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Abstract: These days, the Industrial Internet of Healthcare Things (IIT) enabled applications have
been growing progressively in practice. These applications are ubiquitous and run onto the different
computing nodes for healthcare goals. The applications have these tasks such as online healthcare
monitoring, live heartbeat streaming, and blood pressure monitoring and need a lot of resources for
execution. In IToHT, remote procedure call (RPC) mechanism-based applications have been widely
designed with the network and computational delay constraints to run healthcare applications.
However, there are many requirements of IIoHT applications such as security, network and
computation, and failure efficient RPC with optimizing the quality of services of applications. In this
study, the work devised the lightweight RPC mechanism for IIoHT applications and considered the
hybrid constraints in the system. The study suggests the secure hybrid delay scheme (SHDS), which
schedules all healthcare workloads under their deadlines. For the scheduling problem, the study
formulated this problem based on linear integer programming, where all constraints are integer, as
shown in the mathematical model. Simulation results show that the proposed SHDS scheme and
lightweight RPC outperformed the hybrid for IIoHT applications and minimized 50% delays
compared to existing RPC and their schemes.
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1. Introduction

These days, industry 4.0 is the new trend of the digital healthcare sector, where many traditional
manual healthcare systems have been converting into digital healthcare systems [1]. For instance,
many patients directly receive the services of doctors without any physical visit to the hospital
system [2]. Industry 4.0 offers cyber-physical transformation of construction to promote networked
manufacturing, and the digital convergence of industry, enterprises, and other processes such as
physical hospitals, have been converted into digital hospitals [3,4]. The digital healthcare applications
in industry 4. O consist of healthcare sensors, edge computing data centers, and wireless network
technologies. The industrial internet of healthcare things (IIoHT) supports these applications via
different services [5]. The essential infrastructure of Industry 4.0 is based on distributed computing
principles, with many nodes geographically distributed and connected in networks [6, 7]. In
distributed computing, all the IIoHT applications have been assumed as thin clients where their
workloads are offloaded to the thick heavyweight cloud servers for execution [8,9]. However, due to
the offloading of data to edge computing, there is a significant risk of data security and delay in the
IIoHT network. Generally, the data offload in plaintext and face malware attacks or anomaly attacks
on the data by different sources. Therefore, data security for IIoHT applications in cloud computing
poses a significant challenge in the network [10]. Generally, IIoHT applications are delay-sensitive
and consist of sensitive tasks such as high heartbeat emergency, high blood-pressure strain, and
many [11]. Therefore, delay enabled task scheduling problem with many types of delays (e.g.,
computational delay, security delay, and network delay) has gained a lot of attention for each IIoHT
application [12].

Many studies investigated delay optimal scheduling problems for IlIoHT applications in the edge
computing network [1,7, 12-16]. Computational delay, network delay, and failure aware delay are
some of the constraints that have been applied to optimal delay issues. Fine-grained, coarse-grained,
and workflow workloads are all evaluated, and they are divided into heterogeneous and homogeneous
edge nodes. The considered workloads are fine-grained, coarse-grained, and workflows and edge them
into heterogeneous and homogeneous edge nodes. These applications designed the runtime for [IoHT
based on the remote procedure call (RPC) mechanism. The RPC offers different socket classes to allow
thin-client (mobile devices and bio-sensors) to connect to the edge nodes to execute applications. In
RPC, the Javascript Object Notation (JSON) is a protocol that is implemented to offload data from
mobile devices to the edge node for the computation. Many encryption and decryption based on
RSA, MDS5, SHA-256, and homoeomorphic techniques introduced in RPC for IIoHT applications.
Furthermore, based on checkpointing and primary backup techniques, the failure-aware approaches
were introduced in RPC for IIoHT applications in edge computing [17-20]. However, these studies
only focused on computational delay and network delay constraints and widely ignored the security
delay and failure delay of IIoHT applications in edge computing.

The hybrid delay scheduling problem for IIoHT applications at heterogeneous edge nodes is
formulated in this work. Different restrictions, such as computing delay, network delay, security
delay, and fault-tolerant delay, make up the hybrid delay. The goal is to reduce the total number of
hybrid delays for all IIoHT applications that have deadlines. The study develops the unique RPC
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system and its schemes, as well as contributes to state-of-the-art research. (I) The paper presents a
realistic simulation runtime RPC environment for IIoHT applications based on socket programming.
Many Arudino bio-sensors are connected to mobile devices in the system. Their workload is offloaded
to the JSON protocol, which edge computing uses to process them within their deadlines. (II) The
study devises the secure hybrid delay scheme (SHDS) to optimize each delay, which schedules all
healthcare workloads within their deadlines. To deal with the challenge, the researchers devised a
mathematical model based on linear integer programming, in which all constraints are integer. The
research proposes a four-phase architecture for securing fault-tolerant delay workload assignment.
(IIT) The research creates a mathematical model for the topic at hand and simulates I1IoHT
applications using the system’s constraints.

