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Abstract: These investigations are to find the numerical solutions of the nonlinear smoke model to
exploit a stochastic framework called gudermannian neural works (GNNs) along with the optimization
procedures of global/local search terminologies based genetic algorithm (GA) and interior-point
algorithm (IPA), i.e., GNNs-GA-IPA. The nonlinear smoke system depends upon four groups,
temporary smokers, potential smokers, permanent smokers and smokers. In order to solve the model,
the design of fitness function is presented based on the differential system and the initial conditions of
the nonlinear smoke system. To check the correctness of the GNNs-GA-IPA, the obtained results are
compared with the Runge-Kutta method. The plots of the weight vectors, absolute error and
comparison of the results are provided for each group of the nonlinear smoke model. Furthermore,
statistical performances are provided using the single and multiple trial to authenticate the stability and
reliability of the GNNs-GA-IPA for solving the nonlinear smoke system.
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1. Introduction

According to the reports of the World Health Organization (WHO), there are many deaths occur
using the tobacco epidemic and its prey most of the disabled persons during some past few years. The
tobacco epidemic not only disturbs the individuals, but also become a reason for increases the health
care cost, delays financial development and decreases the families’ budgets [1]. The chain smoking is
a big reason of death due to oral cavity cancer, bladder, larynx, esophagus, lung, stomach, pancreas,
renal pelvis and cervix. The smoking also creates the problems of heart, chronic obstructive, lung
weakness, breathing diseases, peripheral vascular and less weight of newly born children. WHO also
reports that the reasoning of unproductive pregnancies, peptic ulcer disease and increase the infant
mortality rate is due to smoking [2]. The termination of smoking is an instantaneous health support
and dramatically reduces the danger of many deathly diseases and improve the respiratory system of
the younger. It is the obligation of the higher authorities to teach their people and aware the
communities about the drawbacks of smoking as well as develop an active policy to control this habit.
Castillo et al. [3] discussed the mathematical model to avoid the smoking by considering the population
into two kings, i.e., smokers (S) and those individuals who left smoking permanently (QP). In addition,
Shoromi et al. [4] presented a new group temporary smoker (QT) in this mathematical model, which
is defined as:

(P (@) = u(1 = P(2)) = BP(D)S(2), P(0) = Ly,

S = BP)S() — (v + WS) + aQr(2),5(0) = Ly,

Qr() =y(1—0)S) — (u+ a)Qr(), Qr(0) = L5, (1)
Qp(2) = —uQp(2) +yoS(12),Qp(0) = L,

where P(2), S(2), Qr(2) and Qp(f2) indicate the Potential smoker (P) group, Smoker (S) group,
Temporary smoker (QT) group and Permanent smoker (QS) group at time (2. Whereas,o, a,y, f and
u represent the positive values of the constants. Furthermore, l;, [,, I3 and [, designate the initial
conditions (ICs) of the nonlinear smoke model (1).

The aim of this work is to investigate the nonlinear smoke model numerically to exploit a
stochastic framework called Gudermannian neural works (GNNs) [5-8] along with the optimization
procedures of global/local search terminologies based Genetic algorithm (GA) and interior-point
approach (IPA), i.e., GNNs-GA-IPA. The development of the numerical solvers has been reported in
various proposals for the solution of the linear/nonlinear differential models with their own
applicability, stability and significance [9—13], however recently artificial intelligence based numerical
computing platform are introduction as a promising alternatives [14—18]. Whereas, GNNs-GA-IPA is
never been applied before to solve the nonlinear smoke system. Some recent proposals of the stochastic
solvers are functional singular system [19], nonlinear SIR dengue fever model [20], mathematical
models of environmental economic systems [21], prey-predator nonlinear system [22], Thomas-Fermi
system [23], mosquito dispersal model [24], transmission of heat in human head [25], multi-singular
fractional system [26] and nonlinear COVID-19 model [27]. Some novel prominent features of the
current investigations are provided as:

e  The GNNs are explored efficaciously using the hybrid optimization paradigm based on GA-IPA
for solving the nonlinear smoke model.
e  The consistent overlapped outcomes obtained by GNNs-GA-IPA and the Runge-Kutta numerical
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results validate the correctness and exactness of the proposed scheme.

e  The authorization of the performance is accomplished through different statistical valuations to
attain the numerical outcomes of the nonlinear smoke system.

