated because it may fail to find the global optimum, and the current solution may be-
come worse during iteration. Thus, the reproduction behavior and the elimination & dispersal behavior
are modified by introducing the elite-preservation strategy and a decay factor dk on the two behaviors.
In this way, a novel improved BFOA (IBFOA) can be conducted to facilitate the trajectory planning of
robotic manipulators.

Notably, the unexpected calculation burden and unsmooth trajectories would occur provided that
the IBFOA (or BFOA) is implemented alone on the trajectory planning of robotic manipulators. One
feasible way is to establish smoothness evaluation criteria in the cost function to obtain the smooth
trajectories. However, the calculation burden problem would be further aggravated since more terms
were introduced in the cost function. With the purpose of alleviating the above deficiencies, IBFOA is
adopted to generate a small set of control points, and the interpolation algorithms (such as polynomial
interpolation [39], cubic spline [40], linear segment with parabolic blend [41], and Tau theory) are then
performed to generate the waypoints between the control points. In this way, both fast calculation and
smooth trajectories can be achieved.

Tau theory, as a bio-inspired interpolation method, was applied to generate the trajectory of robotic
systems in recent years owing to its fast calculation and smooth trajectory generation. In the early
stage, researchers focused on the physical meaning of Tau [14,15]. Then, Tau theory was employed to
describe the law of creatures approaching objects [16]. A so-called intrinsic Tau jerk (Tau-J) guidance
strategy was proposed and applied to quadrotors [17]. Then, Tau-J also implemented on manipula-
tors [18], and the performance was thoroughly discussed [21]. Besides, Tau harmonic (Tau-H) was
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proposed by introducing harmonic movement into Tau theory and used on unmanned aerial vehicles
based on PSO to overcome the shortages of Tau-J [19]. Moreover, Lee modified the work of [16],
making it possible to guide a movement to a departing destination [20]. However, Tau theory cannot
be used to handle the global multi-objective trajectory planning of robotic manipulators.

3. Improved bacteria foraging optimization algorithm

In this section, the fundamentals of the bacteria foraging optimization algorithm (BFOA) are first
presented. Then a novel improved bacteria foraging optimization algorithm (IBFOA) is proposed.
Different from the existed BFOAs, the decay factors are used in the reproduction behavior and elimi-
nation & dispersal behavior. Furthermore, the elite-preservation strategy is introduced in the proposed
algorithm. Moreover, the trajectory generation for the robotic manipulator is described based on the
proposed IBFOA.

3.1. Fundamentals of BFOA

BFOA [29] is a bio-inspired optimization algorithm that imitates the foraging behavior of Es-
cherichia coli. The E. coli will survive and breed in nutrient-rich places and will die in a food-lacking
or noxious circumstance. As a result, E. coli tend to move and stay in a comfort zone. In BFOA, all
the bacteria only need to chase the global minimum (or maximum) of the fitness function by taking the
following four kinds of behaviors.

(a) Chemotaxis: It consists of tumbling and swimming. In short, the bacteria tumble to change
direction and swim forward.

(b) Swarming: Each bacterium attracts and repels other bacteria to approach while all the bacteria
cannot be too close.

(c) Reproduction: The bacteria in better places will live and reproduce asexually, and others will
die. The population remains unchanged.

(d) Elimination & dispersal: Every bacterium will be eliminated and dispersed to another random
place stochastically with a constant probability.

At the early stage of the BFOA optimization process, the potential optimal domain can be obtained
by searching the whole domain field. As the optimization process proceeds, the step size remains
fixed and has to be selected carefully in advance to determine a compromise between efficiency and
optimal solutions. Given the drawback, different kinds of adaptive-step BFOA were proposed [30–32].
Moreover, the best bacteria may be eliminated and dispersed to another random place, resulting in a
worse current solution.

