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Abstract: These investigations are to find the numerical solutions of the nonlinear smoke model to 
exploit a stochastic framework called gudermannian neural works (GNNs) along with the optimization 
procedures of global/local search terminologies based genetic algorithm (GA) and interior-point 
algorithm (IPA), i.e., GNNs-GA-IPA. The nonlinear smoke system depends upon four groups, 
temporary smokers, potential smokers, permanent smokers and smokers. In order to solve the model, 
the design of fitness function is presented based on the differential system and the initial conditions of 
the nonlinear smoke system. To check the correctness of the GNNs-GA-IPA, the obtained results are 
compared with the Runge-Kutta method. The plots of the weight vectors, absolute error and 
comparison of the results are provided for each group of the nonlinear smoke model. Furthermore, 
statistical performances are provided using the single and multiple trial to authenticate the stability and 
reliability of the GNNs-GA-IPA for solving the nonlinear smoke system. 

Keywords: Gudermannain neural networks; nonlinear smoke model; Runge-Kutta; active-set 
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1. Introduction  

According to the reports of the World Health Organization (WHO), there are many deaths occur 
using the tobacco epidemic and its prey most of the disabled persons during some past few years. The 
tobacco epidemic not only disturbs the individuals, but also become a reason for increases the health 
care cost, delays financial development and decreases the families’ budgets [1]. The chain smoking is 
a big reason of death due to oral cavity cancer, bladder, larynx, esophagus, lung, stomach, pancreas, 
renal pelvis and cervix. The smoking also creates the problems of heart, chronic obstructive, lung 
weakness, breathing diseases, peripheral vascular and less weight of newly born children. WHO also 
reports that the reasoning of unproductive pregnancies, peptic ulcer disease and increase the infant 
mortality rate is due to smoking [2]. The termination of smoking is an instantaneous health support 
and dramatically reduces the danger of many deathly diseases and improve the respiratory system of 
the younger. It is the obligation of the higher authorities to teach their people and aware the 
communities about the drawbacks of smoking as well as develop an active policy to control this habit. 
Castillo et al. [3] discussed the mathematical model to avoid the smoking by considering the population 
into two kings, i.e., smokers (S) and those individuals who left smoking permanently (QP). In addition, 
Shoromi et al. [4] presented a new group temporary smoker (QT) in this mathematical model, which 
is defined as: 

      

⎩
⎪
⎨

⎪
⎧𝑃′ 𝛺 𝜇 1 𝑃 𝛺 𝛽𝑃 𝛺 𝑆 𝛺 , 𝑃 0 𝑙 ,

𝑆 ′ 𝛺 𝛽𝑃 𝛺 𝑆 𝛺 𝛾 𝜇 𝑆 𝛺 𝛼𝑄 𝛺 , 𝑆 0 𝑙 ,
𝑄′ 𝛺 𝛾 1 𝜎 𝑆 𝛺 𝜇 𝛼 𝑄 𝛺 , 𝑄 0 𝑙 ,
𝑄′ 𝛺 𝜇𝑄 𝛺 𝛾𝜎𝑆 𝛺 , 𝑄 0 𝑙 ,

  
  (1)

where 𝑃 𝛺 , 𝑆 𝛺 , 𝑄 𝛺  and 𝑄 𝛺  indicate the Potential smoker (P) group, Smoker (S) group, 
Temporary smoker (QT) group and Permanent smoker (QS) group at time 𝛺. Whereas,𝜎, 𝛼, 𝛾, 𝛽 and 
𝜇 represent the positive values of the constants. Furthermore, 𝑙 , 𝑙 , 𝑙  and 𝑙  designate the initial 
conditions (ICs) of the nonlinear smoke model (1). 

The aim of this work is to investigate the nonlinear smoke model numerically to exploit a 
stochastic framework called Gudermannian neural works (GNNs) [5–8] along with the optimization 
procedures of global/local search terminologies based Genetic algorithm (GA) and interior-point 
approach (IPA), i.e., GNNs-GA-IPA. The development of the numerical solvers has been reported in 
various proposals for the solution of the linear/nonlinear differential models with their own 
applicability, stability and significance [9–13], however recently artificial intelligence based numerical 
computing platform are introduction as a promising alternatives [14–18]. Whereas, GNNs-GA-IPA is 
never been applied before to solve the nonlinear smoke system. Some recent proposals of the stochastic 
solvers are functional singular system [19], nonlinear SIR dengue fever model [20], mathematical 
models of environmental economic systems [21], prey-predator nonlinear system [22], Thomas-Fermi 
system [23], mosquito dispersal model [24], transmission of heat in human head [25], multi-singular 
fractional system [26] and nonlinear COVID-19 model [27]. Some novel prominent features of the 
current investigations are provided as: 
 The GNNs are explored efficaciously using the hybrid optimization paradigm based on GA-IPA 