The benefits, merits and noteworthy contributions of the GNNs-GA-IPA are simply implemented
to solve the nonlinear smoke model, understanding easiness, operated efficiently and inclusive with
reliable applications in diversified fields.

The remaining parts of the current work are studied as: Section 2 defines the procedures of GNNs-
GA-IPA along with and statistical measures. Section 3 indicates the results simulations. Section 4
provided the final remarks and future research reports.

2. Designed methodology

In this section, the proposed form of the GNNs-GA-IPA is presented in two steps to solve the
nonlinear smoke model as:
* A merit function is designed using the differential system and ICs of the nonlinear smoke system.
*  The necessary and essential settings are provided for the optimization procedures of GA-IPA to
solve the nonlinear smoke model.

2.1. Structure of GNN-GA-IPA

In this section, the mathematical formulations to solve the nonlinear smoke model-based groups,
Potential smoker (P), Temporary smoker (Qr), Permanent smoker (Qs) and Smoker (§) are presented.
The proposed results of these groups of the nonlinear smoke model, P,S, §; and Qg are
represented by P,’S, Qr and Qg together with their derivatives are written as:

XiZikpiT(Wpid + hp;), Xitias;T(ws;i2 + hs;),
1210, TWopi2 + o), Xitg ageiT (Wogi2 + hogi)|
(2)

[P(2), S(2), 0r (), Qs(M)] =

[P'(2), S$'(2), 0r(2), Qs(M)] =
IZ?Q kP,iT,(WP,i-Q + hpi), Xizq ks,iT,(Ws,iQ + hsi),
Zﬁl kQT,iT (WQT,i"Q + hQT,i)' Z‘{Zl st,iT (WQs,i"Q + hQs,i)

where Wis the unknown weight vector, written as:

W = [Wp, Ws, Wy, Wo], for Wp = [kp, wp, hp], Ws = [ks, ws, hs], Wy, = [ko,, wop horl
and Wy, = [st, W, hQs], where

kp =lkp1, kpaoe-os Kpml, ks = [ks 1, kszo--s ksl kop = [kgp1r Kop2o-++r korml Kos =
[kQ5,1' kop2s-es kQT,m], Wp = [Wp 1, Wpa,..., Wpl, Ws = [Ws 1, Ws2,..., Ws ] Wo, =

[WQTrl’ WQsz,..., WQTrm]’ WQS = [WQS,l’ WQsz,..., WQT;m]' hp = [hP,l’ hP,Z""’ hp'm] hs =
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[hS,ll hg'z, ey hs’m], hQT S [hQT,l' hQT,Z’ . hQT,m]' hQS = [hQS;l' hQT.Z’ iy hQT.m]

The Gudermannian function T(2) = 2 tan™[exp(2)] — 0.57 is applied in the above model, this
GNNs have never been implemented before the solve this model.

P, S@.]_
0r(@, 0s(@)

o kp (2 tan~t eWpidthei) — g) X ks (2 tan~t eWsitthsi) — g),

Bitskopi (2 tan™t eere¥hord —2) 3, ko, ; (2 tan~ e(esifithosd )

P@, S _ G
0@, Q5@
r

e (wp'i.(2+np‘i)

¥, 2k S, 2k oIS
i=14Kp,iWp, ) 2 | Li=14Ks,iWs,i ) z |
1_+_(e(wp_l.(2+np_l)) 1+(e(w5,lﬂ+n5,l))

e(wQT'iﬂ+nQT'i)