3.2. Improved BFOA

A decay factor dk is defined and multiplied by the reproduction size S r and the elimination &
dispersal probability Ped. S r and Ped will decrease over time by the decay factor. Consequently, the
reproduction and elimination & dispersal behaviors are improved. The advantage is that the bacteria
will focus on exploring the searching space and then pay increasing attention to find better solutions
around the current optimal solution, contributing to a quick achievement of the optimal solutions.
Generally, the decay variables are linearly reduced or exponentially reduced. In this paper, the decay
factor dk is defined as,
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dk = e
1−n
N (3.1)

where N = Nc ·Nre ·Ned is the total iteration number, Nc denotes the number of the chemotaxis steps, Nre

refers to the number of reproduction steps, Ned represents the number of elimination & dispersal steps,
and n is the current iteration number (starts at 1). A decay variable can be obtained by multiplying dk

by a nonzero constant.
Different from the previous research [30–32], a novel IBFOA is proposed with decreased reproduc-

tion size S r, decreased elimination & dispersal probability Ped, and the elite-preservation strategy. By
introducing the elite-preservation strategy to the elimination & dispersal behavior, the bacterium in the
best place will always survive, protecting the current optimum. In this study, Θ is defined as the search
agents and stores all the bacterium positions. Define the bacteria Θ( j, k, l) = [θ1( j, k, l), . . . , θS ( j, k, l)],
where S indicates the number of bacteria, θi( j, k, l) represents a p-dimensional position vector with
i = 1, · · · , S ; j = 1, · · · ,Nc; k = 1, · · · ,Nre; and l = 1, · · · ,Ned that stores the i-th bacterium position
at the j-th chemotactic step, the k-th reproduction step, and the l-th elimination & dispersal step. The
IBFOA (compared with BFOA) can be described as Algorithm 1.

Define a fitness function J(i, j, k, l) as,

J(i, j, k, l) = Jc(i, j, k, l) + Jar(i, j, k, l) (3.2)

where Jc(i, j, k, l) represents the cost function that will be defined later, and Jar(i, j, k, l) denotes the
combined attraction and repelling effect, defined as,

Jar(i, j, k, l) =
S∑

i=1

[
−dattract exp

(
−wattract

p∑
m=1

(
θm − θ

i
m

)2
)]

+
S∑

i=1

[
hrepellant exp

(
−wrepellant

p∑
m=1

(
θm − θ

i
m

)2
)] (3.3)

where θm represents the m-th dimension of the bacterium position, θim is the m-th dimension of the
i-th bacterium position, dattract denotes the depth of the attractant, wattract strands for the width of the
attractant, hrepellant indicates the height of the repellant, and wrepellant refer to the width of the repellant.

The objective of IBFOA is to minimize the fitness function J(i, j, k, l) so as to to determine the
optimal solution stored by Jlast according to Algorithm 1. Besides, the health function Ji

health is defined
as follows to evaluate the health of the bacteria:

Ji
health =

Nc+1∑
j=1

J (i, j, k, l), i = 1, · · · , S (3.4)

The objective of the health function Ji
health is to examine whether the i-th bacterium obtains enough

nutrients during its lifetime of foraging evaluate “healthy” [29].

3.3. Trajectory planning based on IBFOA

First, it is assumed that the trajectory planning for an n-DOF robotic manipulator is conducted in an
environment with Nobs obstacles using the proposed IBFOA. Additionally, the obstacles are set to be
spheres randomly in the workspace to simplify the calculations. The initial and final joint angles are
also set to be random values if no collision happens.
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Algorithm 1: IBFOA (compared with BFOA)
1 Initialize the parameters S , p, dattract, wattract, hrepellant, wrepellant, Nc, swimming steps Ns, Nre, S r,

Ned, Ped, and tumbling steps Nt. Initialize dk for IBFOA (no decay factor in BFOA);
2 for l = 1 : Ned do
3 for k = 1 : Nre do
4 for j = 1 : Nc do
5 for i = 1 : S do
6 Fitness Eq (2);
7 Jlast = J(i, j, k, l);
8 Tumble: generate a normalized random vector ∆(i) ∈ Rp;
9 Move: let θi( j + 1, k, l) = θi( j, k, l) + Nt(i)

∆(i)√
∆T (i)∆(i)

;

