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Abstract: Arithmetic optimization algorithm (AOA) is a newly proposed meta-heuristic method which 

is inspired by the arithmetic operators in mathematics. However, the AOA has the weaknesses of 

insufficient exploration capability and is likely to fall into local optima. To improve the searching 

quality of original AOA, this paper presents an improved AOA (IAOA) integrated with proposed 

forced switching mechanism (FSM). The enhanced algorithm uses the random math optimizer 

probability (RMOP) to increase the population diversity for better global search. And then the forced 

switching mechanism is introduced into the AOA to help the search agents jump out of the local optima. 

When the search agents cannot find better positions within a certain number of iterations, the proposed 

FSM will make them conduct the exploratory behavior. Thus the cases of being trapped into local 

optima can be avoided effectively. The proposed IAOA is extensively tested by twenty-three classical 

benchmark functions and ten CEC2020 test functions and compared with the AOA and other well-

known optimization algorithms. The experimental results show that the proposed algorithm is superior 

to other comparative algorithms on most of the test functions. Furthermore, the test results of two 

training problems of multi-layer perceptron (MLP) and three classical engineering design problems 

also indicate that the proposed IAOA is highly effective when dealing with real-world problems. 

Keywords: arithmetic optimization algorithm; meta-heuristic algorithm; global optimization; 

exploration and exploitation; high-dimensional optimization problems 
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1. Introduction  

Optimization problems have become more and more complex with the rapid development in 

various application fields. When dealing with these new optimization problems, traditional 

optimization methods require overmuch time and costs. In most cases, it is known that strict and exact 

solutions are not necessary. That’s to say, estimate optimal solutions can be acceptable in practice 

because of the significantly fewer time and costs. Therefore, many optimization algorithms have been 

proposed in recent decades to solve these non-convex, non-linear restrictions and complex 

optimization problems [1], and proved to be highly effective for these practical issues.  

It is worth mentioning that meta-heuristic algorithms (MAs) have attracted much attention in 

recent decades [2]. These MAs normally are inspired by creatures or principles in nature, human 

behaviors, etc. For instance, inspired by the biological evolution in nature, genetic algorithm (GA) [3], 

genetic programming (GP) [4] and differential evolution (DE) [5] were proposed by scholars. There 

are also many MAs inspired by the collective or social intelligence of natural biology. Some examples 

are the particle swarm optimization (PSO) [6], grey wolf optimization (GWO) [7], ant colony 

optimization (ACO) [8], artificial bee colony (ABC) [9], whale optimization algorithm (WOA) [10], 

slime mould algorithm (SMA) [11], marine predators algorithm (MPA) [12], ROA [13], etc. Moreover, 

the physical or chemical principles and human intelligence also can be utilized to form new 

optimization algorithms. Some typical representatives are the simulated annealing (SA) [14], 

gravitational search algorithm (GSA) [15], multi-verse optimizer (MVO) [16], heat transfer relation-

based optimization algorithm (HTOA) [17], artificial chemical reaction optimization algorithm 

(ACROA) [18], curved space optimization (CSO) [19], harmony search (HS) [20], teaching learning-

based optimization (TLBO) [21,22], social-based algorithm (SBA) [23], etc. With the rapid 

development of MAs, lots of improved MAs which are embed some mechanisms or strategies have 

also been proposed. Some representative improved algorithms are the JSWOA [24], EHHO [25], 

DSCA [26], WQSMA [27], and MMPA [28]. Though there are various optimization algorithms 

proposed for global optimization problems, the No-Free-Lunch (NFL) theory [29] says that none of 

the algorithms can solve all the optimization problems. This motivates us to continue our researches. 

Generally speaking, the performance of original MAs can be further enhanced by adding some effective 

strategies or mechanisms. Then the improved MAs can solve the optimization problems more effectively. 

Despite different origins, it can be concluded that there are five general essential elements for 

each meta-heuristic algorithm: 1) Generate a set of random initial feasible solutions in a given search 

area; 2) Preset an evaluation function; 3) Generate new candidate solution according to the position 

updating formula; 4) Judge whether to accept the new solution; and last 5) Judge whether to terminate 

the search. As mentioned above, the primary distinction of different MAs is the third step. During the 

iterations, search agents are supposed to explore the whole solution space as much as possible in the 

early phase and exploit the area near the optimal location found so far in the later stage. In this way, 

the local minima can be avoided, and the precision of the solution can be sufficient. Therefore, the 

balance between exploration and exploitation search is a critical indicator for the performance of MAs.  

The arithmetic optimization algorithm (AOA) is a new meta-heuristic algorithm proposed by 

Abualigah et al. in 2021 [30], which is inspired by four basic arithmetic operators (i.e., Multiplication 

(M), Division (D), Addition (A), and Subtraction (S)). The AOA has a straightforward framework with few 
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parameters and shows better performance compared to the PSO [6], GWO [7], GSA [15], MFO [31], etc. 

Also, the AOA is able to deal with some real-world problems. Recently, Manoharan et al. proposed the 

multi-objective arithmetic optimization Algorithm (MOAOA) for solving the constrained multi-

objective optimization problems [32]. In this paper, we focus on the single-objective optimization 

problems. For more information about the multi-objective optimization problems also can refer to [33]. 

Abualigah et al. combined the AOA with the differential evolution technique to improve the local 

search capability [34]. Khatir et al. proposed the improved artificial neural network using arithmetic 

optimization algorithm (IANN-AOA) to deal with the damage quantification problem in functionally 

graded material (FGM) plate structures [35].  

As a matter of fact, from the position updating formulas of AOA, it can be seen that AOA still has 

limitations in exploration capability and insufficient balance between exploration and exploitation 

search due to the simple structure of the math optimizer probability (MOP) and math optimizer 

accelerated (MOA). Thus the AOA can be trapped into local optima at times. Therefore, this paper 

proposes an improved AOA (IAOA) with a forced switching mechanism (FSM) for the global 

optimization problems. The MOP in AOA is modified into RMOP to increase population diversity. 

And the MOA in AOA is replaced by a parameter p for a better balance between global and local search. 

Thus the IAOA still has a relatively simple structure but better performance compared with the original 

AOA. The proposed IAOA has been tested using twenty-three classical benchmark functions and ten 

CEC2020 single objective test functions. The performance of IAOA has been evaluated from multiple 

indexes, like the convergence accuracy, convergence speed, statistical estimation, and runtime result. 

Furthermore, several representative real-world problems are applied to assess the validity of the 

proposed method in practice. 

The rest of this paper is structured as follows: Section 2 introduces a brief overview of the original 

AOA. Section 3 presents the forced switching mechanism (PSM) and the proposed IAOA. In Section 4, 

two sets of standard benchmark functions are utilized to test the performance of IAOA. The 

experimental results are analyzed and discussed from multiple aspects, including accuracy, stability, 

convergence speed, and running time. Section 5 shows the capabilities of IAOA in solving real-world 

problems, including the training of multi-layer perceptron (MLP) and engineering design problems. At 

last, Section 6 concludes this paper and gives some future research directions.  

2. Arithmetic optimization algorithm 

The AOA is a new meta-heuristic method proposed in 2021 [30]. As its name implies, four 

traditional arithmetic operators (i.e., Multiplication operator (M), Division operator (D), Addition 

operator (A), and Subtraction operator (S)) are modeled into the position updating equations for 

searching the global optimization solution. According to the different effects of these four arithmetic 

operators, the Multiplication (M) and Division (D) are used for the exploration search, producing large 

step in the search space. And the Addition (A), and Subtraction (S)) are applied to execute the 

exploitation search, which is able to generate small step sizes in the search space. The detailed 

optimization mechanism of the AOA is presented in Figure 1. 
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Figure 1. Position updating mechanism of search agents in AOA and effects of MOA on it. 

According to the Figure 1, the mathematical equations of exploration and exploitation behaviors 

are expressed by following formulas:  
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where Xi(t+1) denotes the newly generated position. And Xb(t) is the best position found by search 

agents in the tth iteration. eps is a very small positive number to ensure the dividend is positive. μ is a 

constant coefficient. UB and LB are the upper boundary and lower boundary, respectively. rand is a 

random number uniformly distributed between 0 and 1.  

The math optimizer probability (MOP) is a vital coefficient that is non-linearly decreased from 1 

to 0 along with the iterations. And the calculation expression of MOP is as follows: 

1/1 ( )
t

MOP
T

   (3)  

where T is the maximum number of iterations. α is a constant value, which is set as 5 in AOA.  

In addition, another important parameter in AOA is the math optimizer accelerated (MOA), which 

is utilized to balance exploration and exploitation. The MOA is calculated by: 

( ) ( )
Max Min

MOA t Min t
T


    (4) 

where Min and Max are the minimum and maximum values of MOA.  
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When the AOA starts working, if a random number (between 0 and 1) is bigger than MOA, then 

the exploration search will be selected and performed, i.e., Multiplication (M) or Division (D). 

Otherwise the exploitation search will be conducted, i.e., Addition (A) or Subtraction (S). As the 

number of iterations increases, the search agents will be more likely to perform local searches. The 

pseudo-code of AOA is shown in Algorithm 1.  