Summary, the study formulates the hybrid delay enabled scheduling problem for IIoHT applications
in heterogeneous edge computing. The considered problem is closely related to existing studies [1,7,
11,15,19,20] where these studies considered the network delay and computational delay for IIoHT in
heterogeneous edge nodes. Based on computational delay and network delay, these studies designed
the RPC based on socket programming and JSON protocols. However, our work is different from
existing studies in which we consider more delay constraints such as computational delay, network
delay, security delay, and fault-tolerant delay in heterogeneous edge computing. This study designed
the lightweight and hybrid delay enabled RPC system and its schemes for IIoHT applications and
simulated with the mathematical model in the considered problem.

The manuscript has the subsequent sections. Section 2 investigated the prevailing coarse-grained
and fine-grained workload execution within the distributed network. Section 3 shows the problem-
solution based on the proposed architecture and Section 4 shows algorithm implementation based on
heuristics steps. After the algorithm framework devised. Section 5 determined the performances of the
proposed schemes with the considered problem. The Section 6 summaries the effort of the proposed
work with the achievement of the results.

2. IIoHT RPC related work

In this part, the study discusses the efforts of existing studies for delay-optimal task scheduling for
IIoHT in edge computing. The studies [1-4] investigated computational enabled offloading based on
RPC mechanism inhomogeneous edge nodes for coarse-grained IIoHT applications. The goal was to
minimize computational delay for all applications. The workload is coarse-grained in which virtual
machine-based RPC runtime executes them with minimum delay. However, these studies only
focused on the computational delay for IIoHT applications. The studies [5-10] investigated hybrid
constraints such as network delay and computational delay for IIoHT applications in homogeneous
edge nodes. The objective is to minimize offloading network delay and assignment computational
delay of all applications. The applications are bio-sensors that enable fine-grained and offload the
proximity edge node for computation. Whereas network delay and the computational delay were the
constraints during the minimization of the objective function in the study. The studies [11-15]
suggested hybrid delay-optimal workload assignment in heterogeneous edge cloud. Where proximity
cloudlets are placed near user applications and remote cloud-deployed away from the user
applications. The resource constraint and computational delay were assumed to be the constraint of
applications and minimized the overall delay. However, the wait delay, network delay, and failure
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delay were ignored in the study. These studies [16-20] formulated the network delay and resource
delay in the edge computing for IIoHT applications. The goal was to minimize resource and network
offloading delays of applications in the distributed heterogeneous edge nodes in the network. These
studies implemented the coarse-grained healthcare workload of applications and full offloading
schemed designed in the RPC system.

These studies [21-27] formulated the hybrid delays (resource renting delay and computational
delay) and suggested scheduling schemes in heterogenous mobile edge cloud paradigms for
fine-grained healthcare applications. The goal is to minimize the renting and computational delays of
resources of healthcare applications. The dynamic task offloading, and scheduling schemes were
suggested to deal with mobility and intermittent changes in resources for the applications. The
studies [28-32] suggested the microservices-based lightweight computational delay enabled resources
for the IIoHT applications. These studies devised the lightweight microservices-based RPC to run the
IIoHT applications with minimum boot-up delay and execution delay in edge computing. These
studies [33-37] suggested container enabled RPC to minimize services delay, boot up delay and
computational delay of IIoHT applications in edge computing. The goal was to minimize the hybrid
delay of applications in distributed edge nodes in the network.

To the best of our knowledge, the hybrid delay with failure, security, network, and computational
delays for IIoHT in distributed heterogeneous edge nodes has not been studied yet. The existing RPC
considered the boot-up delay, network delay, service delay, and network delay of IIoHT applications.
However, failure, network, secure and computational delay of IIoHT applications are still to be
improved further in this study.