for solving the nonlinear smoke model. 
 The consistent overlapped outcomes obtained by GNNs-GA-IPA and the Runge-Kutta numerical 
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results validate the correctness and exactness of the proposed scheme. 
 The authorization of the performance is accomplished through different statistical valuations to 

attain the numerical outcomes of the nonlinear smoke system. 
The benefits, merits and noteworthy contributions of the GNNs-GA-IPA are simply implemented 

to solve the nonlinear smoke model, understanding easiness, operated efficiently and inclusive with 
reliable applications in diversified fields. 

The remaining parts of the current work are studied as: Section 2 defines the procedures of GNNs-
GA-IPA along with and statistical measures. Section 3 indicates the results simulations. Section 4 
provided the final remarks and future research reports. 

2. Designed methodology 

In this section, the proposed form of the GNNs-GA-IPA is presented in two steps to solve the 
nonlinear smoke model as: 
• A merit function is designed using the differential system and ICs of the nonlinear smoke system. 
• The necessary and essential settings are provided for the optimization procedures of GA-IPA to 

solve the nonlinear smoke model. 

2.1. Structure of GNN-GA-IPA 

In this section, the mathematical formulations to solve the nonlinear smoke model-based groups, 
Potential smoker (𝑃), Temporary smoker (𝑄 ), Permanent smoker (𝑄 ) and Smoker (𝑆) are presented. 
The proposed results of these groups of the nonlinear smoke model, 𝑃,  𝑆,  𝑄   and 𝑄   are 
represented by 𝑃,  𝑆,  𝑄  and 𝑄  together with their derivatives are written as: 

𝑃 𝛺 ,  𝑆 𝛺 ,  𝑄 𝛺 ,  𝑄 𝛺
∑ 𝑘 , 𝛵 𝑤 , 𝛺 ℎ , , ∑ 𝑎 , 𝛵 𝑤 , 𝛺 ℎ , ,
∑ 𝑎 , 𝛵 𝑤 , 𝛺 ℎ , , ∑ 𝑎 , 𝛵 𝑤 , 𝛺 ℎ ,

, 

(2) 

 𝑃′ 𝛺 ,  𝑆 ′ 𝛺 , 𝑄′ 𝛺 , 𝑄′ 𝛺

∑ 𝑘 , 𝛵 ′ 𝑤 , 𝛺 ℎ , ,  ∑ 𝑘 , 𝛵 ′ 𝑤 , 𝛺 ℎ , ,
∑ 𝑘 , 𝛵 ′ 𝑤 , 𝛺 ℎ , , ∑ 𝑘 , 𝛵 ′ 𝑤 , 𝛺 ℎ ,

.  

where W is the unknown weight vector, written as: 

𝑊 𝑊 ,  𝑊 ,  𝑊 ,  𝑊  , for 𝑊 𝑘 ,  𝜔 ,  ℎ  , 𝑊 𝑘 ,  𝜔 ,  ℎ  , 𝑊 𝑘 ,  𝜔 ,  ℎ  

and 𝑊 𝑘 ,  𝜔 ,  ℎ , where 

𝑘 𝑘 , ,  𝑘 , , . . . ,  𝑘 , ,  𝑘 𝑘 , ,  𝑘 , , . . . ,  𝑘 , ,  𝑘 𝑘 , ,  𝑘 , , . . . ,  𝑘 , , 𝑘

𝑘 , ,  𝑘 , , . . . ,  𝑘 , ,  𝑤 𝑤 , ,  𝑤 , , . . . ,  𝑤 , ,  𝑤 𝑤 , ,  𝑤 , , . . . ,  𝑤 ,  𝑤

𝑤 , ,  𝑤 , , . . . ,  𝑤 , ,  𝑤 𝑤 , ,  𝑤 , , . . . ,  𝑤 , ,  ℎ ℎ , ,  ℎ , , . . . ,  ℎ ,  ℎ
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ℎ , ,  ℎ , , . . . ,  ℎ , ,  ℎ ℎ , ,  ℎ , , . . . ,  ℎ , ,  ℎ ℎ , ,  ℎ , , . . . ,  ℎ ,  

The Gudermannian function 𝑇 𝛺 2 𝑡𝑎𝑛 𝑒𝑥𝑝 𝛺 0.5𝜋 is applied in the above model, this 
GNNs have never been implemented before the solve this model. 