Algorithm 1 The pseudo-code of original arithmetic optimization algorithm 

01   Initialization 

02     Initialize the population size (N) and the number of iterations (T) 

03     Initialize the positions of all search agents Xi (I = 1, 2, 3, …, N) 

04     Evaluate the fitness of search agents and find the current best position and bestFitness, Xb 

05     Set the parameters α, μ, Min and Max 

06     Main loop{ 

07     While (t ≤ T) 

08       Calculate the MOP by Eq (3) 

09       Calculate the MOA by Eq (4) 

10       For each search agent  

11         If rand > MOA 

12           Update position by Eq (1) 

13         Else 

14           Update position by Eq (2) 

15         End if 

16       Calculate the fitness of search agent 

17       Update current best position and bestFitness, Xb 

18       End for 

19       t = t + 1 

20     End While} 

21  Return bestFitness, Xb 

3. Proposed IAOA 

As described previously, AOA has a straightforward framework with only a few parameters. 

However, the formulas of position updating lack randomness for the search agents. Hence AOA has 

limited exploration capability and is easy to fall into local minima. To overcome this problem, this 

paper modifies the original AOA from two aspects, which are introduced in the following sections. 

3.1. Random math optimizer probability (RMOP) 

The coefficient MOP in AOA is gradually decreased with the iterations, which lacks randomness. 

Thus, to increase the range of newly generated positions, the parameter α is calculated by following: 

10 1rand     (5)  
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According to the Eq (5), the range of α is [−1, 9]. Then the new MOP still can be calculated by 

Eq (3), which is named as random math optimizer probability (RMOP) here. As shown in Figure 2, the 

RMOP presents a relatively random change nearby the original MOP. Note that, the RMOP could be 

negative when α is negative, which is not displayed in Figure 2. Hence the diversity of the generated 

search agents can be effectively increased by using the RMOP. To some extent, the capability of local 

optima avoidance is enhanced. 

 

Figure 2. Trend comparison between RMOP and MOP. 

3.2. Forced switching mechanism (FSM) 

It can be seen from AOA that the MOA plays a vital role on the balance of exploration and 

exploitation. There are more chances for the search agents to execute Division (D) operator or 

Multiplication (M) operator in the preliminary stage. That is to say; the whole search space can be 

detected. At the later stage, Subtraction (S) or Addition (A) is expected to conduct a local search near 

the best location found so far. According to the extensive research of scholars in this field, the 

transformation method between exploration and exploitation is worth studying and beneficial to 

improving the algorithm’s performance. Therefore, this work proposes a kind of forced switching 

mechanism (FSM) to enhance the AOA’s optimization capability effectively.  

Firstly, a probability parameter p is substituted for the MOA, which is defined as follows: 
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 tanh| ( )|
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F i bF
p rand
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 (6)  

where F(i) is the fitness of ith search agent, and bF is the best fitness found by so far.  

From Eq (6), it can be known that the range of p is [0, 0.7616], which is related to the fitness of 

the current search agent, best fitness at present, and a random value (between 0 and 1). Using the new 

parameter p, if a random number (between 0 and 1) is smaller than the current p, the current search 
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agent may be far from the best position. Thus D operator or M operator will be carried out for global 

search. Otherwise, the operator S or operator A should be performed for local search.  

Secondly, the best position could be a local optima, and then the search agents may not be able to 

jump out of this point with the local search operator, which can only generate small steps. Hence a 

forced switchover is introduced here to make the search agent conduct the exploration behavior, i.e., 

D or M. To be specific, this switching process is realized by using a counter. Each search agent owns 

a counter. This counter will increase by one when the search agent cannot find a better position in one 

iteration. Otherwise, it will be reset to 0. When the counter exceeds a limited value, the parameter p 

will be set to 1 for this search agent, and the counter corresponding to the search agent is reset to 0. In 

summary, the proposed FSM is realized by using the probability parameter p and counter, which help 

the AOA avoid the local optima and promote the balance between global and local search. At last, the 

flowchart and pseudo-code of the proposed IAOA are depicted in Algorithm 2 and Figure 3, respectively. 

3.3. The computational complexity of IAOA 

Algorithm 2 The pseudo-code of the improved arithmetic optimization algorithm 

01   Initialization 

02     Initialize the population size (N) and the number of iterations (T) 

03     Initialize the positions of all search agents Xi (i = 1, 2, 3, …, N) 

04     Evaluate the fitness of search agents and find the current best position and bestFitness, Xb 

05     Set the parameters μ 

06     Main loop{ 

07     While (t ≤ T) 

08       Calculate RMOP by Eq (3) and (5) 

09       Calculate p by Eq (6) 

10       If trial(i) > Limit 

11         trial(i) = 0 

12         p = 1 

13       End if 

14       For each search agent  

15         If rand < p 

16           Update position by Eq (1) 

17         Else 

18           Update position by Eq (2) 

19         End if 

20       Calculate the fitness of the search agent 

21       Update current best position and bestFitness, Xb 

22       End for 

23       t = t + 1 

24     End While} 

25   Return bestFitness, Xb 
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The complexity of the optimization algorithm is also an essential aspect concerning the 

performance. Typically, low complexity means that the computer can produce results faster and saving 

time. In the AOA, the computational complexity of initializing search agents is O(N × D), where N is 

the population size and D is the dimension of the problem. Then during the iterations, the 

computational complexity of calculating MOA and MOP is O(2T). The computational complexity of 

updating new positions is O(N × D × T), where T is the maximum number of iterations. Therefore, the 

computational complexity of AOA is O(N × (D × T + D) + 2T).  

In the same way, the computational complexity of IAOA in the initialization phase is O(N × D). 

In the iterations, the computational complexity of calculating p and RMOP is O(2N × T). The 

computational complexity of updating new positions is O(N × D × T). Thus the computational 

complexity of IAOA is O(N × (D × T + D + 2T)). It is noted that the computational complexity of 

IAOA is only slightly higher than that of the original AOA. In other words, the computational 

complexity of the AOA and IAOA can be considered at a similar level. 

Start
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Figure 3. The flowchart of the proposed IAOA. 

4. Experimental tests and analysis 

In this section, the performance of proposed IAOA is evaluated by using twenty-three classical 

benchmark functions and ten CEC2020 test functions [36,37]. The detailed information of test 

functions is introduced at first. Then seven meta-heuristic algorithms and six modified algorithms 
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are employed to illustrate the outstanding performance of the proposed improved algorithm. The 

convergence precision of algorithms is analyzed from three aspects, including the best value, mean 

value, and standard deviation. The best value is the best solution obtained in a certain number of 

tests, which is set as 30 in this paper. The mean value is the mean solution obtained from these 

tests. And the standard deviation (Std) is used to reflect the degree of dispersion of optimal 

solutions. In addition, statistical methods like Wilcoxon signed-rank test [38] and Friedman 

ranking test [39] are used to confirm the significant differences between the IAOA and other 

algorithms. The convergence curves are used for the visual description of the optimization effect. 

Furthermore, the running time of these comparative algorithms on high-dimensional functions has 

been analyzed and compared. 

4.1. Experimental settings 

The detailed information of twenty-three classical benchmark functions and ten CEC2020 test 

functions are listed in Table 1. For the classical standard benchmark functions, F1−F7 belong to 

the unimodal test functions, which means there is only one extreme optimization point within the 

given space. Thus, they can usually be used to evaluate the exploitation precision of algorithms. 

For the F8−F13, multiple local extreme points exist in the given space. Hence, these functions can 

be used to reveal the exploration capability of given algorithms and see whether the algorithms are 

able to jump out of the local point and find the global optima. On the F14−F23, similarly, there are 

many local optima points which may trap the optimization algorithm. However, the dimension of 

these functions is determinate. Therefore, they can be used to test the stability of the algorithm. It 

is worth mentioning that the dimension for the first 13 functions can be set as required. Thus, to 

see the performance of the proposed algorithm on high-dimensional functions, the F1−F13 on high 

dimensions (200/500/1000) are also considered for the tests.  

For the CEC 2020 test functions, the first four functions are called as shifted and rotated bent cigar 

function, shifted and rotated schwefel’s function, shifted and rotated lunacek bi-rastrigin function, and 

expanded rosenbrock’s plus griewangk’s function, respectively. Functions CEC_05−CEC_07 belong to 

the hybrid functions. Functions CEC_08−CEC_10 are the composition functions. 

Moreover, to fully illustrate the performance of proposed algorithm, seven meta-heuristic 

algorithms and six modified algorithms are employed for the comparisons. These meta-heuristic 

methods are particle swarm optimization (PSO) [6], sine cosine algorithm (SCA) [40], grey wolf 

optimizer (GWO) [7], whale optimization algorithm (WOA) [10], salp swarm algorithm (SSA) [41], 

multi-verse optimizer (MVO) [16] and the original arithmetic optimization algorithm (AOA) [30]. The 

parameter settings of these meta-heuristic algorithms and proposed IAOA are given in Table 2. 

Modified algorithms include four improved algorithms (DSCA [26], MALO [42], ROL-GWO [43], 

RL-WOA [44]) and two hybrid algorithms (DESMAOA [45] and HSMSSA [46]). The parameters 

of these enhanced algorithms are kept the same as those in the original papers.  