10 Fitness J(i, j + 1, k, l) = Jc(i, j + 1, k, l) + Jar(i, j + 1, k, l);
11 Swim: for m = 1 : Ns do
12 if J(i, j + 1, k, l) < Jlast then
13 Jlast = J(i, j + 1, k, l);
14 Move;
15 else
16 Break;
17 end
18 end
19 end
20 end
21 for i = 1 : S do
22 Eq (4);
23 end
24 Sort the bacteria by Jhealth;
25 The better S r · dk (S r for BFOA) bacteria survive and reproduce, the other bacteria die;
26 end
27 for i = 2 : S (i = 1 : S for BFOA) do
28 θi( j, k, l) is eliminated and dispersed to another random place with probability Ped · dk

(Ped for BFOA);
29 end
30 end
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Second, trajectory planning is regarded as a multi-objective optimization problem. Then, the pro-
posed IBFOA can be employed to obtain the optimal trajectory. With the purpose of avoiding the
unstable and cumbersome inverse kinematics, all control points and waypoints are calculated in the
joint space of the robotic manipulator, and forward kinematics is applied in collision detection. The
robot links are modeled as the cylinders with hemispheres for each joint, and the obstacles are mod-
eled as the spheres. Afterward, a collision model composed of the cylinders with hemispheres and
the spheres is established. In the collision model, the cylinder with hemispheres is abstracted as the
line segment, while the radius of the cylinder, the modeling error compensation, and the safe stopping
distance are all modeled in the spheres. In this way, only the distance between the line segment and
the center of the sphere needs to be calculated in the collision model for collision detection. The cost
function is defined as,

Jc = ω1L + ω2Lq + ω3CP (3.5)

where ω1, ω2, and ω3 are weights, L denotes the path length of the end effector, Lq represents the sum
of angles of all joints, C refers to the collision flag (0 and 1 indicates no collision and collision, respec-
tively), and P suggests the penalty that will increase when the manipulator approaches and collides the
obstacles. The path length L can be defined as,

L =
Nw−1∑
k=1

√
(xk+1 − xk)2 + (yk+1 − yk)2 + (zk+1 − zk)2 (3.6)

where Nw denotes the overall number of waypoints, k is the number of current waypoint, xk, yk, and
zk describe the current position of the end effector. The sum of angles Lq is expressed as,

Lq =

Nw−1∑
k=1

NDOF∑
i=1

∣∣∣qi
k+1 − qi

k

∣∣∣ (3.7)

where NDOF indicates the degree of freedom of the manipulator, and qi denotes the i-th joint of the
manipulator. The penalty P can be defined as,

P =
Nw∑
k=1

Nobs∑
j=1

max

1 − d j
link

r j
obs + r j

expansion

, 0

 (3.8)

where Nobs is the number of obstacles, r j
obs denotes the radius of the j-th obstacle, r j

expansion denotes the
expansion radius of the j-th obstacle, and

d j
link =

NDOF∑
i=1

dist
(
li, obs j

)
(3.9)

represents the distance between the j-th obstacle and all links of the manipulator at k-th waypoint,
where li indicates the i-th link, and obs j represents the j-th obstacle, respectively.

Generally, the weight parameters ω1, ω2, and ω3 can be manually selected to minimize the moving
path of the manipulator in both Cartesian space and joint space. Notably, ω3 is chosen to be large,
allowing the fitness to be significantly increased provided that the manipulator collides with obstacles.
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Then, the planned trajectory can be obtained by using the proposed IBFOA. However, it is inefficient
to obtain every single waypoint of a trajectory through IBFOA since the calculation burden will be
aggravated and the unsmooth trajectories will be generated. One feasible way to handle these problems
is that a small set of control points can be planned using IBFOA, and then the plenty of waypoints
between two adjacent control points can be generated by an interpolation algorithm. It suggests that
only the positions of control points for all the joints of the manipulator need to be optimized using the
proposed IBFOA. In this way, the calculation burden and the unsmooth trajectories will be reduced
since the interpolation algorithms can generate the trajectories between the two adjacent control points
as smoothly as possible with simple computation.

4. Tau-J*: an interpolation algorithm

Several interpolation algorithms are used to generate the trajectories of industrial robotic manipu-
lators, so as to improve the implementation efficiency. However, the common interpolation algorithms
generally suffer from the nonzero initial jerk and final jerk, which would damage the actuators. Thus, a
bio-inspired interpolation algorithm, Tau theory, is utilized to generate a smooth trajectory and achieve
the compliant motion. Based on the Tau theory, an improved Tau-J (Tau-J*) is presented in this sec-
tion to generate the trajectory with zero initial and final jerk, contributing to achieving the compliant
trajectory.