𝑃 𝛺 , 𝑆 𝛺 ,
𝑄 𝛺 , 𝑄 𝛺

∑ 𝑘 , 2 𝑡𝑎𝑛 𝑒 , ℎ , , ∑ 𝑘 , 2 𝑡𝑎𝑛 𝑒 , ℎ , ,

∑ 𝑘 , 2 𝑡𝑎𝑛 𝑒 , ℎ , , ∑ 𝑘 , 2 𝑡𝑎𝑛 𝑒 , ℎ ,
, 

𝑃′ 𝛺 , 𝑆 ′ 𝛺 ,
𝑄′ 𝛺 , 𝑄′ 𝛺

⎣
⎢
⎢
⎢
⎢
⎡∑ 2𝑘 , 𝑤 ,

, ,

, ,
, ∑ 2𝑘 , 𝑤 ,

, ,

, ,
,

∑ 2𝑘 , 𝑤 ,

, ,

, ,
, ∑ 2𝑘 , 𝑤 ,

, ,

, , ⎦
⎥
⎥
⎥
⎥
⎤

, 

(3)

For the process of optimization, a fitness function is given as: 

𝛯 𝛯 𝛯 𝛯 𝛯 𝛯 ,  (4)

𝛯 ∑ 𝑃′ 𝜇 𝜇𝑃 𝛽𝑃 𝑆 ,  (5)

𝛯 ∑ 𝑆 ′ 𝛽𝑃 𝑆 𝜇𝑆 𝛾𝑆 𝛼 𝑄 ,  (6)

𝛯 ∑ 𝑄′ 𝛾𝜎𝑆 𝛾𝑆 𝛼 𝑄 𝜇 𝑄 ,  (7)

𝛯 ∑ 𝑄′ 𝛾𝜎𝑆 𝜇 𝑄 ,  (8)

𝛯 𝑃 𝑙 𝑆 𝑙 𝑄 𝑙 𝑄 𝑙 ,    (9)

where 𝑃 𝑃 𝛺 ,  𝑆 𝑆 𝛺 , 𝑄 𝑄 𝛺 , 𝑄 𝑄 𝛺 , 𝛵𝑁 1,  and 𝛺 𝑖ℎ . The 
error functions 𝛯 , 𝛯 , 𝛯  and 𝛯  are related to system (1), while, 𝛯  is based on the ICs of the 
nonlinear smoke model (1). 

2.2. Optimization procedures: GA-IPA 

In this section, the performance of the scheme is observed using the optimization process of GA-
IPA to solve the nonlinear smoke system. The designed GNNs-GA-IPA methodology based on the 
nonlinear smoke system is illustrated in Figure 1. 
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Table 1. The procedure of optimization using the GNNs-GA-IPA for the nonlinear smoke model. 

GA process starts 
 Inputs: The chromosomes of the same network elements are denoted as: 
 W = [𝑘, 𝑤, ℎ] 
 Population: Chromosomes set is represented as: 

 𝑊 𝑊 ,  𝑊 ,  𝑊 ,  𝑊 , 𝑊 𝑘 ,  𝜔 ,  ℎ , 𝑊 𝑘 ,  𝜔 ,  ℎ , 𝑊 𝑘 ,  𝜔 ,  ℎ

 and 𝑊 𝑘 ,  𝜔 ,  ℎ , W is the weight vector 

 Outputs: The best global weight values are signified as: WGA-Best 
 Initialization: For the chromosome’s assortment, adjust the W 
 Assessment of FIT: Adjust “𝛯 ” in the population (P) for each vector values using  Eqs (4)–(9).

 Stopping standards: Terminate if any of the criteria is achieved [𝛯  = 10-19], [Generataions
= 120] [TolCon = TolFun = 10-18], [StallLimit = 150], & [Size of population = 270].  