WQg,i2tnQg,) '
Ym 2k iWo.. Y 2ko iWo o -
=1 i i ] AN 2 ) =1 ,L L . N 2
i Qr.i"™ar <1 (e(WQT‘lanT‘l))) i Qsi¥ Qs 1 (e(WQs'lanS'l))

For the process of optimization, a fitness function is given as:

S =B+ 5 + B3+ 5y + 5, (4)

& =3[P — u+ub + pPS], ()

£, = L3I [Si - BRS + uSi +vSi - a(0r),] (6)

£y = 230 (@0, + voS, ¥ + a(0r), +u(0r)] @

5, = 230 [(@0), - vosi +u(@r) ] ®

85 =2[(Po—1)" + (S0 — 1) + ((@r)o — 1) + +(@s)o — 1a)'| )

where P; = P(£2;), $; = S(2), (Qr); = Qr(2y), (Qs); = Qs(2;), TN =1, and Q; =ih . The
error functions Z;, Z,, Z3 and Z, are related to system (1), while, =5 is based on the ICs of the
nonlinear smoke model (1).

2.2. Optimization procedures: GA-IPA
In this section, the performance of the scheme is observed using the optimization process of GA-

IPA to solve the nonlinear smoke system. The designed GNNs-GA-IPA methodology based on the
nonlinear smoke system is illustrated in Figure 1.
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Table 1. The procedure of optimization using the GNNs-GA-IPA for the nonlinear smoke model.

GA process starts
Inputs: The chromosomes of the same network elements are denoted as:
W=[k, w, h]
Population: Chromosomes set is represented as:

W = [WP, Ws, WQT’ WQS]’ WP = [kp, Wp, hp], WS = [ks, wWg, hs], WQT = [kQT' wQT' hQT]

and Wy, = [st, W, hQs], W is the weight vector

Outputs: The best global weight values are signified as: WGA-Best

Initialization: For the chromosome’s assortment, adjust the W

Assessment of FIT: Adjust “Zg;;” in the population (P) for each vector values using Eqs (4)—+9).

e Stopping standards: Terminate if any of the criteria is achieved [Zg;; = 10"?], [Generataions

= 120] [TolCon = TolFun = 107'*], [StallLimit = 150], & [Size of population = 270].

Move to [storage]

Ranking: Rank precise W in the particular population for Zg;;.

Storage: Save Zp;¢, iterations, WaGa-Best, function counts and time.
GA procedure End
Start of IPA

Inputs: Waa-Best is selected as an initial point.

Output: Wga-ipa shows the best weights of GA-IPA.

Initialize: Wga-Best, generations, assignments and other standards.

Terminating criteria: Stop if [Zz;; = 10-20], [TolFun = 10-18], [Iterations = 700], [TolCon =
TolX = 10-22] and [MaxFunEvals = 260000] attained.

Evaluation of Fit: Compute the values of W and E for Eqgs (4)—(9).

Amendments: Normalize ‘fmincon’ for IPA, compute Zz;; for Eqs (4)—9).

Accumulate: Transmute Waa-pa, time, iterations, function counts and Zp;; for the IPA trials.
IPA process End

GA is known as a famous global search optimization method applied to solve the solve the
constrained/unconstrained models efficiently. It is commonly implemented to regulate the precise
population outcomes for solving the various stiff and complex models using the optimal training
process. For the best solutions of the model, GA is implemented through the process of selection,
reproduction, mutation and crossover procedures. Recently, GA is applied in many famous applications
that can be seen in [28—32] and references cited therein.

IPA is a local search, rapid and quick optimization method, implemented to solve various reputed
complex and non-stiff models efficiently. IPA is implemented in various models like phase-field
approach to brittle and ductile fracture [33], multistage nonlinear nonconvex programs [34], SITR
model for dynamics of novel coronavirus [35], viscoplastic fluid flows [36] and security constrained
optimal power flow problems [37]. To control the Laziness of the global search method GA, the
process of hybridization with the IPA is applied for solving the nonlinear smoke model. The detailed
pseudocode based on the GNNs-GA-IPA is provided in Table 1.
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Figure 1. Designed framework of the GNNs-GA-IPA to solve the nonlinear smoke model.