3. Problem description

The study devises the hybrid delays optimal RPC enabled edge computing for I[IoHT system that
consists of client and management components as shown in Figure 1. The IIoHT client component
comprises biomedical sensors, network status, servers status, and results interfaces. Each biomedical
sensor generates data for the fine-grained healthcare tasks, and the workload offloader engine decides
when to offload them to IloHT management for execution. The workload offloader engine is a method
that is located at think client and makes the offload decision and displays the results in the mobile
interfaces. How do tasks works with the edge nodes in the system? The proposed approach has been
designed based on RPC runtime where stub classes of client tasks communicate with edge node
skeleton classes for the execution. The biomedical tasks are represented by r = 1,...N. I1IoHT
management component consists of computing infrastructure where RPC skeleton runtime is
implemented to run the tasks stub client tasks. IIoHT management handles all requested generated
from the client-side and process them according to their attributes. [loHT management has two layers
such as SHDS runtime layer and the SHDS framework layer. The SHDS runtime is an infrastructure
where IIoHT clients communicate with edge nodes for applications execution based on the RPC
mechanism. The runtime denotes fog-1 and fog-2. These two edge computing nodes are used for
processing client socket to the server socket. The client socket is mobile devices, and the server
socket is edge nodes designed based on the RPC mechanism and communicate via JSON protocol to
process data between them. Each edge node is represented by & = 1,..., K, and has different speeds
and resources for executing tasks + = 1 € N. In order to satisfy the requirements of all tasks on
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Figure 1. Hybrid delay optimal bio-sensors connected RPC enabled edge computing IIoHT

system.

heterogeneous edge nodes, the study devises the secure hybrid delay scheduling (SHDS) framework,
which consists of network delay, security delay, computational delay, and network delay heuristics.
These fours heuristics optimize the four constraints of IIoHT tasks in the heterogeneous nodes in the

system.

3.1. Problem formulation

The consider architecture as shown in Figure 1 consists of N number of biomedical fine-grained

tasks, e.g., N{t =1,...

, N}. Each task has deadline d, and workload w,. The edge computing consists
of homogeneous K node, e.g., K = {k =1,...

, K}. Each edge node k has limited space, e.g., €. All

nodes have homogeneous computing speed ¢ in distributed computing. The study considers the base

stations {b = 1,..
edge computing.

Mathematical Biosciences and Engineering

. B}, which are communication channel for application to offload their tasks to the
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Table 1. Mathematical notation.

Notation Description

N It represents the total number of tasks
t Particular task of N

wy Workload of task ¢

d; Deadline of task ¢

K Number of homogeneous edge nodes

k The node k of K

€k The resources of node k

B Number of base stations

b Particular base station of B

be The channel capacity

By, The bandwidth of the channel in hertz
bs Signal power over the bandwidth

N, Interference over the bandwidth

A The signal-to-noise ratio

3.2. Computational delay

The study exploits binary assignment variables for workload assignment on edge computing. For
instance x,;, = {0, 1}. If the x,;, = 1, the workload is assigned to the computing node k; otherwise, it
becomes 0. The study calculates the computational delay in the following way.

N K
w
Com = Z Z; 5_; X X, (3.1)

t=1 k=

Equation (3.1) shows the computational delay of all tasks on all computing nodes.

3.3. Network delay

The study considers the network delay between [oV applications and edge computing. The study
exploits binary assignment variable for workload offload via available base stations. For instance
ver =10, 1}. If the x,;, = 1, the workload is offloaded to available base station b, otherwise it becomes
0. The study determines the computational delay in the following way.

B
Net = Z 2L X Yipe (3.2)

Equation (3.2) shows the network delay of all tasks offload to base-stations. Whereas, b, is the
bandwidth of wireless channel in the edge computing network.

3.4. Security delay

The study implements the RSA asymmetric scheme based on 256 bits to perform encryption and
decryption in edge computing. The study determines the security delay of all tasks in the following
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way.

N K
Sec= Y 3" enc(t,k, pk) + dec(t, k, pv)(xxiy. (3.3)

=1 k=1
Equation (3.3) shows the security delay of all tasks on all computing nodes. Whereas, pk and pv
variables are 256 bits primary key and private key are keys in asymmetric RSA scheme which is
implemented in our model.

3.5. Fault-tolerant delay

Each task has binary status such as z;;, = {0, 1}. The notation z,;; = 1 shows the task finished
successfully in the system, otherwise failure task will gain zero status. Furthermore, the fault-tolerant
delay of tasks delimits in the following way.

K
D Xz = 0-l. (3.4)

k=1

N
FT =
=1

Equation (3.4) determines the fault-tolerant delay of tasks in the system.
The objective function of the study is to minimize the delay of all tasks and determine in the
following way.
Z =Com+ Net+ Sec+ FT. 3.5)

The workload assignment problem mathematically based on linear integer programming is formulated
in the following way.

minZ, Vt=1,...N. (3.6)

Equation (3.6) represents the objective function which minimize the total delays of all tasks in edge
computing environment based on linear integer programming.

N K
Y Uxxu=15ea (3.7)

=1 k=1 °k

Equation (3.7) determines that all tasks must be executed under the available nodes resource and not
exceed their limits.
zZ<d, Vt=1,...,N. (3.8)

Equation (3.8) determines that, all tasks must be executed under the their deadlines.