For a proper comparison, the number of iterations and population size are set to 500 and 30, 

respectively. Each algorithm was independently performed 30 times to obtain reliable statistical 

results. 
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Table 1. Properties of test functions (D indicates the dimension). 

Function type Function Dimensions Range Theoretical optimization value 

Unimodal test functions F1 30/200/500/1000 [−100, 100] 0 

F2 30/200/500/1000 [−10, 10] 0 

F3 30/200/500/1000 [−100, 100] 0 

F4 30/200/500/1000 [−100, 100] 0 

F5 30/200/500/1000 [−30, 30] 0 

F6 30/200/500/1000 [−100, 100] 0 

F7 30/200/500/1000 [−1.28, 1.28] 0 

Multimodal test functions F8 30/200/500/1000 [−500, 500] −418.9829 × D 

F9 30/200/500/1000 [−5.12, 5.12] 0 

F10 30/200/500/1000 [−32, 32] 0 

F11 30/200/500/1000 [−600, 600] 0 

F12 30/200/500/1000 [−50, 50] 0 

F13 30/200/500/1000 [−50, 50] 0 

Fixed-dimension 

multimodal test functions 

F14 2 [−65, 65] 1 

F15 4 [−5, 5] 0.00030 

F16 2 [−5, 5] −1.0316 

F17 2 [−5, 5] 0.398 

F18 2 [−2, 2] 3 

F19 3 [−1, 2] −3.86 

F20 6 [0, 1] −3.32 

F21 4 [0, 10] −10.1532 

F22 4 [0, 10] −10.4028 

F23 4 [0, 10] −10.5363 

CEC2020 single objective 

test functions 

CEC_01 10 [−100, 100] 100 

CEC_02 10 [−100, 100] 1100 

CEC_03 10 [−100, 100] 700 

CEC_04 10 [−100, 100] 1900 

CEC_05 10 [−100, 100] 1700 

CEC_06 10 [−100, 100] 1600 

CEC_07 10 [−100, 100] 2100 

CEC_08 10 [−100, 100] 2200 

CEC_09 10 [−100, 100] 2400 

CEC_10 10 [−100, 100] 2500 

Table 2. Parameter values for the IAOA and comparative algorithms. 

Algorithm Parameters 

PSO [6] c1 = 2; c2 = 2; W∈[0.2, 0.9]; vMax = 6 

SCA [29] a = 2 

GWO [7] a = [2, 0] 

WOA [10] a1 = [2, 0]; a2 = [−2, −1]; b = 1 

SSA [30] c1∈[0, 1]; c2∈[0,1] 

MVO [15] WEP∈[0.2, 1]; TDR∈[0, 1]; r1, r2, r3∈[0, 1] 

AOA [24] α = 5; μ = 0.499; Min = 0.2; Max = 0.9 

IAOA α∈[−1, 9]; μ = 0.499; Limit = 4 
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4.2. Comparison between IAOA and AOA 

Table 3. Comparison results of IAOA and AOA for low-dimensional benchmark functions (F1−F23). 

Function Algorithm Best Mean Std 

F1 AOA 2.5004E−06 4.60E−06 2.56E−06 

 IAOA 0 0 0 

F2 AOA 0.00022713 0.0016222 0.0018213 

 IAOA 0 0 0 

F3 AOA 0.0001484 0.00088135 0.00066246 

 IAOA 0 0 0 

F4 AOA 0.007372 0.02121 0.012793 

 IAOA 0 0 0 

F5 AOA 27.5561 28.0037 0.17927 

 IAOA 26.4703 27.9405 0.20653 

F6 AOA 2.7821 3.0021 0.23491 

 IAOA 0.00015408 0.00067796 1.94E−04 

F7 AOA 4.1456E−05 8.64E−05 6.48E−05 

 IAOA 1.6121E−05 0.000072876 7.61E−05 

F8 AOA −6626.6943 −5522.0895 360.536 

 IAOA −9410.4345 −7439.9702 781.4275 

F9 AOA 7.5374E−11 1.6679E−06 1.33E−06 

 IAOA 0 0 0 

F10 AOA 2.7335E−05 0.0004501 0.00016232 

 IAOA 8.8818E−16 8.8818E−16 0 

F11 AOA 1.9763E−05 0.00084498 3.39E−03 

 IAOA 7.5898E−05 0.012704 0.013443 

F12 AOA 0.71309 0.73513 0.032107 

 IAOA 6.1974E−06 0.000017862 3.87E−06 

F13 AOA 2.9097 2.9547 3.16E−02 

 IAOA 0.001474 0.069295 0.092459 

F14 AOA 2.9821 11.3532 2.8202 

 IAOA 0.998 2.1227 8.92E−01 

F15 AOA 0.00031509 0.0085249 0.017144 

 IAOA 0.00031542 0.00067023 0.00073262 

F16 AOA −1.0316 −1.0316 1.94E−11 

 IAOA −1.0316 −1.0316 6.91E−11 

F17 AOA 0.39789 0.43067 0.11645 

 IAOA 0.39789 0.39789 1.69E−11 

F18 AOA 3 9.3 16.9037 

 IAOA 3 3 3.66E−10 

Continued on next page 
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Function Algorithm Best Mean Std 

F19 AOA −3.8628 −3.7416 0.53653 

 IAOA −3.8628 −3.8627 2.36E−04 

F20 AOA −3.322 −3.2769 0.060402 

 IAOA −3.322 −3.2863 0.055431 

F21 AOA −10.1523 −7.6411 3.0153 

 IAOA −10.153 −10.1527 3.65E−04 

F22 AOA −10.4026 −8.2302 2.9844 

 IAOA −10.4028 −10.4025 0.00035433 

F23 AOA −10.5362 −7.7591 3.5771 

 IAOA −10.5362 −10.5359 0.00030993 

Table 4. Comparison results of IAOA and AOA for high-dimensional benchmark functions 

(F1−F13) with D = 200. 

Function Algorithm Best Mean Std 

F1 AOA 0.030732 0.050867 0.013644 

 IAOA 0 0 0 

F2 AOA 0.060429 0.074017 0.017986 

 IAOA 0 0 0 

F3 AOA 0.65955 0.7687 0.15925 

 IAOA 0 0 0 

F4 AOA 0.080176 0.089516 0.0087835 

 IAOA 0 0 0 

F5 AOA 196.8073 198.1746 0.086362 

 IAOA 197.0503 197.2712 0.091721 

F6 AOA 34.2895 36.2072 0.90543 

 IAOA 1.0199 1.5483 0.11734 

F7 AOA 1.5615E−05 9.22E−05 5.87E−05 

 IAOA 1.1075e−05 8.16E−05 8.40E−05 

F8 AOA −23070.4723 −21944.2025 921.0585 

 IAOA −51673.0898 −42731.4775 2868.4316 

F9 AOA 0.0010863 0.0012932 0.00013706 

 IAOA 0 0 0 

F10 AOA 0.008908 0.010165 0.00096921 

 IAOA 8.8818E−16 8.8818E−16 0 

F11 AOA 1.1995 15.478 21.346 

 IAOA 0.073417 0.11825 0.015644 

F12 AOA 0.76327 0.82012 0.039459 

 IAOA 0.0030856 0.0038509 3.94E−04 

F13 AOA 19.5125 19.6503 0.12166 

 IAOA 11.156 19.1919 1.5575 



485 
 

Mathematical Biosciences and Engineering                                  Volume 19, Issue 1, 473–512. 

In this section, the performances of the proposed IAOA and original AOA are analyzed. The 

experimental results, including the best value, the mean value, and the standard deviation, are shown 

in Tables 3−6. The better optimal results are in bold in Table 3, which presents the low-dimensional 

cases (D < 100), it is easy to observe that IAOA outperforms AOA on almost all test functions. Mainly, 

IAOA has obtained the theoretical optimal value (0) on F1−F4, F9 and F18. And on F10, F15−17, 

F19−F23, the results obtained by IAOA are very close to the theoretical optimal values. These results 

demonstrate that the IAOA has sufficient exploration and exploitation capabilities on the stand 

benchmark functions. Also, from the standard deviation results, IAOA has better solution stability than 

AOA. Moreover, From Tables 4−6, it can be seen that the IAOA also has better performance than AOA 

on most of the high-dimensional test functions (D = 200/500/1000). In particular, the IAOA can still 

obtain the theoretical optimal value on F1−F4 and F9. Though the IAOA and AOA have roughly the 

same results on F5, F7 and F13, the IAOA wins the other test functions with significant advantages.  

Table 5. Comparison results of IAOA and AOA for high-dimensional benchmark functions 

(F1−F13) with D = 500. 