3. Performance measures

The mathematical presentations using the statistical operators with “variance account for (VAF)”,
“Theil’s inequality coefficient (TIC)”, “mean absolute deviation (MAD)” and “semi interquartile (SI)
range” together with the global operators G.VAF, G-TIC G-MAD are accessible to solve the nonlinear

smoke model, written as:

’

[\/.A.FP, \/.A.Fs, VAFQT’ VAFQS] =

\
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(
(
(1

(1

[E-VAFp, E-VAFg, EVAF, , E-VAF, ] = H

_ var(Pm—Pp)
var(Ppy)
_ var(Sm—ﬁm)) %1

var(Sy)

) x 100,

00,

_ var((QT)m—(QT)m)) % 100,

var(Qr)m

_ var((Qs)m=(Qs)m)

var(Qs)m

)x100_

100 — V.A.Fp, 100 — V.AF,
100 — VAF,,, 100 — VAF,,

(10)

|
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[TLCp, TLCs, TLC,,, TLCy | =

(A58 (P —P)? S (SmSm)”
(faznes i fizmes 22) (3 2es i 3285
JEEhea(©@Dm=@rm)’ (1D
(\/%Z%=1(Qr)5n+J%Z%q(@r)fn)

TR (@9)m-@sIm)”

_(\/%mq(as)%ﬁ\/%Z”mq(@s)?n)

[M.A.Dp, MA.Dg, MA.D,,, MAD, ] =

n=1|Pn = Bl Z0ea|Sm — Sl (12)
[ rt | @0 = (0r), | Zhes [ (@) — (05), |

{S.I Range = —0.5 X (Q; — Q3),
Q,= 1%tquartile Q3 = 3"%quartile. (13)

P,S, Q; and Qs are the approximate form of the solutions.
4. Results and simulations

The current investigations are associated to solve the nonlinear smoke model. The relative
performance of the obtained solutions with the Runge-Kutta results is tested to show the exactness of
the GNNs-GA-IPA. Moreover, the statistical operator’s performances are used to validate the accuracy,
reliability and precision of the proposed GNNs-GA-IPA. The updated form of the nonlinear smoke
model given in the system (1) along with its ICs using the appropriate parameter values is shown as:

( P'(2) =20 — (20P(2) + 0.003P(2)S(2)), P(0) = 0.3,

45'(12) = 0.003P(2)S(2) — 20.35(2) + 3Q+(2),5(0) = 0.5,
Qr(2) = 0.155(2) — 23Q7(2),Qr(0) = 0.1,

LQ}(H) = 0.155(2) —200Qp(12), Qp(0) = 0.2,

(14)

A fitness function for the nonlinear smoke model (14) is written as:
EFit =
Lyw ([ﬁ,;l +20P, — 20 + 0.003ﬁm§m]2 + [$y, +20.35,, — 0.0032,,S,, — 3(QT)m]2)
m=1 , A 12 , A 12
N +[(Q)m + 23(Qr)m — 0.158,,]” + [(@p)m + 20(Qp)m — 0.155,,] (15)
~ 2 N 2
+2[(Py = 0.3)" + (86 = 0.5)" + ((@r)o — 0.1)% + ((Qp)o — 0.2)%].

The performance of the scheme is observed based on the nonlinear smoke system using the
GNNs-GA-IPA for 20 independent executions using 30 numbers of variables. The proposed form of
the solution based on the nonlinear smoke model is provided in the arrangement of best weights using
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the below equations for each group of the nonlinear smoke model and the graphical illustrations of

these weights are plotted in Figure 2.