N
Zx,,k =1, Yk=1,...K (3.9)

K
Dxu=1, Vi=1,...1 (3.10)
Equation (3.10) determines that each node execute one task at a time.
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4. Proposed algorithm SHDS framework

The study implies the secure hybrid delay scheme (SHDS), which schedules all healthcare
workloads below their deadlines. To determine the optimal assignment problem, the study formulated
this problem based on linear integer programming, where all constraints are integer, as shown in the
mathematical model. In the proposed work, the study makes the optimal assignment with
fault-tolerant and security features, and the study devises a secure fault-tolerant delay workload
assignment algorithm framework that consists of four different phases. The phase-1 of Algorithm 1
acknowledges the offloading tasks of IIoHT applications to edge computing for computation, where
each base station channel has sufficient bandwidth for the offloading. Suppose there is no bandwidth
available in the wireless channel of bandwidth or weak signal with high inference. In that case, the
IoV application can not offload tasks to the edge node for the computation. After the successful
offloading to the edge node, phase-2 of Algorithm 1 performs encryption and decryption on fully
homomorphic encryption based on RSA asymmetric technique with 256 bits key length such as
primary key and private key in any computing node. The main goal is to encrypt and decrypt data to
the only node, and others can execute the workload on encrypted form and send it back to the original
computing node. At the same time, phase-3 of Algorithm 1 searches the optimal edge node for the
computation on the offloaded workload under their deadlines. In phase-4 of Algorithm 1 monitors the
running tasks is they failed during execution, then Algorithm 1 will call all phases and search another
node until and unless the workload has a deadline. If the fault-tolerant is timeless than the remaining
deadline of the task, Algorithm 1 will successfully recover the failure task by using the primary
backup strategy of fault-tolerant in edge computing nodes. In this way, the overall delays can handle
in the optimal in the proposed Algorithm 1.

4.1. Security delay

After the successful offloading phase, edge computing takes the input of tasks data, e.g., t,,. The
input of the IoV application will be encrypted first at the initial edge computing node by applying fully
homomorphic encryption based RSA 256-bits length. The security is asymmetric where the primary
key is exploited for the encryption, and the private key is exploited for the decryption at the same edge
computing node. The study devises the fully homomorphic encryption enabled technique in phase as
defined in Algorithm 2. The study generating the public key length and private key length keys based
on RSA key generator class [32]. The list[t,k] is the encrypted list of all tasks based on Algorithm
2. The security rules are designed based on the homomorphic scheme, which is more time-efficient
and has more minor security delays than existing all traditional security schemes for IIoHT tasks. The
conventional security schemes are MD5, SHA-256, CRC-32, and others, and dual processes such as
encrypt and decrypt each data on every node and cant apply computation on the ciphertext. This is
a time-consuming process as well as consumes much more resources of nodes. Figure 2 shows the
mechanism of encryption and decryption in the system. The study introduces lightweight encryption
and decryption-enabled cryptography asymmetric approach. All tasks encrypt and decrypt on at any
node and storge their encrypted data on the system storage. In our process, initially, the system will
select the node for encryption and decryption with public and private keys to avoid security delay in the
system. To ensure security and delay, the study encrypts the data only once on one node, and another
node can apply computation on encrypted data instead of plaintext. After the execution, all results can
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Algorithm 1: SHDS Framework

1

=T RS - 7 T S )

o
>

11

12

Input : B,N,K
begin
Level-1;
foreach (b=1 to B) do
if (y;» == 1) then
Calculate the Network Delay Based on Eq (3.2);
Level-2;
Encrypted and Decrypted all tasks based on Eq (3.3);
Function (enc = RSA.Enc(tl) « k1, pk);
Function (dec = RS A.Dec(enc) < k1, pv);

else
L Wait for communication channel if y,, = 0;

Level-3 foreach (k=1 to k& t=1 to N) do

13 if (x,x == 1) then

14 Calculate the computation Delay Based on Eq (3.1);
15 if Com.tl <d, & w, < ¢ then

16 Search the optimal node k* for assignment;

17 ZF—t <k

18 else

19 L Wait for resources to be free of nodes if x;, = 0;
20 Level-4;

21 if (y;4s == 0) then

22 Calculate the fault-tolerant based on Eq (3.4);

23 if (x w; < ky&Comp.t1.kl1—=comp.t1.k2 < d,) then
24 L Move Xl kl,s = 0to Xt1 52,5 = 1;

25 else

26 Recover all failures under their deadlines;

27 VAR

28 | End Inner Loop;

29 End Main;

be decrypted by a particular node in which tasks first encrypted their data during processing.