Move to [storage] 
 Ranking: Rank precise W in the particular population for 𝛯 . 
 Storage: Save 𝛯 , iterations, WGA-Best, function counts and time. 
GA procedure End 
Start of IPA 
 Inputs: WGA-Best is selected as an initial point. 
 Output: WGA-IPA shows the best weights of GA-IPA. 
 Initialize: WGA-Best, generations, assignments and other standards. 
 Terminating criteria: Stop if [𝛯  = 10-20], [TolFun = 10-18], [Iterations = 700],  [TolCon = 
TolX = 10-22] and [MaxFunEvals = 260000] attained. 
 Evaluation of Fit: Compute the values of W and E for Eqs (4)–(9). 
 Amendments: Normalize ‘fmincon’ for IPA, compute 𝛯  for Eqs (4)–(9). 
 Accumulate: Transmute WGA-IPA, time, iterations, function counts and 𝛯  for the  IPA trials. 
IPA process End 

GA is known as a famous global search optimization method applied to solve the solve the 
constrained/unconstrained models efficiently. It is commonly implemented to regulate the precise 
population outcomes for solving the various stiff and complex models using the optimal training 
process. For the best solutions of the model, GA is implemented through the process of selection, 
reproduction, mutation and crossover procedures. Recently, GA is applied in many famous applications 
that can be seen in [28–32] and references cited therein.  

IPA is a local search, rapid and quick optimization method, implemented to solve various reputed 
complex and non-stiff models efficiently. IPA is implemented in various models like phase-field 
approach to brittle and ductile fracture [33], multistage nonlinear nonconvex programs [34], SITR 
model for dynamics of novel coronavirus [35], viscoplastic fluid flows [36] and security constrained 
optimal power flow problems [37]. To control the Laziness of the global search method GA, the 
process of hybridization with the IPA is applied for solving the nonlinear smoke model. The detailed 
pseudocode based on the GNNs-GA-IPA is provided in Table 1. 
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Selection, reproduction, crossover and 
mutation

Local	search:	IPA
Best outcomes, start point, bounds and 

Optimset

The Problem

Fitness	
Assessment

Terminating values 
attained

Best weight 
values of GA

Fitness	
Assessment

Stopping standards 
accomplished

Start	of	GA
Optimset, Population, Random tasks and Bounds,

Updated	generations
Best	GA‐IPA	values

No

Yes

Graphical	illustrations	of	GA‐IPA

Present results

Yes

No

Mathematical Model

Optimization

Formulation of GNNs Nonlinear smoke model

Hybrid approach: GA-IPA

    

 

Figure 1. Designed framework of the GNNs-GA-IPA to solve the nonlinear smoke model. 

3. Performance measures 

The mathematical presentations using the statistical operators with “variance account for (VAF)”, 
“Theil’s inequality coefficient (TIC)”, “mean absolute deviation (MAD)” and “semi interquartile (SI) 
range” together with the global operators G.VAF, G-TIC G-MAD are accessible to solve the nonlinear 
smoke model, written as: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

V.A.F , V.A.F , V.A.F , V.A.F

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 1 100,

1 100,

1 100,

1 100 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

,

E-V.A.F , E-V.A.F , E-V.A.F , E-V.A.F
100 V.A.F , 100 V.A.F ,
100 V.A.F , 100 V.A.F .

  (10) 
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T.I.C , T.I.C , T.I.C , T.I.C

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ ∑

∑ ∑
,

∑

∑ ∑
,

∑

∑ ∑
,

∑

∑ ∑ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

,  
(11) 

M.A.D , M.A.D , M.A.D , M.A.D

∑ 𝑃 𝑃 , ∑ 𝑆 𝑆 ,

∑ 𝑄 𝑄 , ∑ 𝑄 𝑄
  

(12) 

S.I Range 0.5 𝑄 𝑄 ,
𝑄  1 quartile 𝑄 3 quartile.

  (13) 

𝑃,  𝑆,  𝑄  and 𝑄  are the approximate form of the solutions. 

4. Results and simulations 

The current investigations are associated to solve the nonlinear smoke model. The relative 
performance of the obtained solutions with the Runge-Kutta results is tested to show the exactness of 
the GNNs-GA-IPA. Moreover, the statistical operator’s performances are used to validate the accuracy, 
reliability and precision of the proposed GNNs-GA-IPA. The updated form of the nonlinear smoke 
model given in the system (1) along with its ICs using the appropriate parameter values is shown as: 

 

⎩
⎪
⎨

⎪
⎧𝑃′ 𝛺 20 20𝑃 𝛺 0.003𝑃 𝛺 𝑆 𝛺 , 𝑃 0 0.3,

𝑆 ′ 𝛺 0.003𝑃 𝛺 𝑆 𝛺 20.3𝑆 𝛺 3𝑄 𝛺 , 𝑆 0 0.5,
𝑄′ 𝛺 0.15𝑆 𝛺 23𝑄 𝛺 , 𝑄 0 0.1,
𝑄′ 𝛺 0.15𝑆 𝛺 20𝑄 𝛺 , 𝑄 0 0.2,

 (14)

A fitness function for the nonlinear smoke model (14) is written as: 

𝛯

∑
𝑃′ 20𝑃 20 0.003𝑃 𝑆 𝑆 ′ 20.3𝑆 0.003𝑃 𝑆 3 𝑄

𝑄′ 23 𝑄 0.15𝑆 𝑄′ 20 𝑄 0.15𝑆

𝑃 0.3 𝑆 0.5 𝑄 0.1 𝑄 0.2 . 