Function Algorithm Best Mean Std 

F1 AOA 0.44645 5.36E−01 3.13E−02 

 IAOA 0 0 0 

F2 AOA 0.38441 0.51533 0.10741 

 IAOA 0 0 0 

F3 AOA 4.7158 6.7191 1.1378 

 IAOA 0 0 0 

F4 AOA 0.11225 0.12264 0.0064185 

 IAOA 0 0 0 

F5 AOA 499.3258 499.4464 0.2153 

 IAOA 495.8477 496.9015 0.15112 

F6 AOA 110.72 111.9802 2.0405 

 IAOA 16.6868 19.3039 0.8841 

F7 AOA 9.588E−06 7.79E−05 5.94E−05 

 IAOA 9.0697E−06 1.17E−04 1.06E−04 

F8 AOA −38280.3287 −37592.7969 1696.3911 

 IAOA −122145.3363 −107095.6718 6479.4553 

F9 AOA 0.0097635 1.09E−02 7.55E−04 

 IAOA 0 0 0 

F10 AOA 0.02492 0.026755 0.00079171 

 IAOA 8.8818E−16 8.8818E−16 0 

F11 AOA 956.8539 1360.0908 332.7481 

 IAOA 1.8905 2.5489 0.3317 

F12 AOA 0.89778 0.93086 0.021968 

 IAOA 0.032073 0.032479 0.002024 

F13 AOA 48.6264 49.6914 0.11261 

 IAOA 48.789 49.2815 0.27971 
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Table 6. Comparison results of IAOA and AOA for high-dimensional benchmark functions 

(F1−F13) with D = 1000. 

Function Algorithm Best Mean Std 

F1 AOA 1.4035 1.4851 0.050689 

 IAOA 0 0 0 

F2 AOA 1.4705 1.6004 0.088484 

 IAOA 0 0 0 

F3 AOA 28.2473 31.21 6.0176 

 IAOA 0 0 0 

F4 AOA 0.14234 0.15659 0.012054 

 IAOA 0 0 0 

F5 AOA 1002.1444 1002.5848 0.23481 

 IAOA 996.1367 997.1556 0.16621 

F6 AOA 241.1288 242.1669 1.2738 

 IAOA 74.6488 85.9905 2.8304 

F7 AOA 1.1702E−05 0.0001096 1.29E−04 

 IAOA 3.5362E−07 7.98E−05 8.94E−05 

F8 AOA −55338.4958 −54939.0341 1846.1281 

 IAOA −215430.9145 −203575.8261 8913.3037 

F9 AOA 0.035031 0.038004 0.001746 

 IAOA 0 0 0 

F10 AOA 0.031972 0.033101 0.00068333 

 IAOA 8.8818E−16 8.8818E−16 0 

F11 AOA 11375.8334 14711.0439 2582.4096 

 IAOA 90.9442 139.4703 15.4775 

F12 AOA 1.01 1.0307 0.016899 

 IAOA 0.090605 0.091028 0.0029325 

F13 AOA 100.0347 100.2574 0.3491 

 IAOA 99.6654 99.7497 0.070909 

Furthermore, the results of statistical analysis between IAOA and AOA are shown in Tables 7 and 8. 

For the Wilcoxon signed-rank test, when the p-value is lower than 0.05, it is believed that there are 

significant differences between the two algorithms. The term “+ / = / –” indicates that the IAOA performs 

better, similar and worse than the AOA, respectively. From Table 7, it can be seen that the IAOA has 

better statistical results than AOA. The overall result (+ / = / –) is 20/2/1. For the high-dimensional results 

in Table 8, the overall results are 11/2/0 (D = 200), 12/1/0 (D = 500), 13/0/0 (D = 1000), respectively. 

Therefore, the IAOA also has obvious advantages over AOA on high-dimensional conditions. 

Table 9 shows the solutions of CEC2020 obtained by the IAOA and AOA. It can be seen that the 

proposed IAOA outperforms AOA for all test functions except CEC_04. Both algorithms have 

achieved the theoretical optimal value (1900) with zero standard deviation on CEC_04. Therefore, the 

performance of AOA is also enhanced by the proposed method when solving the CEC2020 functions. 
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Table 7. Result of Wilcoxon signed-rank test between IAOA and AOA on low-dimensional 

benchmark functions (F1−F23). 

Function p-value +/=/– Function p-value +/=/– 

F1 6.10E−05 + F13 6.10E−05 + 

F2 6.10E−05 + F14 6.10E−05 + 

F3 6.10E−05 + F15 6.10E−05 + 

F4 6.10E−05 + F16 0.97797 = 

F5 0.00018311 + F17 6.10E−05 + 

F6 6.10E−05 + F18 0.047913 + 

F7 0.072998 = F19 0.04126 + 

F8 6.10E−05 + F20 0.015076 + 

F9 6.10E−05 + F21 6.10E−05 + 

F10 6.10E−05 + F22 6.10E−05 + 

F11 0.0042725 – F23 6.10E−05 + 

F12 6.10E−05 + Overall (+/=/–)  20/2/1 

Table 8. Result of Wilcoxon signed-rank test between IAOA and AOA on high-

dimensional benchmark functions (F1−F13). 

Function 
p-value 

(D = 200) 
+/=/– 

p-value 

(D = 500) 
+/=/– 

p-value 

(D = 1000) 
+/=/– 

F1 6.10E−05 + 6.10E−05 + 6.10E−05 + 

F2 6.10E−05 + 6.10E−05 + 6.10E−05 + 

F3 6.10E−05 + 6.10E−05 + 6.10E−05 + 

F4 6.10E−05 + 6.10E−05 + 6.10E−05 + 

F5 6.10E−05 + 6.10E−05 + 6.10E−05 + 

F6 6.10E−05 + 6.10E−05 + 6.10E−05 + 

F7 0.97797 = 0.71973 = 6.10E−05 + 

F8 6.10E−05 + 6.10E−05 + 6.10E−05 + 

F9 6.10E−05 + 6.10E−05 + 6.10E−05 + 

F10 6.10E−05 + 6.10E−05 + 6.10E−05 + 

F11 6.10E−05 + 6.10E−05 + 6.10E−05 + 

F12 6.10E−05 + 6.10E−05 + 6.10E−05 + 

F13 0.63867 = 0.000122 + 6.10E−05 + 

Overall (+/=/–)  11/2/0  12/1/0  13/0/0 
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Table 9. Comparison results of IAOA and AOA for CEC2020 test functions (CEC_01−CEC_10). 

Function Algorithm Best Mean Std 

CEC_01 AOA 1.05E+10 1.52E+10 5.75E+09 

 IAOA 101.1321 1837.7653 2097.8393 

CEC_02 AOA 1.91E+03 2429.0929 236.9499 

 IAOA 1.88E+03 2130.5016 294.519 

CEC_03 AOA 785.2938 806.9479 17.8589 

 IAOA 779.1130 800.8397 9.6216 

CEC_04 AOA 1900 1900 0 

 IAOA 1900 1900 0 

CEC_05 AOA 3.99E+05 4.53E+05 1.15E+05 

 IAOA 1.36E+04 17729.2735 7896.0719 

CEC_06 AOA 1.94E+03 2122.9517 189.2305 

 IAOA 1.60E+03 1951.6078 178.7839 

CEC_07 AOA 7.51E+03 2.37E+06 3.24E+06 

 IAOA 2.74E+03 10484.477 6273.1236 

CEC_08 AOA 3.18E+03 3529.2538 353.3169 

 IAOA 2.21E+03 2325.4096 15.6135 

CEC_09 AOA 2.75E+03 2923.6263 118.2572 

 IAOA 2.50E+03 2706.7551 161.7538 

CEC_10 AOA 3.33E+03 3680.1652 363.6474 

 IAOA 2.89E+03 2942.7115 22.7046 

4.3. Comparison with meta-heuristic algorithms 

4.3.1. Numerical analysis 

In this section, the IAOA is compared to six well-known algorithms (PSO, SCA, GWO, WOA, 

SSA, and MVO) to illustrate its superiority in solving optimization problems. In these experiments, 

the results of test functions (F1–F13) in different dimensions (D = 30/200/500/1000) are presented in 

Tables 10 and 11 (Inf means infinity, and NaN means not a number), and the results of fixed-

dimensional test functions (F14–F23) are listed in Table 12. The optimal results obtained by these 

algorithms are ranked according to the Friedman ranking test for statistical analysis. At the end of each 

table, each algorithm’s average rank and overall rank are given for comparison.  

In Table 10, the proposed IAOA has shown outstanding exploitation capability and is ranked the 

first in these four dimensions. According to the results shown in Table 11, the IAOA is ranked the first 

in 30 dimensions and the second in 200, 500, and 1000 dimensions. The WOA is found to be good at 

cases in high dimensions. However, it is worth noting that the gap between the IAOA and WOA is very 

small. Thus, the IAOA still shows equivalent or better performance than these algorithms, 

demonstrating the superiority of the IAOA in exploration search. Moreover, for the fixed-dimension 

conditions listed in Table 12, the IAOA is ranked the first again, indicating it has the most stable 

performance in solving optimization problems that contain multiple local best points. 
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Table 10. Results of the IAOA and competitor algorithms on unimodal benchmark functions (F1−F7) in different dimensions. 