P() = 7.2965(2 tan™t e(75:3430-18462) _ 57y
2.7636(2 tan~1 ¢1:26062+0.5134) _ () 57
+15.294(2 tan~1 ¢(115519+2.0601) _ 0 577) 4
8.7324(2 tan™1 e(197590+2:9789) _ ( 5q)
—71646(2 tan—l e(2.5198.(2+5.9852) _ 057.[) _
0.0053(2 tan~! (70:2462-1.7692) _ () 57)
—2.6104(2 tan™1 (0:23230+1.5497) _ ( 5) —
1.4677(2 tan~1 ¢(027820+2.0890) _ () 577)
+2.4715(2 tan~1 (1851602-3.253) _  57) —
2.9189(2 tan~1 ¢(10:2720-7.2465) _ () 5p),

S() = 7.6303(2tan~1 e(~0-14302+0.4605) _ 0 57 4
9.6607(2 tan~! ¢(0:2642+08726) _ () 57)
—1.8710(2 tan~1 (0:32522-1.097) _ ( 57) 4
0.0451(2 tan~1 ¢(71:9610+8.4961) _ () 5)
+5.4711(2 tan~" e(72:83690-1.533) _ ( 577) —
1.7275(2 tan~1 e(7921382-2.037) _ ( 57)
+0.2908(2 tan 1 e(72:42362-0378) _ 0 57) —
1.9171(2 tan~! e(79237602-0.360) _ ( 5)
+2.7144(2 tan~' ¢(3842802-78525) _  57) —
5.3000(2 tan~! ¢(7461480+4.164) _ () 5

0r(2) = —0.563(2 tan~1 (732452+23616) _ ( 577) —
0.022(2 tan~1 e(89859+1.2373) _ () 57)
—0.5360(2 tan ™! ¢(3-29820-2.4088) _ ( 5) —
2.1382(2tan™1 ¢(73:872-3.100) _ ( 57)
—4.7812(2 tan~1 ¢(-+11822-4.994) _ ( 57) 4
0.9505(2 tan~1 ¢(70:0382-0.241) _ ( 57
+17.841(2 tan™1 ¢(71475362-4557) _ 0 57) —
3.4575(2 tan~! ¢(4:3472+0.7343) _ () 57)
+11.8361(2 tan™t (*+-54512+2.013) _  577) 4
2717(2 tan—l e(3.6697ﬂ+7.33831) _ 0.57.[)’

Qs(2) = 0.0762(2 tan~1t ¢(2:99909+2:8605) _ 0 577) 4
2.8390(2 tan~1 (8:31772+06804) _ ) 57
+7.6702(2 tan~1 ¢(70.04812+1.9373) _ 5y —
0.4142(2 tan~1 ¢(70:3092-0.401) _ ( 57
—6.2827(2 tan~1 ¢(122910+3.5918) _  57) 4
0.5077(2 tan~! ¢(1.05742+1.0166) _ () 57)
+2.2061(2 tan~1 ¢(1:51330+107487) _  577) —
0.2776(2 tan~1 e(1.733702+5.1928) _ 0.57)
—5.3623(2 tan 1 (845642+1.3100) _ () 577) +
0.0684(2 tan 1 e(-415830-1.6646) _ () 5y
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A fitness function shown in the model (15) is optimized along with the hybridization of GA-
IPA for the nonlinear smoke system. The proposed form of the outcomes is found using the above
systems (16)—(19) for 30 variables between 0 to 1 input along with step size 0.1. The solutions of
the nonlinear smoke model along with the best weight vector values are illustrated in Figures 2(a—
d). The comparison of the mean and best outcomes with the reference Runge-Kutta solutions is
provided in Figures 2(e—h) to solve the nonlinear smoke system. It is noticed that the mean and best
results obtained by the GNNs-GA-IPA are overlapped with the reference results to solve each group
of the nonlinear smoke model, which authenticate the exactness of the designed GNNs-GA-IPA.
Figure 3 illustrates the values of the absolute error (AE) for each group of the nonlinear smoke
model. It is observed that the values of the best AE for the group of potential smokers, smoker;
temporary smoker and permanent smoker lie around 10-05-10-07, 10-05-10-06, 10-04-10-07 and
10-04-10-06, respectively. While, the mean AE values for these groups of the nonlinear smoke
model found around 10-03-10-04, 10-03-10-05, 10-02-10-04 and 10-03-10-04, respectively.
Figure 4 signifies the performance measures based on the operators EVAF, MAD and TIC to solve
each group of the nonlinear smoke model. It is specified in the plots that the best values of the EVAF,
MAD and TIC performances of each group of the nonlinear smoke model lie around 10-04-10-08, 10-03-
10-05 and 10-08-10-09, respectively. The best performances of the EVAF, MAD and TIC for the P(12)
and S(2) groups lie around 10-08-10-09, 10-05-10-06 and 10-09-10-10, respectively. The best
performances of the EVAF, MAD and TIC for the Q;(R2) group of the nonlinear smoke model found
around 10-05-10-06, 10-04-10-06 and 10-08-10-10 and the best performances of the EVAF, MAD and
TIC for the Qp(R2) group of the nonlinear smoke model found around 10-07-10-08, 10-05-10-06
and 10-09-10-10. One can accomplish from the indications that the designed GNNs-GA-IPA is
precise and accurate.