4.1. Tau theory

Lee [14] investigated how creatures utilize visual information when approaching objects and then
proposed the Tau theory in 1976. Lee et al. [15] explicitly described the Tau function τ(x) as,

τ(t) =
x(t)
ẋ(t)

(4.1)

where x(t) denotes the gap between the current position and the object, and ẋ(t) indicates the approach-
ing velocity.

If there are two movements reaching the object simultaneously, the relationship of the two move-
ments can be described as,

τ(t) = kAτA(t) = kA
xA(t)
ẋA(t)

(4.2)

where kA represents the coupling coefficient [16], and xA(t) refers to the gap of the intrinsic guidance
movement (IGM), which represents a virtual movement guiding the actual gap x(t). Given the IGM,
one can obtain the IGM-guided actual movement by Eq (4.2).

Intrinsic Tau jerk (Tau-J) guidance strategy [19] was proposed by applying constant jerk movement
as IGM xA(t) = 1

6 j
(
T 3 − t3

)
. By solving Eq (4.2), the actual movement can be obtained as,


x(t) = x0

T 3/k

(
T 3 − t3

)1/k

ẋ(t) = −3x0t2

kT 3/k

(
T 3 − t3

)1/k−1

ẍ(t) = 3x0t
kT 3/k

(
3−k

k t3 − 2T 3
) (

T 3 − t3
)1/k−2

(4.3)
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where x0 denotes the initial motion gap, T indicates the reach time, and k represents the coupling
coefficient. Tau-J can guide a movement with zero initial acceleration and zero final acceleration. The
IGM of Tau-J is a cubic polynomial, causing the second derivative of gap (acceleration) to start and
end at zero. However, the initial jerk and final jerk are nonzero, resulting in uncompliant movement,
even damage to the actuators.

4.2. Improved Tau-J (Tau-J*)

To make the movement more complaint, we propose an improved intrinsic Tau jerk (Tau-J*) guid-
ance strategy. With a quartic polynomial as the IGM, xA(t) = 1

24 j∗
(
T 4 − t4

)
, the third derivative of gap

(jerk) will start and end at zero. It can be obtained that,

x(t) = x0(
1

T4−t4

)1/k
(T 4)1/k

ẋ(t) = − 4t3 x0

k(T 4−t4)2
(

1
T4−t4

) 1
k +1

(T 4)1/k

ẍ(t) = − 4t2 x0(3T 4k+kt4−4t4)
k2(T 4−t4)2

(
1

T4−t4

)1/k
(T 4)1/k

(4.4)

Since the higher-order IGM is used, Eq (4.4) can guide the movement with zero initial jerk and zero
final jerk. Tau-J, Tau-J*, quintic polynomial, and cubic spline algorithms are compared to demonstrate
the performances of the interpolation algorithms. It is assumed that the gaps are 0, 300 m, 200 m,
−300 m, −700 m at 0, 100 s, 200 s, 300 s, 400 s, respectively, which can be considered one start point,
three control points, and one endpoint. Then, the four interpolation algorithms are used to generate
trajectories, respectively. Figure 1 illustrates the interpolation results of the gap, velocity, acceleration,
and jerk curves, with the parameters k = 0.1, and T = 100 chosen for Tau-J and Tau-J*, respectively.
The results demonstrate that the Tau-J, Tau-J*, and quintic polynomial can stop at every control point
while the cubic spline algorithm can generate a nonstop trajectory. As revealed from Figure 1(c), the
accelerations of the cubic spline are nonzero values at the start and end of the movement, and this
would cause instability or damage the actuators. Figure 1(d) indicates that the jerks of Tau-J, quintic
polynomial, and cubic spline are discontinuous and nonzero at the start and end of the movement,
while the jerk of the proposed Tau-J* is continuous and zero at the start and end of the movement. It
indicates that Tau-J* can guide more compliant movements.

5. Simulation

In this section, the simulation tests are conducted for a robotic manipulator on the robot simula-
tor CoppeliaSim (also known as V-REP) to validate the performances of the proposed bio-inspired
trajectory planning method.