Function D Metric PSO SCA GWO WOA SSA MVO IAOA 

F1 30 Mean 1.77E−04 

 

12.0582 

 

6.00E−28 7.61E−73 1.64E−07 

 

1.1527 

 

0 

Std 2.46E−04 

 

18.9524 

 

6.17E−28 4.06E−72 1.61E−07 

 

0.40056 

 

0 

200 Mean 3.20E+02 5.72E+04 9.44E−08 6.24E−67 1.78E+04 2.84E+03 0 

Std 4.17E+01 2.55E+04 5.87E−08 3.41E−66 3.34E+03 2.78E+02 0 

500 Mean 5.95E+03 2.14E+05 1.71E−03 3.29E−70 9.64E+04 1.20E+05 0 

Std 4.06E+02 7.95E+04 6.51E−04 1.18E−69 5.80E+03 8.34E+03 0 

1000 Mean 4.14E+04 4.98E+05 2.42E−01 2.65E−70 2.37E+05 8.06E+05 0 

Std 1.89E+03 1.60E+05 3.62E−02 1.17E−69 1.17E+04 2.91E+04 0 

F2 30 Mean 8.7029 

 

0.028685 

 

1.01E−16 4.51E−51 2.878 

 

5.7703 

 

0 

 Std 9.7312 

 

0.077316 

 

5.29E−17 1.67E−50 1.8304 

 

23.301 

 

0 

200 Mean 4.82E+02 4.00E+01 3.04E−05 1.06E−48 1.56E+02 4.68E+75 0 

Std 5.43E+01 1.83E+01 6.96E−06 3.39E−48 1.02E+01 2.54E+76 0 

500 Mean 1.21E+114 9.77E+01 1.08E−02 6.84E−50 5.40E+02 3.78E+218 0 

Std 6.61E+114 4.11E+01 2.13E−03 2.64E−49 1.58E+01 Inf 0 

1000 Mean 1.41E+03 Inf 7.29E−01 2.97E−48 1.19E+03 1.07E+279 0 

 Std 5.62E+01 NaN 5.00E−01 9.51E−48 2.34E+01 Inf 0 

F3 30 Mean 81.660 

 

8746.812 

 

1.11E−05 47394.26 1615.589 

 

203.770 

 

0 

Std 26.584 

 

6887.170 

 

1.81E−05 12471.12 957.4707 

 

87.693 

 

0 

200 Mean 9.33E+04 9.89E+05 2.15E+04 4.71E+06 2.29E+05 3.28E+05 0 

Std 2.31E+04 1.85E+05 1.29E+04 1.90E+06 1.09E+05 2.39E+04 0 

500 Mean 5.55E+05 7.32E+06 3.17E+05 3.12E+07 1.43E+06 2.06E+06 0 

Std 1.38E+05 2.10E+06 8.93E+04 1.06E+07 6.20E+05 1.45E+05 0 

1000 Mean 2.43E+06 2.72E+07 1.50E+06 1.24E+08 5.08E+06 8.18E+06 0 

 Std 5.98E+05 5.20E+06 2.34E+05 4.58E+07 2.12E+06 7.95E+05 0 

  Continued on next page 
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Function D Metric PSO SCA GWO WOA SSA MVO IAOA 

F4 30 Mean 1.0826 

 

37.477 

 

1.12E−06 45.6252 10.9918 

 

1.9625 

 

0 

Std 0.20039 

 

13.4806 

 

1.59E−06 27.8305 3.8408 

 

0.74426 

 

0 

200 Mean 1.99E+01 9.66E+01 2.75E+01 8.14E+01 3.39E+01 8.23E+01 0 

Std 1.72E+00 1.15E+00 7.84E+00 2.02E+01 3.76E+00 4.13E+00 0 

500 Mean 2.75E+01 9.90E+01 6.36E+01 7.81E+01 4.03E+01 9.44E+01 0 

Std 1.78E+00 3.31E−01 5.24E+00 2.27E+01 2.85E+00 1.02E+00 0 

1000 Mean 3.28E+01 9.95E+01 7.91E+01 7.37E+01 4.57E+01 9.80E+01 0 

 Std 1.61E+00 1.20E−01 3.82E+00 2.03E+01 3.03E+00 5.17E−01 0 

F5 30 Mean 90.6001 

 

34130.1646 

 

27.178 27.8903 257.0443 

 

415.2657 

 

27.9405 

Std 78.9547 

 

68213.466 

 

0.76439 0.45169 366.6366 

 

403.9315 

 

0.20653 

200 Mean 6.26E+05 5.28E+08 1.98E+02 1.98E+02 3.92E+06 4.08E+05 1.97E+02 

Std 1.61E+05 1.50E+08 4.37E−01 1.73E−01 8.56E+05 1.07E+05 9.17E−02 

500 Mean 2.95E+07 1.88E+09 4.98E+02 4.96E+02 3.81E+07 1.66E+08 4.97E+02 

Std 3.65E+06 4.64E+08 2.43E−01 4.45E−01 5.93E+06 2.68E+07 1.51E−01 

1000 Mean 2.83E+08 4.18E+09 1.05E+03 9.94E+02 1.17E+08 2.31E+09 9.97E+02 

 Std 2.76E+07 8.37E+08 3.62E+01 9.65E−01 1.13E+07 1.94E+08 1.66E−01 

F6 30 Mean 2.11E−04 

 

18.0959 

 

7.39E−01 3.86E−01 6.35E−07 

 

1.4574 

 

6.78E−04 

 Std 2.22E−04 

 

24.935 

 

2.82E−01 2.48E−01 1.57E−06 

 

0.54375 

 

1.94E−04 

200 Mean 3.37E+02 5.57E+04 2.86E+01 1.03E+01 1.69E+04 2.73E+03 1.55E+00 

Std 4.09E+01 2.41E+04 1.40E+00 2.59E+00 2.20E+03 2.35E+02 1.17E−01 

500 Mean 6.07E+03 2.04E+05 9.19E+01 3.32E+01 9.49E+04 1.17E+05 1.93E+01 

Std 4.78E+02 6.01E+04 2.30E+00 7.46E+00 5.42E+03 9.32E+03 8.84E−01 

1000 Mean 4.14E+04 4.84E+05 2.03E+02 6.16E+01 2.34E+05 7.96E+05 8.60E+01 

 Std 2.09E+03 1.62E+05 2.72E+00 1.92E+01 1.01E+04 3.38E+04 2.83E+00 

Continued on next page 
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Function D Metric PSO SCA GWO WOA SSA MVO IAOA 

F7 30 Mean 4.3234 

 

0.11836 

 

1.83E−03 0.003127 0.17734 

 

0.034628 

 

8.64E−05 

Std 5.9292 

 

0.14894 

 

1.15E−03 0.002478 0.083019 

 

0.011627 

 

7.61E−05 

200 Mean 2.88E+03 1.56E+03 1.72E−02 4.05E−03 1.87E+01 5.79E+00 8.16E−05 

Std 5.54E+02 4.61E+02 7.50E−03 3.94E−03 3.83E+00 1.10E+00 8.40E−05 

500 Mean 4.65E+04 1.51E+04 4.77E−02 5.22E−03 2.82E+02 1.18E+03 1.17E−04 

Std 7.47E+03 3.55E+03 1.46E−02 6.55E−03 4.47E+01 1.55E+02 1.06E−04 

1000 Mean 2.44E+05 6.82E+04 1.54E−01 3.75E−03 1.75E+03 2.91E+04 1.10E−04 

 Std 5.21E+03 1.42E+04 3.09E−02 3.50E−03 1.75E+02 2.92E+03 1.29E−04 

Rank 30 Mean 4.43  6.00  2.57  3.86  4.43  5.14  1.57  

 Overall 4.5 7 2 3 4.5 6 1 

200 Mean 4.43  6.29  2.79  3.21  5.14  5.14  1.00  

 Overall 4 6 2 3 5.5 5.5 1 

500 Mean 4.29  6.29  3.00  3.00  4.43  5.86  1.14  

 Overall 4 7 2.5 2.5 5 6 1 

1000 Mean 4.43  6.43  3.14  2.71  4.00  6.00  1.29  

 Overall 5 7 3 2 4 6 1 

Table 11. Results of the IAOA and competitor algorithms on multimodal benchmark functions (F8−F13) in different dimensions. 

Function D Metric PSO SCA GWO WOA SSA MVO IAOA 

F8 30 Mean −4766.131 

 

−3706.60 

 

−5970.25 −10352 −7329.73 −7626.415 

 

−7439.97 

Std 1212.293 

 

257.870 

 

490.4865 1719.311 704.6803 891.2681 

 

781.4275 

200 Mean −1.54E+04 −9.82E+03 −2.80E+04 −6.88E+04 −3.49E+04 −4.02E+04 −4.27E+04 

Std 5.54E+03 7.04E+02 5.79E+03 1.20E+04 3.36E+03 1.69E+03 2.87E+03 

500 Mean −2.37E+04 −1.54E+04 −5.59E+04 −1.79E+05 −6.01E+04 −7.44E+04 −1.07E+05 

Std 1.06E+04 1.11E+03 1.23E+04 2.78E+04 4.35E+03 3.42E+03 6.48E+03 

1000 Mean −3.33E+04 −2.19E+04 −8.97E+04 −3.75E+05 −8.71E+04 −1.10E+05 −2.04E+05 

 Std 1.26E+04 1.88E+03 1.45E+04 5.13E+04 6.18E+03 4.92E+03 8.91E+03 

Continued on next page 
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Function D Metric PSO SCA GWO WOA SSA MVO IAOA 

F9 30 Mean 106.223 

 

37.346 

 

3.2501 3.79E−15 53.396 123.4134 

 

0 

Std 27.5388 

 

32.867 

 

5.3909 1.44E−14 19.5082 26.1493 

 