The graphic illustrations based on the statistical performances are provided in Figures 5-7 to
find the convergence along with the boxplots and the histograms to solve the nonlinear smoke
model. Figure 5 shows the performance of TIC for twenty runs to solve each group of the nonlinear
smoke model. It is observed that most of the executions for the P,S, Q7 and Qs groups lie
around 10-07-10-10. The MAD performances are illustrated in Figure 6 that depicts most of the
executions for the P,’S, Q; and Qs groups lie around 10-03-10-05. The EVAF performances are
illustrated in Figure 7 that depicts most of the executions for the P, S, Q; and Qg groups lie around
10-04-10-08. The best trial performances using the GNNs-GA-IPA are calculated suitable for the TIC,
EVAF and MAD operators.

The routines for different statistical operators, Maximum (Max), Median, Minimum (Min),
standard deviation (STD) and SIR are provided in Tables 2—5 to validate the accurateness and precision
to solvethe P,S, Qr and Qs groups of the nonlinear smoke system. The Max operators indicate the
worst solutions, whereas the Min operators show the best results using 20 independent runs. For the
group P(2), S(2), Qr(2) and Qs({2) of the nonlinear smoke model, the ‘Max’ and ‘Min’
standards lie around 10-03-10-04 and 10-06-10-08, while the Median, SIR, STD and Mean standards
lie around 10-04-10-05. These small values designate the worth and values of the GNNs-GA-IPA to
solve each group of the nonlinear smoke model. One can observe through these calculate measures,
that the designed GNNs-GA-IPA is precise, accurate and stable.

The global performances of the G.EVAF, G.MAD and G.TIC operators for twenty runs to solve
the designed GNNs-GA-IPA are provided in Table 6 to solve each group of the nonlinear smoke model.
These Min global G.MAD, G.TIC and G.EVAF performances found around 10-04-10-05, 10-08-10-09
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and 10-05-10-07, whereas the SIR global values lie in the ranges of 10-04-10-05, 10-08-10-09 and
10-04-10-07 for all groups of the nonlinear smoke model. These close optimal global measures

values demonstrate the correctness, accurateness and precision of the proposed GNNs-GA-IPA.
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Table 2. Statistical measures for the nonlinear smoke model of group P(12).