5.1. Simulation Procedure

We set up a 6-DOF robotic manipulator in the CoppeliaSim, where three obstacles are assumed
to exist in the workspace. The initial and final joint angles of the robotic manipulator are set to be
random, and the positions of the obstacles are randomly chosen in the workspace. The multi-objective
collision-free compliant trajectories are obtained with the proposed bio-inspired trajectory planning
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Figure 1. The curves of Tau-J, Tau-J*, quintic polynomial, and cubic spline.

method. The control points are updated every iteration through IBFOA in the joint space, and the
waypoints between the control points are generated by Tau-J*. Within such an algorithm design, the
joint angle, velocity, acceleration, jerk, and torque are reasonable values, and there is no need to evalu-
ate kinematical and dynamical constraints. Particularly, a larger number of waypoints is desired since
collision detection is used for every waypoint. Nonetheless, more waypoints would lead to more com-
putational consumption. Therefore, one can make a trade-off between optimality and computational
efficiency by choosing an adequate number of waypoints. Following the analyses of Section 3.3 and
above, the numbers of the control points and waypoints are both selected by the trial-and-error method.

The whole procedure is described in Algorithm 2, where the function CptF(i, j, k, l) that computes
the fitness is invoked as Algorithm 3.

Algorithm 2: Bio-inspired Trajectory Planning for Robotic Manipulator
1 Create the manipulator model;
2 Create the obstacle model;
3 do

// Set random values when colliding

4 Set the random initial and final joint angles of manipulator;
5 Set the random obstacle position;
6 while collide;
7 Initialize the parameters of IBFOA;
8 Generate the initial solution randomly;
9 Run the main body of IBFOA (Algorithm 1), but use CptF(i, j, k, l) to calculate the fitness;
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Algorithm 3: Compute the fitness
1 Function CptF(i, j, k, l):
2 Interpolate the control points by Tau-J* (Eq (4.4));
3 Compute the path length of end effector (Eq (3.6));
4 Compute the sum of angles of all joints (Eq (3.7));
5 Compute the the penalty (Eqs (3.8 and 3.9));
6 Compute the the collision flag for all waypoints;
7 Compute the fitness (Eqs (3.5) and (3.3));
8 return fitness;
9 end

5.2. Simulation results

Two cases are conducted under the same condition to compare the proposed method with other
similar methods. For simulation, it is assumed that there are 3 obstacles in the circumstance. By the
trial-and-error method, 3 control points, 1 initial point and 1 endpoint can be chosen, followed by 120
waypoints between the adjacent control points. Case 1 is implemented to compare the performances
of IBFOA, BFOA, and BSO; Case 2 is conducted to demonstrate the convergence of the solutions
by using IBFOA BFOA, and BSO, respectively. Notably, IBFOA, BFOA, and BSO are implemented
with Tau-J*. The parameters of the two cases are exhibited in Table 1, where some parameters are
selected according to the literature [29, 35] and the others are tuned by the trial-and-error method.
BFOA and BSO share the same parameters. The tests are performed on the desktop with a 3.4 GHz
central processing unit (CPU) and 16 GB DDR4 memory.

Figure 2. Mean fitness and standard deviation of Case 1.
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Table 1. Parameters of the simulation.

symbol
Case 1 Case 2

IBFOA BFOA & BSO IBFOA BFOA & BSO
S 12 12 30 30

Nre 8 8 20 20
S r 6 6 15 15
Ned 6 6 15 15
Nc 10 10 30 30
Nt 0.2verS

∗ 0.2verS 0.2verS 0.2verS

p 18† 18 18 18
dattract 0.1 0.1 0.1 0.1
wattract 20 20 20 20
hrepellant 0.1 0.1 0.1 0.1
wrepellant 100 100 100 100

Ns 4 4 4 4
Ped 0.2 0.2 0.2 0.2
T 6 6 6 6
k 0.1 0.1 0.1 0.1

robs 0.18 0.18 0.18 0.18
rexpansion 0.1 0.1 0.1 0.1
ω1 7 7 7 7
ω2 300 300 300 300
ω3 1.2×107 1.2×107 1.2×107 1.2×107

Note: ∗ verS represents S -dimensional vector that all elements are 1.