0 

200 Mean 2.00E+03 5.56E+02 2.72E+01 0 8.18E+02 1.91E+03 0 

Std 1.09E+02 2.07E+02 1.33E+01 0 7.05E+01 1.08E+02 0 

500 Mean 6.32E+03 1.38E+03 8.19E+01 1.21E−13 3.16E+03 6.40E+03 0 

Std 2.32E+02 6.15E+02 2.95E+01 4.61E−13 1.33E+02 1.57E+02 0 

1000 Mean 1.42E+04 2.27E+03 2.11E+02 0 7.64E+03 1.46E+04 0 

 Std 2.76E+02 1.11E+03 5.78E+01 0 1.64E+02 2.48E+02 0 

F10 30 Mean 0.23486 

 

15.758 

 

1.07E−13 4.44E−15 2.4873 2.3346 

 

8.88E−16 

Std 0.41349 

 

7.3301 

 

1.6E−14 2.29E−15 0.64328 3.3287 

 

0 

200 Mean 6.47E+00 1.79E+01 2.44E−05 4.56E−15 1.32E+01 2.01E+01 8.88E−16 

Std 2.67E−01 4.85E+00 7.68E−06 2.72E−15 5.77E−01 1.13E+00 0 

500 Mean 1.20E+01 1.87E+01 1.96E−03 5.27E−15 1.43E+01 2.08E+01 8.88E−16 

Std 4.18E−01 3.99E+00 2.80E−04 2.59E−15 2.26E−01 4.26E−02 0 

1000 Mean 1.61E+01 1.96E+01 1.83E−02 3.85E−15 1.45E+01 2.10E+01 8.88E−16 

 Std 3.30E−01 3.27E+00 3.12E−03 2.65E−15 1.99E−01 2.08E−02 0 

F11 30 Mean 0.0077965 

 

1.1825 

 

0.004534 0.0116 0.014301 0.85111 

 

0.012704 

Std 0.011867 

 

0.96313 

 

0.008074 0.04538 0.011089 0.081176 

 

0.013443 

200 Mean 1.48E+00 5.08E+02 8.19E−03 7.40E−18 1.54E+02 2.65E+01 1.18E−01 

Std 9.69E−01 2.25E+02 1.56E−02 2.82E−17 1.95E+01 3.19E+00 1.56E−02 

500 Mean 8.01E+01 1.92E+03 1.55E−02 0 8.58E+02 1.08E+03 2.55E+00 

Std 1.21E+01 5.60E+02 3.50E−02 0 6.03E+01 6.44E+01 3.32E−01 

1000 Mean 2.75E+02 4.19E+03 7.86E−02 0 2.12E+03 7.23E+03 1.39E+02 

 Std 1.80E+01 1.34E+03 9.48E−02 0 1.01E+02 2.70E+02 1.55E+01 

Continued on next page 
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Function D Metric PSO SCA GWO WOA SSA MVO IAOA 

F12 30 Mean 0.010369 

 

499751.82 

 

0.037732 0.029178 7.9944 2.3492 

 

1.79E−05 

Std 0.031632 

 

1964831.1 

 

0.019255 0.027961 5.752 1.8399 

 

3.87E−06 

200 Mean 3.37E+01 1.53E+09 5.38E−01 5.58E−02 1.09E+04 2.03E+03 3.85E−03 

Std 1.66E+01 3.74E+08 6.00E−02 2.20E−02 1.67E+04 1.94E+03 3.94E−04 

500 Mean 2.72E+05 5.60E+09 7.67E−01 8.27E−02 1.49E+06 1.70E+08 3.25E−02 

Std 1.47E+05 1.29E+09 6.10E−02 4.34E−02 1.02E+06 4.40E+07 2.02E−03 

1000 Mean 9.23E+06 1.34E+10 1.24E+00 1.05E−01 1.07E+07 4.38E+09 9.10E−02 

 Std 2.33E+06 2.31E+09 3.95E−01 4.46E−02 2.42E+06 5.47E+08 2.93E−03 

F13 30 Mean 0.0058413 

 

59947.169 

 

0.67424 0.54857 16.0953 0.18537 

 

0.069295 

Std 0.0067476 

 

238303.2 

 

0.22145 0.28627 12.8362 0.10839 

 

0.092459 

200 Mean 5.41E+03 2.66E+09 1.69E+01 6.40E+00 1.69E+06 1.18E+05 1.92E+01 

Std 3.46E+03 6.77E+08 4.84E−01 1.85E+00 6.99E+05 7.47E+04 1.56E+00 

500 Mean 3.89E+06 9.41E+09 5.08E+01 1.87E+01 3.77E+07 4.86E+08 4.97E+01 

Std 9.91E+05 2.51E+09 1.55E+00 6.68E+00 1.12E+07 1.01E+08 1.13E−01 

1000 Mean 8.52E+07 2.11E+10 1.21E+02 3.90E+01 1.48E+08 9.25E+09 9.97E+01 

 Std 1.10E+07 3.86E+09 7.20E+00 1.41E+01 2.81E+07 1.02E+09 7.09E−02 

Rank 30 Mean 3.50  6.50  3.50  2.50  5.33  4.67  2.00  

 Overall 3.5 7 3.5 2 6 5 1 

200 Mean 4.67  6.33  3.33  1.42  5.33  5.17  1.75  

 Overall 4 7 3 1 6 5 2 

500 Mean 4.67  6.33  3.17  1.50  4.83  5.83  1.67  

 Overall 4 7 3 1 5 6 2 

1000 Mean 4.83  6.17  3.00  1.42  4.83  6.00  1.75  

 Overall 4.5 7 3 1 4.5 6 2 
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Table 12. Results of the IAOA and competitor algorithms on fixed-dimension multimodal benchmark functions (F14−F23). 

Function Metric PSO SCA GWO WOA SSA MVO IAOA 

F14 Mean 3.2971 

 

2.054 

 

4.1971 2.2112 1.1635 0.998 

 

2.1227 

Std 2.6924 

 

1.9047 

 

4.1247 2.4847 0.45784 3.60E−11 

 

0.89234 

F15 Mean 0.005002 

 

0.0010075 

 

0.003131 0.000936 0.002149 0.0080634 

 

0.00067 

Std 0.0080173 

 

0.0003976 

 

0.00688 0.000608 0.004958 0.013454 

 

0.000733 

F16 Mean −1.0316 

 

−1.0316 

 

−1.0316 −1.0316 −1.0316 −1.0316 

 

−1.0316 

Std 6.32E−16 

 

5.92E−05 

 

2.49E−08 4.44E−09 3.25E−14 2.55E−07 

 

6.91E−11 

F17 Mean 0.39789 

 

0.39913 

 

0.39789 0.39789 0.39789 0.39789 

 

0.39789 

Std 0 0.0010657 

 

1.27E−06 1.57E−05 1.36E−14 1.46E−07 

 

1.69E−11 

F18 Mean 5.7 

 

3.0001 

 

3 3 3 5.7 

 

3 

Std 14.7885 

 

9.24E−05 

 

5.29E−05 6.02E−05 1.92E−13 14.7885 

 

3.66E−10 

F19 Mean −3.8628 

 

−3.8512 

 

−3.8602 −3.8336 −3.8628 −3.8628 

 

−3.8627 

Std 2.67E−15 

 

0.0076497 

 

3.96E−03 1.41E−01 8.13E−12 2.12E−06 

 

2.36E−04 

F20 Mean −3.1929 

 

−2.8874 

 

−3.2775 −3.2633 −3.2197 −3.2694 

 

−3.2863 

Std 0.13959 

 

0.32874 

 

0.066099 0.076027 0.059376 0.061248 

 

0.055431 

F21 Mean −8.0558 

 

−1.7248 

 

−8.6368 −8.6106 −7.5665 −6.9692 

 

−10.1527 

Std 2.8803 

 

1.5226 

 

2.6132 2.6127 3.5062 3.3512 

 

0.000365 

F22 Mean −9.079 

 

−2.813 

 

−9.9704 −6.8597 −8.314 −8.3245 

 

−10.4025 

Std 2.7639 

 

1.8216 

 

1.6688 3.2997 3.067 3.0645 

 

0.000354 

F23 Mean −10.0968 

 

−3.9225 

 

−9.9938 −7.4358 −8.6014 −8.7548 

 

−10.5359 

Std 1.6938 

 

1.5503 

 

2.0583 3.2114 3.3155 2.8283 

 

0.00031 

Rank Mean 4.3 5.6 3.6 4.3 3.8 4.1 2.3 

Overall 5.5 7 2 5.5 3 4 1 
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4.3.2. Convergence analysis 

Figures 4−8 present the convergence speed of the IAOA and other well-known algorithms on the 

classical test functions over the course of the iterations. In each figure, six representative functions 

were presented. From Figures 4−7, the proposed IAOA displays obviously faster convergence 

performance than other algorithms on the test function F1, even in the cases of high dimensions. IAOA 

obtains the theoretical optimal value within less than 100 iterations. Also, from the F6 and F12, it can 

be seen that the IAOA is able to converge throughout the iteration continuously. This indicates that the 

RMOP and FSM proposed in this paper enhance the exploration space of the original AOA. Although 

sometimes the IAOA is beat by SSA, WOA and other algorithms, overall the IAOA is more likely to 

find a better solution. In Figure 8, the convergence curves of F14, F15 and F17 show the IAOA can 

find the optimal positions in a quick time in the case of multiple local points. The results of F20, F22, 

and F23 show that the IAOA has experienced several local optimal positions. However, with the help 

of the proposed mechanism (i.e., FSM), the IAOA can jump out of the local points within limited 

iterations and then find better solutions later. In particular, the IAOA also has achieved better or 

comparative accuracy of the solution compared with other optimization algorithms. 