4.2. Network delay

In the first phase, the study calculates the network delay before offloading workload to edge
computing. Generally, network delay is a complex task due to many factors such as available channel
capacity of base stations b¢, bandwidth B,,,, signal strength S, inference noise N between oV device

Mathematical Biosciences and Engineering
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Algorithm 2: Phase-2 Security Delay Scheme
Input : (c¢ = (¢1,12,...tN) mod n);
Output: (m = ¢¢ mod n) ;

1 begin

p < large integer;

q < large integer;

P #*q;

¢(n) =(p—1)x(g—1)

Choose an integer € when 1 < ep(n);

foreach (r=1,..., Nok=1,....K)do

list[t, k] « enc(t, k, pk X ¢)(><x,,k)%;
Offload list to available nodes;
dec(t, k, pv)(xx,);

o X N A N A WN

-
-

12 Finish all encryption;
13 foreach (Result[t,k]) do
14 L dec(t, k, pv)(Xx,x) < Result[t, k];

15 Display Results;

16 End loop;

and edge computing. We determine the channel capacity of base stations in the following way.

S
be = byylog,(1 + N) X Net. 4.1)
Equation (4.1) determines the capacity of all base stations in edge computing network.
N
W oo
Net= " - X Listlt, k] 4.2)

=1

Equation (4.2) determined the network delay for each task during offloading the data to the servers for
execution. Whereas, due to results, still downloading data incurs some delay as determined in Eq (4.2).
The threshold and condition matched in the following way.

Threshold, < bc. 4.3)

Equation (4.3) determines the threshold quality of service of offloading in the network. The offloader
engine in devices offload data and download results with the minimum amount of delay whenever data
required for the processing in the system.

4.3. Computational delay and priority

Algorithm 3 is a scheduler based on linear integer programming-based scheduling greedy where
all tasks have priority and deadline constraints. The priority and deadline are assigned to each task
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Figure 2. Encryption and decryption in system.

during design time by users. Therefore, the scheduler does only workload assignments of tasks to the
available computing nodes with their resources. Algorithm 3 sorts all tasks by priority, such as high
priority tasks must schedule first, then low priority tasks. However still, high-priority tasks have critical
deadlines too. Therefore, Algorithm 3 sort all tasks by their deadlines based on the earliest deadline
first (EDF) [26]. To ensure scheduling, Algorithm 3 sort all edge computing nodes by their resource
capacity. Algorithm 3 takes encrypted tasks as an input and performs their computation based on their
deadlines.

The output of Algorithm 3 shown in Table 2. All tasks are scheduled according to their deadlines
without missing any deadline as shown in Table 2.

4.4. Fault-tolerant delay

The fault-tolerant scheme in the paper works like the process helper in which failure of tasks can
reschedule from the point of failure as shown in Algorithm 4. Many existing fault-aware frameworks
include checkpointing, primary backup files technique, migration, and masking techniques. The
fundamental goal of these techniques is to offer a robust and seamless environment to run applications
without degradation their performances. In this work, the study modified the checkpointing and
primary backup techniques [38, 39] to handle the failure delay in the system. The primary goal is to
minimize failure delay of tasks whenever they have failed during scheduling in the system. Figure 3

Mathematical Biosciences and Engineering Volume 19, Issue 1, 513-536.
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Algorithm 3: Computational delay scheme

Input : (list[t, k] = enc(t, k, pk X ¢);
1 begin

2 foreach (1, k <list[t, k]) do

3 sort all tasks by their priorities Priority Scheme;

4 sort all tasks by their deadlines based EDF;

5 sort all edge computing nodes by their storage;

6 Apply scheduling on ciphertext;

7 if Com « t1 « k1l <d,&t, < ¢ then

8 Apply scheduling on ciphertext;

9 enc(t, k, pk X ¢) X x4
10 Repeat Scheduling all tasks are assigned to nodes;
11 if (z;4; = 0) then