(15)

The performance of the scheme is observed based on the nonlinear smoke system using the 
GNNs-GA-IPA for 20 independent executions using 30 numbers of variables. The proposed form of 
the solution based on the nonlinear smoke model is provided in the arrangement of best weights using 
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the below equations for each group of the nonlinear smoke model and the graphical illustrations of 
these weights are plotted in Figure 2.  

𝑃 𝛺 7.2965 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋
2.7636 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋  

15.294 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋
8.7324 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋  
7.1646 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋
0.0053 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋  
2.6104 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋
1.4677 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋  
2.4715 2 𝑡𝑎𝑛 𝑒 . 0.5𝜋
2.9189 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋 , 

(16)

𝑆 𝛺 7.6303 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋
9.6607 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋  

1.8710 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋
0.0451 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋  

5.4711 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋
1.7275 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋  

0.2908 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋
1.9171 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋  

2.7144 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋
5.3000 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋 , 

(17)

𝑄 𝛺 0.563 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋
0.022 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋  

0.5360 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋
2.1382 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋  

4.7812 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋
0.9505 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋  

17.841 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋
3.4575 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋  

11.8361 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋
2.717 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋 , 

(18)

𝑄 𝛺 0.0762 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋
2.8390 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋  

7.6702 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋
0.4142 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋  

6.2827 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋
0.5077 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋  

2.2061 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋
0.2776 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋  

5.3623 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋
0.0684 2 𝑡𝑎𝑛 𝑒 . . 0.5𝜋 , 

(19)
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A fitness function shown in the model (15) is optimized along with the hybridization of GA-
IPA for the nonlinear smoke system. The proposed form of the outcomes is found using the above 
systems (16)–(19) for 30 variables between 0 to 1 input along with step size 0.1. The solutions of 
the nonlinear smoke model along with the best weight vector values are illustrated in Figures 2(a–
d). The comparison of the mean and best outcomes with the reference Runge-Kutta solutions is 
provided in Figures 2(e–h) to solve the nonlinear smoke system. It is noticed that the mean and best 
results obtained by the GNNs-GA-IPA are overlapped with the reference results to solve each group 
of the nonlinear smoke model, which authenticate the exactness of the designed GNNs-GA-IPA. 
Figure 3 illustrates the values of the absolute error (AE) for each group of the nonlinear smoke 
model. It is observed that the values of the best AE for the group of potential smokers, smoker; 
temporary smoker and permanent smoker lie around 10-05-10-07, 10-05-10-06, 10-04-10-07 and 
10-04-10-06, respectively. While, the mean AE values for these groups of the nonlinear smoke 
model found around 10-03-10-04, 10-03-10-05, 10-02-10-04 and 10-03-10-04, respectively. 
Figure 4 signifies the performance measures based on the operators EVAF, MAD and TIC to solve 
each group of the nonlinear smoke model. It is specified in the plots that the best values of the EVAF, 
MAD and TIC performances of each group of the nonlinear smoke model lie around 10-04-10-08, 10-03-
10-05 and 10-08-10-09, respectively. The best performances of the EVAF, MAD and TIC for the 𝑃 𝛺  
and 𝑆 𝛺   groups lie around 10-08-10-09, 10-05-10-06 and 10-09-10-10, respectively. The best 
performances of the EVAF, MAD and TIC for the 𝑄 𝛺  group of the nonlinear smoke model found 
around 10-05-10-06, 10-04-10-06 and 10-08-10-10 and the best performances of the EVAF, MAD and 
TIC for the 𝑄 𝛺  group of the nonlinear smoke model found around 10-07-10-08, 10-05-10-06 
and 10-09-10-10. One can accomplish from the indications that the designed GNNs-GA-IPA is 
precise and accurate. 