, P®

Max Min Median STD SIR Mean
0 1.9698E-03  1.5128E-07  1.3179E-05  4.3988E-04  2.8322E-05 1.5255E-04
0.1 2.2927E-03  4.0452E-05  3.7091E-04  7.5870E-04  3.5757E-04 7.1580E-04
0.2 2.8517E-04 2.5715E-06  8.0076E-05  1.0291E-04  8.7298E-05 1.0480E-04
0.3 3.7540E-04  5.0221E-06  4.6631E-05  9.6615E-05  5.7759E-05 8.0291E-05
0.4 3.1095E-04  7.2215E-07 2.5169E-05  7.9915E-05  4.8322E-05 6.4497E-05
0.5 3.7039E-04  1.0187E-07  4.0958E-05  9.9187E-05  4.0049E-05 7.4737E-05
0.6 3.4788E-04 2.7497E-06  3.6783E-05  8.6814E-05  5.3154E-05 7.3405E-05
0.7 7.2524E-04  3.8591E-06  2.6741E-05  1.6887E-04  5.3778E-05 9.7130E-05
0.8 3.1439E-04 2.3193E-06  3.0315E-05  8.9765E-05  3.8282E-05 6.8701E-05
0.9 8.2385E-04  3.6579E-06  3.6581E-05  1.8035E-04  2.2583E-05 8.9806E-05
1 3.9210E-04  8.9543E-07  1.4825E-05  1.1497E-04  3.4368E-05 6.7763E-05

Table 3. Statistical measures for the nonlinear smoke model of group S(£2).

, S@

Max Min Median STD SIR Mean
0 2.2510E-03  8.8331E-07  1.5049E-05  4.3988E-04  6.5800E-05 2.4625E-04
0.1 3.5749E-03  1.2621E-05 4.2711E-04  7.5870E-04  5.9138E-04 9.2693E-04
0.2 5.8967E-04  6.8508E-06  5.0534E-05  1.0291E-04  3.8159E-05 1.0389E-04
0.3 3.9412E-04  4.5897E-07  5.5860E-05  9.6615E-05  4.8082E-05 9.7091E-05
0.4 1.8148E-04 1.4261E-06  3.2627E-05  7.9915E-05  4.6977E-05 6.1366E-05
0.5 3.8406E-04  3.0499E-06  5.0425E-05  9.9187E-05  4.5676E-05 9.6411E-05
0.6 3.3693E-04 1.0786E-06  3.2525E-05  8.6814E-05  2.6474E-05 5.9807E-05
0.7 3.8976E-04  5.9658E-08  3.4605E-05  1.6887E-04  3.0731E-05 7.1943E-05
0.8 4.6451E-04  1.8083E-07  2.9100E-05  8.9765E-05  1.9639E-05 5.1752E-05
0.9 3.7056E-04  5.8454E-07  3.1691E-05  1.8035E-04  4.5808E-05 7.8891E-05
1 3.4425E-04  3.5833E-08  3.7245E-05  1.1497E-04  2.5924E-05 6.3636E-05

Table 4. Statistical measures for the nonlinear smoke model of group Q7 ({2).

. 0@

Max Min Median STD SIR Mean
0 6.7379E-02  2.0435E-06  7.4367E-05  4.3988E-04  1.2547E-03 6.6320E-03
0.1 8.8212E-03  1.5933E-04  6.6896E-04  7.5870E-04  6.4736E-04 1.4858E-03
0.2 1.2208E-03  1.0177E-06  1.6681E-04  1.0291E-04  1.3929E-04 2.7755E-04
0.3 1.2039E-03  6.2163E-06  3.5966E-05  9.6615E-05  7.5659E-05 2.0075E-04
0.4 5.2048E-04  1.5004E-06  9.3199E-05  7.9915E-05  1.4812E-04 1.7703E-04
0.5 7.9163E-04 4.1214E-06  7.5760E-05  9.9187E-05  9.4190E-05 1.7072E-04
0.6 7.5113E-04  3.4495E-06  5.6836E-05  8.6814E-05  1.5865E-04 1.8051E-04
0.7 6.9564E-04  2.1601E-06  8.7570E-05  1.6887E-04  1.2891E-04 1.6565E-04
0.8 8.5659E-04  2.3356E-06  5.6424E-05  8.9765E-05  6.5358E-05 1.2238E-04
0.9 8.5832E-04  1.8869E-06  8.6636E-05  1.8035E-04 1.2103E-04 1.8340E-04
1 5.9922E-04  9.8962E-07  3.9188E-05  1.1497E-04  4.8965E-05 1.1550E-04
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Table 5. Statistical measures for the nonlinear smoke model of group Qs({2).