12 Call Fault-Tolerant Method;

13 Results[t, k] « List — flt,k, s] < z;4s = 01;
14 until status convert from O to 1;
15 End loop;

Table 2. Computational delay and task priority.
N Priority K Com(ms) d;(ms) e&(GB)

t;  high k1l 100 110 10GB
t,  high k2 400 490 15GB
t; low k3 500 1100  20GB
ts  low k4 1000 1200  30GB
ts  high k1l 1500 2000  7GB
tc  high k3 50 60 15GB
t7  high k2 30 60 8GB
g high k4 25 50 5GB
fo  high kl 88 110 6GB

shows the scheduling process of tasks onto the heterogeneous fog nodes under the deadline and
assignment constraints. The blue node shows that a task 7 is assigned to the fog node k for the
execution. All the tasks are assigned based on the deadline of tasks onto the available nodes. The
purple color shows that the assigned tasks on nodes met their deadlines during scheduling in the
system. If the two tasks have arrived at the same node, then according to their deadline, they are
scheduled on to the node; if a task is already executing on the node, then the next task will wait until
the completion of the first task execution. For instance, t3, k4 is already running as shown in the
green-covered area, and then task 76, k4 will wait until finish time 76 during scheduling. If the task
failed as shown in Figure 3 with yellow node, and its status changed from status 1 to 0. The scheduler
will call Algorithm 4 to recover tasks with the checkpointing technique on the primary backup
scheme in the network. For instance, a task 72 failed on node k2, but it has a deadline. It recovers
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Figure 3. Scheduling under deadlines.

under its deadline on the same or another node as shown in Figure 3. The failure task can be
scheduled on the same node or reschedule another node from the point of failure. In this way, the
scheduler can dynamically handle the tasks’ execution and failure in the heterogeneous fog networks.
In our problem, all edge nodes are homogenous. Therefore, scheduling from one node to another

Algorithm 4: Fault-Tolerant Delay Scheme
Input : (List — f[t,k, s));

1 begin

2 foreach (List — f[t,k, s])) do

3 Apply primary backup and checkpointing strategies;
4 Reschedule 13 « k1 to 13 « k2;

5 [£3,k2,s] = 1;

6 | Repeat until failure tasks with status O become 1;

7 End loop;

Mathematical Biosciences and Engineering Volume 19, Issue 1, 513-536.
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based on available resources is convenient in our model. We implemented two well-known techniques
of fault-tolerant such as primary backup [27] and checkpointing [28] in edge nodes.

Figure 3 shows the scheduling process of tasks on to the heterogeneous fog nodes under the deadline
and assignment constraints. The blue node shows that a task ¢ is assigned to the fog node k for the
execution. All the tasks are assigned based on the deadline of tasks on to the available nodes. The
purple color shows that the assigned tasks on nodes met their deadlines during scheduling in the system.
If two jobs (e.g., tasks) have arrived at the same node, they will schedule based on their deadlines.
Furthermore, the next task will wait until the completion of the first task execution. For instance, 3, k4
is already running as shown in the green-covered area, and then task 76, k4 will wait until finish time 76
during scheduling. If the task failed as shown in Figure 3 with yellow node, and its status changed from
status 1 to 0. The scheduler will call Algorithm 4 to recover tasks with the checkpointing technique
on the primary backup scheme in the network. For instance, a task 72 failed on node k2, but it has a
deadline. It recovers under its deadline on the same or another node as shown in Figure 3. The failure
task can be scheduled on the same node or reschedule another node from the point of failure. In this
way, the scheduler can dynamically handle the tasks’ execution and failure in the heterogeneous fog
networks.

5. Performance evaluation and result discussion

This section manifests the performance evaluation, system implementation, baseline approaches,
and results from the discussion from work. Initially, the study designed the RPC system as shown
in Figure 4 based on different parameters and values. For instance, the parameters discussed and
demonstrated in Table 3 are considered in the simulation environment where other types of resources
are deemed as shown in Table 4. The study designed the new RPC environment as shown in Figure 4
for IIoHT applications based on the edge foundry platform for simulation purposes. The study created
a practical RPC system consisting of an add services module. Many healthcare services can install on
Android devices that are deployed at fog nodes in different hospitals. The services are healthcare tasks
with various tasks contents such as text, video, images, and audio, and these tasks are encrypted and
decrypted at the client device and fog node with the public key and private key. The RPC consists of
two sockets classes, such as client-socket and server socket. Whereas add services and encryption and
decryption modules connected and write and read components in the system. The server socket class
has different elements such as connection bind, accept and listen, which ensure the connection between
the local device socket and server socket for further processing. The data offload in Javascript Object
Notation (JSON) between client socket and server socket in the system. The server socket implemented
the edge foundry SDK library in RPC. The edge foundry is an open Industrial Internet of Healthcare
Things (IIoHT) edge cloud platform which can create fog nodes based on the container’s docker images
at the repository. The container is the resources on the fog node and processes the tasks based on their
size in the inside socket and managed by the docker Kubernetes manager. The framework is a modified
version of RPC and edge foundry tested at Android devices and edge cloud networks for all IloHT bio-
sensors applications. The RPC is designed based on JAVA programming, which can offload and run
applications at different layers such as clients and servers with the same runtime Java virtual machine
environment. All the bio-sensors are healthcare and can connect with various sensors; we only generate
sensors’ data in the proposed RPC system in work. Table 4 shows the implemented fog nodes in the

Mathematical Biosciences and Engineering Volume 19, Issue 1, 513-536.