 

Figure 4. The convergence curves for the optimization algorithms on test functions (F1, 

F6, F7, F10, F12, F13) with D = 30. 
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Figure 5. The convergence curves for the optimization algorithms on test functions (F1, 

F6, F7, F10, F12, F13) with D = 200. 

 

Figure 6. The convergence curves for the optimization algorithms on test functions (F1, 

F6, F7, F10, F12, F13) with D = 500. 
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Figure 7. The convergence curves for the optimization algorithms on test functions (F1, 

F6, F7, F10, F12, F13) with D = 1000. 

 

Figure 8. The convergence curves for the optimization algorithms on fixed-dimension test 

functions (F14, F15, F17, F20, F22, F23). 

4.3.3. Analysis of running time 

In this section, the time-consuming experiments of optimization algorithms are performed on 13 

high-dimensional test functions. The dimension is set to 1000. Thus the MAXFEs is 1.5×107. All 
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participants run ten times on each test function independently. The results of the average running time of 

IAOA and other comparative algorithms are listed in Table 13. The ranking-based Friedman test is 

employed to investigate the overall level of IAOA compared to others. Table 13 shows that the IAOA is 

ranked the third place, which is behind the AOA and SSA. Although the computational complexities of 

AOA and IAOA are almost the same, the original AOA still is obviously better overall. However, it can 

be seen that the average run time of IAOA is very close to that of AOA on most of the functions. Thus 

the effect of the proposed forced switching mechanism on running time can be ignored to some extent. 

Table 13. Results of average running time (seconds) over 30 independent runs for F1–F13 

with D = 1000. 

Function Metric PSO SCA GWO WOA SSA MVO AOA IAOA 

F1 Ave 1.73 2.14 2.74 2.10 1.49 4.06 1.34 1.47 

 Rank 4 6 7 5 3 8 1 2 

F2 Ave 1.68 2.14 2.77 2.14 1.53 1.75 1.35 1.48 

 Rank 4 6.5 8 6.5 3 5 1 2 

F3 Ave 27.35 27.26 28.78 27.33 26.82 29.66 27.37 27.55 

 Rank 4 2 7 3 2 8 5 6 

F4 Ave 1.71 2.19 2.82 2.24 1.54 4.25 1.37 1.53 

 Rank 4 5 7 6 3 8 1 2 

F5 Ave 1.83 2.29 2.93 2.48 1.68 4.49 1.50 1.61 

 Rank 4 5 7 6 3 8 1 2 

F6 Ave 1.85 2.29 2.92 2.29 1.65 4.39 1.42 1.57 

 Rank 4 5.5 7 5.5 3 8 1 2 

F7 Ave 2.87 3.73 4.06 3.45 2.75 5.52 2.80 3.08 

 Rank 3 6 7 5 1 8 2 4 

F8 Ave 2.54 2.91 3.63 2.90 2.26 2.56 2.26 2.52 

 Rank 4 7 8 6 1.5 5 1.5 3 

F9 Ave 2.21 2.62 3.25 2.55 2.06 4.80 1.96 2.13 

 Rank 4 6 7 5 2 8 1 3 

F10 Ave 2.31 2.85 3.28 2.59 2.13 4.87 2.06 2.21 

 Rank 4 6 7 5 2 8 1 3 

F11 Ave 2.45 2.87 3.43 2.74 2.22 5.02 2.40 2.48 

 Rank 3 6 7 5 1 8 2 4 

F12 Ave 4.48 5.00 5.66 4.99 4.34 7.08 4.31 4.53 

 Rank 3 6 7 5 2 8 1 4 

F13 Ave 4.47 4.97 5.52 4.98 4.35 7.04 4.18 4.45 

 Rank 4 5 7 6 2 8 1 3 

Mean rank 3.77 5.54 7.15 5.31 2.19 7.54 1.50 3.08 

Final rank 4 6 7 5 2 8 1 3 

4.4. Comparison with modified algorithms 

In this section, six modified algorithms (i.e., DSCA, MALO, ROL-GWO, RL-WOA, DESMAOA 
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and HSMSSA.) are employed to further investigate the performance of proposed IAOA for solving the 

optimization problems. As shown in Table 14, eight test functions (i.e., F1−F4 and F7−F10) are 

selected from the twenty-three classical test functions for the comparison. As we can know that the 

higher the dimension, the more difficult for the algorithm to find the optimal solution. Hence the 

dimension of test functions is set to 1000 for better comparison. From the Table 14, it can be observed 

that the IAOA is able to obtain the best solutions on test functions F1−F4, F9 and F10 and comparative 

solutions on test functions F7 and F8. Based on the ranking-based Friedman test, the IAOA achieves 

the third place, which is behind the DESMAOA and HSMSSA. However, it should be noted that the 

DESMAOA and HSMSSA belong to the hybrid algorithms which have higher computational 

complexity. To sum up, the proposed IAOA still has very comparative performance compared to these 

modified algorithms in solving high-dimensional optimization problems. 

5. Results of real-world problems 

The performance of IAOA in solving practical problems is evaluated on two training problems of 

multi-layer perceptron (MLP) and three classical engineering design problems. The optimization 

problem in MLP can be regarded as a large-scale global optimization problem [26]. When optimizing 

the MLP, the objective function is the mean square error (MSE) [47]. In this works, the XOR dataset 

and Cancer dataset are selected. The population sizes of the algorithms for the XOR dataset and Cancer 

dataset are set as 50 and 200, respectively. And the maximum number of iterations is set to 250 for 

these algorithms. To achieve a credible result, ten times independent runs are conducted. And then the 

statistical results can be obtained and analyzed. When solving the engineering design problems, the 

population size is set as 30 and the maximum number of iterations is 500. Three engineering design 

problems, namely, the three-bar truss design problem, pressure vessel design problem and 

tension/compression spring design problem, are chosen to clarify the effectiveness of the proposed 

algorithm. The detailed results are described as follows. 

5.1. Training of MLP 

5.1.1. XOR classification problem 

The XOR dataset is a simple dataset containing eight training/test samples, three attributes and 

two classes [47]. As shown in Table 15, the quality of training MLP is evaluated using six indexes, i.e., 

the best value, worst value, mean value, standard deviation, classification rate and rank. The statistical 

results of PSO, SCA, GWO, WOA, SSA, MVO, AOA, and IAOA are also presented in Table 15. It 

can be seen that PSO, MVO, and IAOA obtain 100 percent accuracy for this dataset and rank the first. 

It is also worth noting that AOA ranks sixth with only 23.75 percent accuracy. Thus the AOA is 

significantly enhanced with the strategies proposed in this paper. 

In addition, the convergence and the ANOVA graphs of these algorithms are shown in Figures 9 

and 10, severally. From Figure 9, the IAOA can converge continuously and finally achieve the 

relatively low value of MSE, which contributes to high classification rate. According to Figure 10, 

IAOA, PSO and MVO have better results of variance values. 
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Table 14. Comparison results of IAOA and other modified algorithms on test functions (F1−F4, F7−F10) with D = 1000. 

Function Metric DSCA MALO ROL-GWO RL-WOA DESMAOA HSMSSA IAOA 

F1 Mean 6.83E−278 6.05E+05 2.47E−323 8.54E−116 0 0 0 

 Std 0 1.11E+05 0 3.91E−115 0 0 0 

F2 Mean Inf Inf 7.87E−165 5.81E−72 0 9.24E+00 0 

 Std NaN NaN 0 2.83E−71 0 1.65E+01 0 

F3 Mean 3.18E−110 

 

8.48E+06 2.48E−317 8.92E−20 0 0 0 

 Std 1.74E−109 

 

2.72E+06 0 4.89E−19 0 0 0 

F4 Mean 2.87E+01 5.39E+01 9.35E−85 4.94E−45 0 0 0 

 Std 3.13E+01 5.13E+00 3.56E−84 2.71E−44 0 0 0 

F7 Mean 4.26E−04 1.20E−04 9.74E−05 1.50E−04 5.36E−05 6.46E−05 1.10E−04 

 Std 5.57E−04 8.83E−05 1.09E−04 2.64E−04 4.99E−05 6.23E−05 1.29E−04 

F8 Mean −2.27E+04 −3.82E+05 −5.29E+04 −4.09E+05 −4.19E+05 −4.18E+05 −2.04E+05 

 Std 2.25E+03 4.60E+04 3.49E+04 1.42E+04 8.01E+01 8.93E+02 8.91E+03 

F9 Mean 0 8.84E+03 0 0 0 0 0 

 Std 0 4.46E+02 0 0 0 0 0 

F10 Mean 9.28E−02 1.66E+01 3.97E−15 2.66E−15 8.88E−16 8.88E−16 8.88E−16 

 Std 5.09E−01 4.61E−01 1.23E−15 1.81E−15 0 0 0 

Mean rank 5.75  6.31  4.06  4.69  1.88  2.56  2.75  

Final rank 6 7 4 5 1 2 3 
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Table 15. The experimental results of XOR classification problem. 