The graphic illustrations based on the statistical performances are provided in Figures 5–7 to 
find the convergence along with the boxplots and the histograms to solve the nonlinear smoke 
model. Figure 5 shows the performance of TIC for twenty runs to solve each group of the nonlinear 
smoke model. It is observed that most of the executions for the 𝑃,  𝑆,  𝑄   and 𝑄   groups lie 
around 10-07-10-10. The MAD performances are illustrated in Figure 6 that depicts most of the 
executions for the 𝑃,  𝑆,  𝑄   and 𝑄   groups lie around 10-03-10-05. The EVAF performances are 
illustrated in Figure 7 that depicts most of the executions for the 𝑃,  𝑆,  𝑄  and 𝑄  groups lie around 
10-04-10-08. The best trial performances using the GNNs-GA-IPA are calculated suitable for the TIC, 
EVAF and MAD operators. 

The routines for different statistical operators, Maximum (Max), Median, Minimum (Min), 
standard deviation (STD) and SIR are provided in Tables 2–5 to validate the accurateness and precision 
to solve the 𝑃,  𝑆,  𝑄  and 𝑄  groups of the nonlinear smoke system. The Max operators indicate the 
worst solutions, whereas the Min operators show the best results using 20 independent runs. For the 
group 𝑃 𝛺  , 𝑆 𝛺  , 𝑄 𝛺   and 𝑄 𝛺   of the nonlinear smoke model, the ‘Max’ and ‘Min’ 
standards lie around 10-03-10-04 and 10-06-10-08, while the Median, SIR, STD and Mean standards 
lie around 10-04-10-05. These small values designate the worth and values of the GNNs-GA-IPA to 
solve each group of the nonlinear smoke model. One can observe through these calculate measures, 
that the designed GNNs-GA-IPA is precise, accurate and stable. 

The global performances of the G.EVAF, G.MAD and G.TIC operators for twenty runs to solve 
the designed GNNs-GA-IPA are provided in Table 6 to solve each group of the nonlinear smoke model. 
These Min global G.MAD, G.TIC and G.EVAF performances found around 10-04-10-05, 10-08-10-09 
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and 10-05-10-07, whereas the SIR global values lie in the ranges of 10-04-10-05, 10-08-10-09 and 
10-04-10-07 for all groups of the nonlinear smoke model. These close optimal global measures 
values demonstrate the correctness, accurateness and precision of the proposed GNNs-GA-IPA. 

 

Figure 2. Best weight vectors along with the result comparisons of the mean and best 
results with reference results to solve the nonlinear smoke model. 

     
(a) 𝑃 𝛺 : Best weights.    (e) Results for group 𝑃 𝛺 . 

     
(b) 𝑆 𝛺 : Best weights.    (f) Results for group 𝑆 𝛺 . 

  
(c)  𝑄 𝛺 : Best weights.    (g) Results for group 𝑄 𝛺 . 

     
(d)  𝑄 𝛺 : Best weights.    (h) Results for group 𝑄 𝛺 . 
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(a) AE for the group P 𝛺 . 

 
(b) AE for the group S 𝛺 . 

 
(c) AE for the group QT 𝛺 . 

 
(d) AE for the group QS 𝛺 . 

Figure 3. AE values for each group of the nonlinear smoke system. 
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Figure 4. Performances based on EVAF, MAD and TIC values to solve each 
group of the nonlinear smoke model. 

 

Performance of TIC for each group of the nonlinear smoke model. 

Histogram: P 𝛺  group.  Histogram: Sp 𝛺  group.  Histogram: QT 𝛺  group.  Histogram: QS 𝛺  group. 

 
Boxplots: P 𝛺  group.  Boxplots: Sp 𝛺  group.  Boxplots: Qp 𝛺  group. Boxplots: QS 𝛺  group. 

Figure 5. Convergence of the TIC values along with the Boxplots and histograms to solve 
each group of the nonlinear smoke model. 
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Performance of MAD for each group of the nonlinear smoke model. 

 

Histogram: P 𝛺  group.  Histogram: S p 𝛺  group.  Histogram: QT 𝛺  group. Histogram: QS 𝛺  group. 

 

Boxplots: P 𝛺  group.  Boxplots: Sp 𝛺  group.  Boxplots: Qp 𝛺  group.  Boxplots: QS 𝛺  group. 

Figure 6. Convergence of the MAD values along with the Boxplots and histograms to 
solve each group of the nonlinear smoke model. 
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Performance of EVAF for each group of the nonlinear smoke model. 

  

Histogram: P 𝛺  group.  Histogram: S p 𝛺  group.  Histogram: QT 𝛺  group.  Histogram: QS 𝛺  group. 

 

Boxplots: P 𝛺  group.  Boxplots: Sp 𝛺  group.  Boxplots: Qp 𝛺  group.   Boxplots: QS 𝛺  group. 