† 3 control points for each joint of the 6-DOF manipulator, and each dimension of p is limited on the interval (−π, π) as the joint limit of the robotic

manipulator.

Figure 3. Mean fitness and standard deviation of Case 2.

Mathematical Biosciences and Engineering Volume 19, Issue 1, 643–662.



655

Case 1: Three hundred results of IBFOA and BFOA are collected respectively, with each result
containing 480 iterations. Figure 2 illustrates the mean fitness and standard deviation, where ±std
denotes the standard deviation. As indicated in Figure 2, IBFOA has faster convergence with lower
fitness compared to BFOA and BSO. This demonstrates that IBFOA can achieve better solutions and
be more stable.

Case 2: Twenty results of IBFOA, BFOA, and BSO are collected respectively, with each result
containing 9000 iterations. Figure 3 shows the mean fitness and standard deviation, revealing that
IBFOA is superior to BFOA and BSO in the stability, speed of convergence, and quality of solutions
with the larger iteration numbers.

Table 2 provides the final fitness (mean ± std) of Case 1 and Case 2, suggesting that IBFOA can
achieve smaller final fitness. Specifically, the smaller mean value generally indicates the better solution,
and the smaller standard deviation value reflects the more stable optimization algorithm.

Table 2. Final fitness (Mean ± Std).

IBFOA BFOA BSO
Case 1 1.96 × 104 ± 1.04 × 104 2.08 × 104 ± 1.12 × 104 2.01 × 104 ± 1.28 × 104

Case 2 1.24 × 104 ± 3.89 × 103 1.37 × 104 ± 6.13 × 103 1.82 × 104 ± 8.95 × 103

Besides, a set of optimal solutions of IBFOA (with Tau-J*) and BFOA (with Tau-J) is chosen
respectively to be visualized on CoppeliaSim, so as to further intuitively demonstrate the performances
of the proposed trajectory planning method. Figures 4 and 5 present the visualized scenes with the
same positions of the obstacles and initial and final joint angles obtained using IBFOA-Tau-J* and
BFOA-Tau-J, respectively. The three obstacles are colored in yellow, blue, and red, respectively; the
path of the end-effector is drawn as black lines; the coordinates at the bottom right in each subfigure
indicate the angle of view; the endpoint and control points of the end-effector in Cartesian space are
exhibited with white dots.

Figure 4. The visualized scene by IBFOA.
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Figure 5. The visualized scene by BFOA.

Figures 6 and 7 exhibit the angle, angular velocity, angular acceleration, angular jerk, torque, and
end-effector position obtained by IBFOA and BFOA, respectively. The control points at 6s, 12s and
18s of planned trajectories are indicated by the black vertical lines.

5.3. Discussion

As illustrated in Figures 2 and 3, the faster the fitness decreases, the smaller the mean and standard
deviation of the observable fitness. This implies that the proposed IBFOA can achieve faster converges,
better solutions, and more stable performance compared to BFOA and BSO. Moreover, there are the
stepped increases in the mean BFOA and BSO fitness (Figure 3), which worsen the optimization pro-
cess. The reason is that the elimination & dispersal behavior forces several bacteria “rebirth” in a
random place, making the best bacterium “rebirth” in a bad place. According to the parameters in Ta-
ble 1, there are Nc × Nre = 30 × 20 = 600 iterations in the chemotaxis and reproduction behaviors, and
the stepped increases would occur every 600 iterations. In Figure 2, the stepped mean fitness increase
would also appear every Nc × Nre = 10 × 8 = 80 iterations. The mean fitness of IBFOA does not
increase in Figures 2 and 3 because of the elite-preservation strategy.