527

Add Services
wt

Professional
Doctors

Voice
Counseling

Respiratory

Therapy

Physiology

More
Services

Figure 4. Implementation of hybrid delay optimal bio-sensors connected RPC enabled edge

computing IIoHT system.

Table 3. Simulation RPC enabled edge computing I[IoHT system parameters.
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edgex foundry SDK. Each fog node is heterogeneous and has different storage and processing speed
in the system. The higher fog node has less processing delay as compared to low processing fog node,
therefore, due to a lot of traffic high processing fog nodes are not available for the execution of requests
in the system. The study managed the workload among different fog nodes under their deadline and
delay.

5.1. Baseline approaches result discussion

The study implements the existing RPC schemes as the baseline approaches in the simulation
environment. These studies [3, 6, 8,19, 21, 22] have been assumed the baseline (B1) delay optimal
suggested schemes in which only network delay and computational delay considered in the RPC for
the healthcare applications. Furthermore, these studies [2, 4, 7, 15, 20, 26] have been assumed the
baseline (B2) delay optimal suggested schemes in which only failure delay and computational delay
considered in the RPC for the healthcare applications. These studies are closely related to our work,
and they assumed jobs to the healthcare tasks in the RPC system during the simulation environment in
their works. Therefore, we considered the tasks as the jobs of IIoHT applications in the simulation
environment with the given parameters.

5.1.1. Security delay of IIoHT applications

In the existing studies, the security delay is widely ignored for the applications. At the same time,
the security delay is time-consuming and requires a lot of resources for encrypting the healthcare data.
The study devises the lightweight homomorphic SHA-256 encryption and decryption schemes based
on the asymmetric mechanism for the applications. Initially, the offloader engine checks if the local
devices, e.g., Android nodes, have enough resources to encrypt and decrypt data on the healthcare
workload; it calls SHA-256 security schemes and encrypts workload based on the given key, which is
generated based on RSA [4]. However, if the local devices have limited resources and can’t do
encryption offloader engine offload all data to the fog node in RPC for the processing in the system. It
means the proposed security method in SHDS is more dynamic and efficient, making decisions at the
runtime to avoid delay in the applications. Figure 5 shows the Z performances of all tasks (e.g., jobs)
with the baseline approaches such as existing secure offloading schemes as compared to the SHDS
proposed method. Figure 5 shows that SHDS outperformed all existing secure offloading procedures
in terms of objective Z, which consists of network delay and computation delay. During the
simulation, 600 and 800 tasks are encrypted and decrypted, and their security delay time is calculated
at different nodes in the simulated RPC system. It is assumed from the obtained results in Figure 5,
the existing studies failed to optimize the security, which has a direct impact on the objective function
of the healthcare applications. Figure 6 shows the objective function performances of IIoHT
applications with different numbers of jobs that have a direct impact due to security delay. It is,
therefore, is very important, the security delay is calculated in RPC for IIoHT applications.
Otherwise, it is hard to satisfy the security and deadline requirements of applications together in RPC.
In the security mechanism, we have chosen the two security offloading schemes with the MD5-256
bits and SHA-256 in RPC for healthcare applications. These studies make encryption and decryption
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for IIoHT applications.

locally on mobile due to security validation. However, due to resource constraints of mobile devices,
sometimes encryption and decryption cannot be performed locally in the system. Due to this reason,
many failures occurred at the local machines. Therefore, the offloader engine in our work decides the
runtime offloading decision where to encrypt and decrypt tasks data based on available resources in
different nodes. In this way, we can optimize the security constraint delay for IIoHT applications with
varying numbers of tasks (850 and 1000) in the RPC. Figure 6 (a) and (b) showed the objective
function with the SHDS is more optimal than existing schemes where decisions made at the design
time and occur at the devices and incurred with the failure and a lot of processing delay in the RPC.
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The network delay directly impacts the objective function when it offloads and downloads healthcare
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data for the processing and results. Generally, wireless technologies have a different offloading and
downloading delay on IIoHT data in RPC. However, we are comparing only schemes of network
delay implemented in RPC. Figure 7 shows the objective function performances of network delay
with the different number of tasks (600 and 1200) based on existing baseline approaches in RPC.
Figure 7 shows the SHDS outperformed all existing schemes in terms of network delay in RPC for the
IIoHT applications. The main reason is that SHDS determined the network delay before offloading
the encrypted tasks to the system based on the given deadline. If the network delay has a longer delay
and tasks still miss their deadline based on obtained network delay, the offloader engine in the study
makes the tasks fail and resubmit from scratch in the RPC. However, in the proposed RPC, the user
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still offloads their tasks without losing their deadlines in the worst case of the network in RPC.
However, existing network delay offloading schemes only offloaded tasks without considering the
deadline of tasks of applications in RPC. These approaches have much more failure or an extended
network delay with the possibility that many more jobs missed their deadlines. Therefore, SHDS is
more efficient and optimal than existing offloading network delay schemes in RPC in terms of the
objective function in the system as shown in Figure 8 (a),(b). The computational delay belongs to the
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Figure 9. Computational delay of IIoHT applications based on their deadlines.