Algorithms Best Worst Mean Std Classification rate Rank 

PSO 9.33E−159 1.64E−14 1.64E−15 5.18294E−15 100% 1 

SCA 0.017693 0.103151 5.84E−02 0.030791059 52.5% 4 

GWO 2.31E−05 0.016054 2.29E−03 0.005167888 81.25% 3 

WOA 0.034807 0.168967 1.20E−01 0.039071866 35% 5 

SSA 6.84E−09 0.062788 1.26E−02 0.026433834 95% 2 

MVO 2.26E−09 5.41E−05 1.18E−05 2.0205E−05 100% 1 

AOA 0.105632 0.25 1.86E−01 0.05094305 23.75% 6 

IAOA 2.77E−05 0.001048 2.78E−04 0.00029707 100% 1 

 

Figure 9. The convergence curves of XOR classification problem. 

 

Figure 10. The variance diagram of XOR classification problem. 
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5.1.2. Cancer classification problem 

The Cancer dataset is more complex than the XOR dataset, which has nine attributes, 599 training 

samples, 100 test samples, and two classes [47]. Thus the number of variables in this dataset is 209. 

Table 16 lists the results of IAOA and the other seven algorithms. The mean value of MSE obtained 

by IAOA is the lowest in this dataset. Meanwhile, the accuracy of IAOA is the highest, which is 99.1 

percent. Thus the IAOA can rank first among these algorithms. As shown in Figure 11, the IAOA has 

the fastest convergence speed and best convergence accuracy compared with others. Also, Figure 12 

exhibits that IAOA has smaller and more stable ANOVA, which demonstrates the superiority of IAOA 

in solving this MLP problem. 

Table 16. The experimental results of cancer classification problem. 

Algorithms Best Worst Mean Std Classification rate Rank 

PSO 9.93E−04 2.27E−03 1.55E−03 4.14E−04 97.2% 4 

SCA 3.95E−03 1.77E−02 1.10E−02 4.62E−03 64.8% 6 

GWO 1.21E−03 1.46E−03 1.31E−03 9.69E−05 98.4% 2 

WOA 1.26E−03 1.77E−03 1.54E−03 1.81E−04 98.4% 2 

SSA 1.35E−03 1.72E−03 1.51E−03 1.15E−04 98.4% 2 

MVO 1.31E−03 1.67E−03 1.49E−03 1.22E−04 97.6% 3 

AOA 2.38E−03 6.33E−03 3.42E−03 1.26E−03 95.2% 5 

IAOA 1.09E−03 1.42E−03 1.21E−03 1.21E−04 99.1% 1 

 

Figure 11. The convergence curves of cancer classification problem. 
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Figure 12. The variance diagram of cancer classification problem. 

5.2. Engineering design problems 

5.2.1. Three-bar truss design problem 

The goal of designing a three-bar truss is to minimize the weights of the bar structures [48]. As 

shown in Figure 13, the cross-sectional area of two bars (A1 and A2) are the variables that need to be 

optimized.  

 

Figure 13. Three-bar truss design problem: model diagram (left) and structure parameters (right). 

The mathematical forms for this problem can be expressed as follows: 

Consider  

1 21 2[ ,  ] [ ,  ]x x x A A    
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Minimize  
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The optimal solutions of IAOA and other comparative algorithms are given in Table 17. The 

results show that the IAOA can achieve the best solution among these algorithms [A1, A2] = 

[0.789676528, 0.404502112]. And the corresponding optimal weight is 263.8537231. Thus IAOA has 

the merits in solving this engineering design problem. 

Table 17. Optimal results for comparative algorithms on the three-bar truss design problem. 

Algorithm Optimal values for variables Optimal weight 

A1 A2 

IAOA 0.789676528 0.404502112 263.8537231 

AOA [30] 0.79369 0.39426 263.9154 

MFO [31] 0.788244771 0.409466906 263.8959797 

SSA [41] 0.788665414 0.408275784 263.8958434 

CS [49] 0.78867 0.40902 263.9716 

MBA [50] 0.7885650 0.4085597 263.8958522 

GOA [51] 0.7888975 0.4076195 263.8958814 

PSO-DE [52] 0.7886751 0.4082482 263.8958433 

HSCAHS [53] 0.7885721 0.4084012 263.881992 

5.2.2. Pressure vessel design problem 

The design of the pressure vessel is to obtain the lowest manufacturing cost with three constraints, i.e., 

the material, welding and forming [54]. As shown in Figure 14, four design variables need to be 

considered. They are the inner radius of the vessel (R), the thickness of the shell (Ts), the thickness of 

the head (Th), and the length of the cylindrical shape (L).  
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Figure 14. Pressure vessel design problem: model diagram (left) and structure parameters (right). 

The mathematical forms for this problem can be expressed as follows: 

Consider  
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Table 18 shows the optimal solutions for the pressure vessel design problem, obtained by nine 

different algorithms. It can be seen that the proposed IAOA in this paper can find the minimum cost, 

which is 5813.5505. This result is much lower than that of other algorithms, which indicates that the 

IAOA has superior performance in solving this problem. 

Table 18. Optimal results for comparative algorithms on the pressure vessel design problem. 

Algorithm Optimal values for variables Optimal cost 

Ts Th R L 

IAOA 0.7637214 0.3705464 41.5666 184.1352 5813.5505 

AOA [30] 0.8303737 0.4162057 42.75127 169.3454 6048.7844 

SMA [11] 0.7931 0.3932 40.6711 196.2178 5994.1857 

MVO [16] 0.8125 0.4375 42.090738 176.73869 6060.8066 

WOA [10] 0.812500 0.437500 42.098209 176.638998 6059.7410 

MMPA [28] 0.77816843 0.38464899 40.31962895 199.9998973 5885.332599 

MOSCA [55] 0.7781909 0.3830476 40.3207539 199.9841994 5880.71150 

LWOA [56] 0.778858 0.385321 40.32609 200 5893.339 

IMFO [57] 0.7781948 0.3846621 40.32097 199.9812 5885.3778 

5.2.3. Tension/compression spring design problem 

The objective of designing the tension/compression spring is to obtain the minimum optimal 

weight [58]. Three constraints (i.e., the shear stress, surge frequency, and deflection) are needed to be 

considered. As shown in Figure 15, there are three variables in the design of a tension/compression 

spring, i.e., the wire diameter (d), mean coil diameter (D), and last the number of active coils (N).  

 

Figure 15. Tension/compression spring design problem: model diagram (left) and structure 

parameters (right). 
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The mathematical forms for this problem can be expressed as follows: 

Consider  
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The results of IAOA and other well-known algorithms are listed in Table 19. The proposed IAOA 

achieves the best outcome for this problem, which is 0.012018312. Thus, the IAOA also can solve this 

problem very well. 

Table 19. Optimal results for comparative algorithms on the tension/compression spring 

design problem. 

Algorithm Optimal values for variables Optimal weight 

d D P 

IAOA 0.05008247 0.363061398 11.19750818 0.012018312 

AOA [30] 0.0500 0.349809 11.8637 0.012124 

MVO [16] 0.05251 0.37602 10.33513 0.012790 

WOA [10] 0.051207 0.345215 12.004032 0.0126763 

SSA [41] 0.051207 0.345215 12.004032 0.0126763 

GWO [7] 0.05169 0.356737 11.28885 0.012666 

GSA [15] 0.050276 0.323680 13.525410 0.0127022 

PSO [6] 0.051728 0.357644 11.244543 0.0126747 

WSA [58] 0.05168626 0.35665047 11.29291654 0.01267061 
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6. Conclusion and future works 

The meta-heuristic algorithms are very suitable for solving optimization problems, saving time 

and costs. In recent years, many strategies and mechanisms have been proposed to enhance the 

capability of solving optimization problems for MAs. This paper presents an improved arithmetic 

optimization algorithm (IAOA) with a forced switching mechanism (FSM) to strengthen the 

exploration capability and better balance between exploration and exploitation search. The FSM will 

enforce the search agents to execute exploration behavior when they cannot find a better position 

within several iterations. Besides, the math optimizer probability used in AOA is modified by the 

random math optimizer probability to increase the diversity of the population. The performance of 

proposed IAOA is extensively evaluated by using 23 classical benchmark functions and ten CEC2020 

test functions. The results of benchmark functions indicate that the IAOA is superior to the original 

AOA and other comparative algorithms on most of the functions, while the computational complexity 

of IAOA is not significantly increased. The proposed IAOA also has a stable performance on high-

dimensional cases (D = 200/500/1000). In addition, two training problems of multi-layer perceptron 

(MLP) (XOR and Cancer classification problems) and three classical engineering design problems 

(three-bar truss, pressure vessel, and tension/compression spring design problems) are also employed 

to test the applicability of IAOA in practice. The results of real-world problems reveal that the IAOA 

can obtain very comparative solutions compared to the competitor algorithms. 

The forced switching mechanism used in IAOA may be applicable for other MAs or improved 

MAs in future research. The IAOA also can be implemented on more complex real-world application 

problems, such as the feature selection, multilevel thresholding segmentation, and large-scale global 

optimization problems. 
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