Multiple parameters should be tuned in IBFOA to achieve good solutions. Larger S and Nc boost
the chance to find global optimal while raising the computational burden. Nt can be considered the
search step length. If Nt is too large the bacteria may swim through local optimal; if Nt is too small the
bacteria may take too many steps to find local minimal and be unable to jump out. In Case 1 and Case 2,
Nt is adequately chosen under the consideration of the manipulator joint limit and the desired solution
coarseness. The swimming behavior is controlled by Ns to determine how long the bacteria should
swim to the better solution. This behavior leads to the random evaluation times of the cost function
and causes inconvenience when IBFOA is compared with other optimization algorithms. Ns and S r

control the “rebirth” in good places; Ned and Ped control the “rebirth” in random places. Since the
“rebirth” behaviors are improved by dk, large values can be selected and will decay in the optimization
progress.
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Figure 6. The joint angle, velocity, acceleration, jerk, torque and end-effector postion by
IBFOA.
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Figure 7. The joint angle, velocity, acceleration, jerk, torque and end-effector postion by
BFOA.
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In Figures 4 and 5, both of the algorithms can avoid obstacles. However, the end-effector position
curve of BOFA is intuitively longer than that of IBFOA, reflecting the smaller L in the cost function
obtained by IBFOA.

By comparing Figure 6 with Figure 7, the subfigures (a), (b), and (c) in both figures demonstrate
that the compliant angle, velocity, and acceleration curves can be generated by both IBFOA and BFOA.
However, in subfigures (d), the jerk of IBFOA is zero at every control point while the jerk of BFOA may
suddenly change at control points leading to uncompliant movements. Meanwhile, more compliant
trajectories can be obtained by using Tau-J*. In subfigures (f), the end-effector position of IBFOA is
quite more steady than that of BFOA at 6 ∼ 18 s.

Case 1 takes 54.924 seconds on average for 480 iterations to generate a feasible trajectory according
to 300 tests. Case 2, which is used for testing the performance of IBFOA in a long-running process,
takes 2520.544 seconds on average for 9000 iterations to test the converge performance of IBFOA
according to 20 tests. Moreover, the number of iterations can be chosen adequately. The feasible
trajectory can be obtained as shown in Figures 4 and 5 in Case 1. Based on the average runtime of
Case 1, the computation time is acceptable for the trajectory planning task since the robotic manipulator
moves in a static circumstance. According to the experimental tests, 93% runtime is used to calculate
the cost function as the collision detection has to be calculated at all the waypoints and control points to
guarantee a collision-free trajectory; 2% runtime and 3% runtime are consumed by IBFOA and Tau-J*,
respectively; the remaining 2% runtime is occupied by other codes.

Additionally, the experimental tests are conducted for the end-effector trajectory planning using
IBFOA-Tau-J*, BFOA-Tau-J, and RRT methods to demonstrate the effective performance of the pro-
posed method. The experimental results are presented in Figure 8, where the results of each method
are obtained for running around 60 seconds. Compared with BFOA-Tau-J and IBFOA-Tau-J* meth-
ods, RRT can be used to discover feasible solutions by sampling the domain field in high-dimensional
spaces without prior knowledge. However, the RRT method may be inefficient considering that there
are no potential optimal areas in the whole domain field for finding the solutions due to the absence of
priori knowledge. As suggested in Figure 8, all the planned trajectories are achieved to be collision-free
with the above methods. Nevertheless, the shortest and most compliant collision-free trajectory can be
achieved by the proposed IBFOA-Tau-J* method compared with BFOA-Tau-J and RRT methods.

6. Conclusions

In this study, an IBFOA has been proposed for the trajectory planning of robotic manipulators by
introducing adaptive factor and elite-preservation strategy. A, bio-inspired interpolation algorithm Tau-
J* with high-order IGM has been designed to generate trajectories between the control points obtained
by IBFOA. The advantages of the proposed method can be concluded that the calculation burden would
be alleviated, facilitating the compliant collision-free trajectory planning to be obtained. The simula-
tion results demonstrate that the proposed bio-inspired trajectory planning method has superiority in
stability, speed of convergence, and quality of solutions. However, it possesses some disadvantages.
First, some parameters in the proposed method should be manually chosen. Second, the computa-
tion time is too long for trajectory planning in a dynamic environment. Regarding the future work, a
criterion will be developed to determine the best number of control points, the fast collision detection
algorithm will be designed to promote the cost function calculation using the MoveIt collision checking
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Figure 8. The comparison of the end-effector trajectory planning.

module, the other behaviors of BFOA will be further improved, and the effectiveness will be analyzed
by performing statistical tests [42–45].
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