scheduling of tasks to the available nodes based on resources in the RPC. Most of the existing RPC
exploited the virtual machine fog nodes with different speeds and storage to run IIoHT healthcare
tasks under their deadlines. However, many factors can degrade the performances of computational
delay in RPC, such as resource boot-up time, wait time, and execution time. Therefore, lightweight
boot-up-time and stay and execution must be optimal for IIoHT applications in RPC based on the
mobile edge cloud system. In the simulation environment, we executed 1200 healthcare jobs in the
RPC and analyzed their performances in the RPC based on their deadlines. Figure 9 (a),(b) shows
that, with different boot-up-time, wait time and execution has a direct impact on the objective function
of the healthcare application with the different number of tasks. Figure 9 (a),(b) shows that the
objective function is improved with the proposed RPC scheme as compared to baseline RPC schemes
in terms of computational delay for the IIoHT applications. The main reason is that the study
modified and improved the performance of RPC with the boot-up-time delay and wait for delay
execution delay compared to the existing RPC. The main reason is that the current studies
implemented virtual machines with 55 boot-up-time and longer wait times when executing tasks on
the devices. However, the proposed schemes implemented docker containers in edgex foundry with
only 11 seconds of boot-up time and zero wait time in the RPC. Why boot-up-time is more important
in the computational delay, the main reason is that the resource cannot always be in "ON” status
because in "ON” situation consumes much more resources in the system. Therefore, they need to
restart and incur with higher boot-up time in the RPC. Therefore, existing studies ignored the
boot-up-time delay and waited for the delay in RPC for the IIoHT applications.
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Besides security delay, network delay, offloading delay, and fault-tolerant delay are most significant
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Figure 10. Fault delay of IIoHT applications based on their deadlines.

in RPC when it offers the seamless and robust JAVA runtime for IIoHT applications. The existing
fault-tolerant techniques such as checkpointing and primary backup are widely implemented in the
RPC with the proposed offloading and resource-allocations schemes. Figure 10 (a),(b) shows that
checkpointing and primary backup always incurred with additional delay and still meet the deadline
requirements with the proposed scheme SHDS. However, existing schemes widely ignored the
fault-tolerant delay in RPC for the IIoHT applications.

5.2. Research finding and limitations

The main finding of this study devised the lightweight RPC runtime framework for IIoHT
applications where many types of delay are considered the constraints in the system. The delays are
security, network, computational, and fault-tolerant delays for IIoHT applications under their
deadlines. Whereas existing studies only considered the computational delay and network constraints
for IIoHT applications in RPC systems. Therefore, this RPC framework still missed a huge of
applications deadlines. The proposed SHDS schemes and lightweight RPC optimized the objective
function of IIoHT applications with the hybrid delays, as shown in the performances in the result
discussion part. However, this study has limitations that are to be investigated further in future work
of the study. For instance, mobility delay, migrations delay, and many delays are still to be
investigated further in the current model of RPC for the IIoHT applications.

6. Conclusions and future work
In this study, the work devised the lightweight RPC mechanism for IIoHT applications and
considered the hybrid constraints in the system. The study suggests the secure hybrid delay scheme

(SHDS), which schedules all healthcare workloads under their deadlines. For the scheduling problem,
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the study formulated this problem based on linear integer programming, where all constraints are
integer, as shown in the mathematical model. The results-discussion showed that the proposed RPC
and its scheme SHDS minimized hybrid delays such as security delay, network delay, computational
delay, and fault-tolerant delay compared to existing RPC schemes. The study showed that the hybrid
delay performances of IIoHT applications could be minimized by 50% and proved in the result
discussion part. The study will consider the mobility delay and roaming delay of applications in the
current version of RPC in the future. RPC has many room delays that can be improved, such as wait
delays, migration delays, services delays, etc. Therefore, we will solve the IlIoHT combinatorial
problem with both concave and convex functions with many convex sets in the RPC system in our
future work.
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