g @s()
Max Min Median STD SIR Mean
0 1.4249E-02  4.6038E-07  1.0193E-05  3.1752E-03  5.3007E-05 7.6325E-04
0.1 7.1456E-03  9.4140E-06  2.0718E-04  1.6018E-03  3.9882E-04 8.1152E-04
0.2 1.4449E-03  2.1615E-07  2.8536E-05  3.6835E-04  3.0447E-05 1.7480E-04
0.3 3.7091E-04  3.2754E-07  2.1791E-05  8.7324E-05  2.6186E-05 5.6609E-05
0.4 1.5545E-03  1.8846E-07  2.2389E-05  3.7612E-04  6.1143E-05 1.5810E-04
0.5 3.7972E-04  3.6651E-06  1.7656E-05  9.8654E-05  3.1268E-05 6.2521E-05
0.6 1.2224E-03  2.4032E-07  2.1050E-05  2.9478E-04  3.3053E-05 1.2732E-04
0.7 7.4101E-04  1.7539E-07  2.4276E-05  1.6625E-04  2.5398E-05 7.7130E-05
0.8 1.0726E-03  2.5213E-06  1.4100E-05  2.3771E-04  3.0541E-05 9.1329E-05
0.9 7.4407E-04  2.5770E-06  3.5282E-05  1.6258E-04  2.8865E-05 7.9482E-05
1 9.7616E-04  7.0693E-07  8.9328E-06  2.1858E-04  1.0034E-05 8.0351E-05
Table 6. Global measures based on the MAD, TIC and EVAF values to solve each group
of the nonlinear smoke model.
cl (G.MAD) (G.TIC) (G.EVAF)
o Min SIR Min SIR Min SIR
P(Q)  1.2499E-04 9.6058E-05 7.2597E-09 7.4459E-09 2.6155E-07 7.5331E-07
S(Q)  9.7570E-05 1.3353E-04 8.3068E-08 1.0766E-08 1.3879E-06 5.2293E-06
Qr(2) 1.4111E-04 2.5334E-04 9.1566E-09 1.8187E-08 3.9553E-05 5.1487E-04
Qs(2) 6.0979E-05 4.1189E-05 3.6367E-09 4.8515E-09 1.1015E-06 9.3296E-06

5. Reference style, citation, and cross-reference

The current investigations are related to solve the nonlinear smoke model by exploiting the
Gudermannian neural networks using the global and local search methodologies, i.e., GNNs-GA-IPA.
The smoke model is a system of nonlinear equations contain four groups temporary smokers, potential
smokers, permanent smokers and smokers. For the numerical outcomes, a fitness function is
established using all groups of the nonlinear smoke model and its corresponding ICs. The optimization
of the fitness function using the hybrid computing framework of GNNs-GA-IPA for solving each group of
the nonlinear smoke model. The Gudermannian function is designed as a merit function along with 30
numbers of variables. The overlapping of the proposed mean and best outcomes is performed with the
Runge-Kutta reference results for each group of the nonlinear smoke model. These matching and
reliable results to solve the nonlinear smoke model indicate the exactness of the designed GNNs-GA-
IPA. In order to show the precision and accuracy of the proposed GNNs-GA-IPA, the statistical
performances based on the TIC, MAD and EVAF operators have been accessible for twenty trials using 10
numbers of neurons. To check the performance analysis, most of the runs based on the statistical TIC,
MAD and EVAF performances show a higher level of accuracy to solve each group of the nonlinear
smoke model. The valuations using the statistical gages of Max, Min, Mean, STD, Med and SIR further
validate the value of the proposed GNNs-GA-IPA. Furthermore, global presentations through SIR and
Min have been applied for the nonlinear smoke model.

In future, the designed GNNs-GA-IPA is accomplished to solve the biological nonlinear
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systems [38], singular higher order model [39], fluid dynamics nonlinear models [40] and fractional
differential model [41].
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