Figure 7. Convergence of the EVAF values along with the Boxplots and histograms to 
solve each group of the nonlinear smoke model. 



365 

Mathematical Biosciences and Engineering  Volume 19, Issue 1, 351–370. 

Table 2. Statistical measures for the nonlinear smoke model of group 𝑃 𝛺 . 

𝛺 
P(𝛺) 

Max Min Median STD SIR Mean
0 1.9698E-03 1.5128E-07 1.3179E-05 4.3988E-04 2.8322E-05 1.5255E-04
0.1 2.2927E-03 4.0452E-05 3.7091E-04 7.5870E-04 3.5757E-04 7.1580E-04
0.2 2.8517E-04 2.5715E-06 8.0076E-05 1.0291E-04 8.7298E-05 1.0480E-04
0.3 3.7540E-04 5.0221E-06 4.6631E-05 9.6615E-05 5.7759E-05 8.0291E-05
0.4 3.1095E-04 7.2215E-07 2.5169E-05 7.9915E-05 4.8322E-05 6.4497E-05
0.5 3.7039E-04 1.0187E-07 4.0958E-05 9.9187E-05 4.0049E-05 7.4737E-05
0.6 3.4788E-04 2.7497E-06 3.6783E-05 8.6814E-05 5.3154E-05 7.3405E-05
0.7 7.2524E-04 3.8591E-06 2.6741E-05 1.6887E-04 5.3778E-05 9.7130E-05
0.8 3.1439E-04 2.3193E-06 3.0315E-05 8.9765E-05 3.8282E-05 6.8701E-05
0.9 8.2385E-04 3.6579E-06 3.6581E-05 1.8035E-04 2.2583E-05 8.9806E-05
1 3.9210E-04 8.9543E-07 1.4825E-05 1.1497E-04 3.4368E-05 6.7763E-05

Table 3. Statistical measures for the nonlinear smoke model of group 𝑆 𝛺 . 

𝛺 
𝑆 𝛺  

Max Min Median STD SIR Mean
0 2.2510E-03 8.8331E-07 1.5049E-05 4.3988E-04 6.5800E-05 2.4625E-04
0.1 3.5749E-03 1.2621E-05 4.2711E-04 7.5870E-04 5.9138E-04 9.2693E-04
0.2 5.8967E-04 6.8508E-06 5.0534E-05 1.0291E-04 3.8159E-05 1.0389E-04
0.3 3.9412E-04 4.5897E-07 5.5860E-05 9.6615E-05 4.8082E-05 9.7091E-05
0.4 1.8148E-04 1.4261E-06 3.2627E-05 7.9915E-05 4.6977E-05 6.1366E-05
0.5 3.8406E-04 3.0499E-06 5.0425E-05 9.9187E-05 4.5676E-05 9.6411E-05
0.6 3.3693E-04 1.0786E-06 3.2525E-05 8.6814E-05 2.6474E-05 5.9807E-05
0.7 3.8976E-04 5.9658E-08 3.4605E-05 1.6887E-04 3.0731E-05 7.1943E-05
0.8 4.6451E-04 1.8083E-07 2.9100E-05 8.9765E-05 1.9639E-05 5.1752E-05
0.9 3.7056E-04 5.8454E-07 3.1691E-05 1.8035E-04 4.5808E-05 7.8891E-05
1 3.4425E-04 3.5833E-08 3.7245E-05 1.1497E-04 2.5924E-05 6.3636E-05

Table 4. Statistical measures for the nonlinear smoke model of group 𝑄 𝛺 . 

𝛺 
𝑄 𝛺  

Max Min Median STD SIR Mean
0 6.7379E-02 2.0435E-06 7.4367E-05 4.3988E-04 1.2547E-03 6.6320E-03
0.1 8.8212E-03 1.5933E-04 6.6896E-04 7.5870E-04 6.4736E-04 1.4858E-03
0.2 1.2208E-03 1.0177E-06 1.6681E-04 1.0291E-04 1.3929E-04 2.7755E-04
0.3 1.2039E-03 6.2163E-06 3.5966E-05 9.6615E-05 7.5659E-05 2.0075E-04
0.4 5.2048E-04 1.5004E-06 9.3199E-05 7.9915E-05 1.4812E-04 1.7703E-04
0.5 7.9163E-04 4.1214E-06 7.5760E-05 9.9187E-05 9.4190E-05 1.7072E-04
0.6 7.5113E-04 3.4495E-06 5.6836E-05 8.6814E-05 1.5865E-04 1.8051E-04
0.7 6.9564E-04 2.1601E-06 8.7570E-05 1.6887E-04 1.2891E-04 1.6565E-04
0.8 8.5659E-04 2.3356E-06 5.6424E-05 8.9765E-05 6.5358E-05 1.2238E-04
0.9 8.5832E-04 1.8869E-06 8.6636E-05 1.8035E-04 1.2103E-04 1.8340E-04
1 5.9922E-04 9.8962E-07 3.9188E-05 1.1497E-04 4.8965E-05 1.1550E-04
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Table 5. Statistical measures for the nonlinear smoke model of group 𝑄 𝛺 . 

𝛺 
𝑄 𝛺  

Max Min Median STD SIR Mean
0 1.4249E-02 4.6038E-07 1.0193E-05 3.1752E-03 5.3007E-05 7.6325E-04
0.1 7.1456E-03 9.4140E-06 2.0718E-04 1.6018E-03 3.9882E-04 8.1152E-04
0.2 1.4449E-03 2.1615E-07 2.8536E-05 3.6835E-04 3.0447E-05 1.7480E-04
0.3 3.7091E-04 3.2754E-07 2.1791E-05 8.7324E-05 2.6186E-05 5.6609E-05
0.4 1.5545E-03 1.8846E-07 2.2389E-05 3.7612E-04 6.1143E-05 1.5810E-04
0.5 3.7972E-04 3.6651E-06 1.7656E-05 9.8654E-05 3.1268E-05 6.2521E-05
0.6 1.2224E-03 2.4032E-07 2.1050E-05 2.9478E-04 3.3053E-05 1.2732E-04
0.7 7.4101E-04 1.7539E-07 2.4276E-05 1.6625E-04 2.5398E-05 7.7130E-05
0.8 1.0726E-03 2.5213E-06 1.4100E-05 2.3771E-04 3.0541E-05 9.1329E-05
0.9 7.4407E-04 2.5770E-06 3.5282E-05 1.6258E-04 2.8865E-05 7.9482E-05
1 9.7616E-04 7.0693E-07 8.9328E-06 2.1858E-04 1.0034E-05 8.0351E-05

Table 6. Global measures based on the MAD, TIC and EVAF values to solve each group 
of the nonlinear smoke model. 

Class 
(G.MAD) (G.TIC) (G.EVAF) 

Min SIR Min SIR Min SIR 
( )P  1.2499E-04 9.6058E-05 7.2597E-09 7.4459E-09 2.6155E-07 7.5331E-07
( )S  9.7570E-05 1.3353E-04 8.3068E-08 1.0766E-08 1.3879E-06 5.2293E-06

𝑄 𝛺  1.4111E-04 2.5334E-04 9.1566E-09 1.8187E-08 3.9553E-05 5.1487E-04
𝑄 𝛺  6.0979E-05 4.1189E-05 3.6367E-09 4.8515E-09 1.1015E-06 9.3296E-06

5. Reference style, citation, and cross-reference 

The current investigations are related to solve the nonlinear smoke model by exploiting the 
Gudermannian neural networks using the global and local search methodologies, i.e., GNNs-GA-IPA. 
The smoke model is a system of nonlinear equations contain four groups temporary smokers, potential 
smokers, permanent smokers and smokers. For the numerical outcomes, a fitness function is 
established using all groups of the nonlinear smoke model and its corresponding ICs. The optimization 
of the fitness function using the hybrid computing framework of GNNs-GA-IPA for solving each group of 
the nonlinear smoke model. The Gudermannian function is designed as a merit function along with 30 
numbers of variables. The overlapping of the proposed mean and best outcomes is performed with the 
Runge-Kutta reference results for each group of the nonlinear smoke model. These matching and 
reliable results to solve the nonlinear smoke model indicate the exactness of the designed GNNs-GA-
IPA. In order to show the precision and accuracy of the proposed GNNs-GA-IPA, the statistical 
performances based on the TIC, MAD and EVAF operators have been accessible for twenty trials using 10 
numbers of neurons. To check the performance analysis, most of the runs based on the statistical TIC, 
MAD and EVAF performances show a higher level of accuracy to solve each group of the nonlinear 
smoke model. The valuations using the statistical gages of Max, Min, Mean, STD, Med and SIR further 
validate the value of the proposed GNNs-GA-IPA. Furthermore, global presentations through SIR and 
Min have been applied for the nonlinear smoke model. 

In future, the designed GNNs-GA-IPA is accomplished to solve the biological nonlinear 
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systems [38], singular higher order model [39], fluid dynamics nonlinear models [40] and fractional 
differential model [41]. 
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