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Abstract: With the rapid development of the high-speed train industry, the high-speed train control 

system has now been exposed to a complicated network environment full of dangers. This paper 

provides a speculative parallel data detection algorithm to rapidly detect the potential threats and 

ensure data transmission security in the railway network. At first, the structure of the high-speed train 

control data received by the railway control center was analyzed and divided tentatively into small 

chunks to eliminate the inside dependencies. Then the traditional threat detection algorithm based on 

deterministic finite automaton was reformed by the speculative parallel optimization so that the inline 

relationship’s influences that affected the data detection order could be avoided. At last, the speculative 

parallel detection algorithm would inspect the divided data chunks on a distributed platform. With the 

help of both the speculative parallel technique and the distributed platform, the detection deficiency 

for train control data was improved significantly. The results showed that the proposed algorithm 

exhibited better performance and scalability when compared with the traditional, non-parallel 

detection method, and massive train control data could be inspected and processed promptly. Now it 

has been proved by practical use that the proposed algorithm was stable and reliable. Our local train 

control center was able to quickly detect the anomaly and make a fast response during the train control 

data transmission by adopting the proposed algorithm. 
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1. Introduction  

High-speed rails possess the advantages of fast speed, high efficiency, low energy consumption, 

and low pollution and play a vital backbone role in China’s transportation system at present [1,2]. With 

the advent of the era of intelligence and the vigorous development of the 5G technique, the high-speed 

rail control system, which integrates new technology like big data and intelligent management, also 

thrives gradually [3,4]. However, now the communication environment faced by the high-speed rail 

control system has become more complex and complicated, and the risk of being attacked or threatened 

by external security has also increased over the years. Therefore, how to build up a solid defensive 

barrier for the high-speed rail control system and protect it from being assaulted by outside threats 

have become a hot research issue in both railway transit optimization and the cybersecurity field [5,6]. 

To guard against external malicious attacks and ensure traffic safety, China, the country with the 

longest high-speed railways, has proposed the China Train Control System 3 high-speed train control 

system (also known as the CTCS-3). In CTCS-3, an abnormal data detection algorithm based on 

deterministic finite automaton (DFA) is raised to proactively identify anomalous data in the data stream 

sent to the high-speed rail control system [7]. Nevertheless, with the fast development of China’s 

information network, an increasing number of high-speed trains are put into operation, and the 

corresponding data has explosively increased [8,9]. This situation brings a problem that the traditional, 

serial DFA-based data detection algorithm has become more difficult to detect abnormal data and 

potential threats from train control data in time. Especially in Spring Festival and other vacations, the 

inadequate capacity to handle the newly emerging train control data has become the primary factor 

influencing extra trains. In the face of the rapid development of the high-speed rail train control system, 

many researchers are devoted to the optimization work of CTCS-3 to improve the detection efficiency 

of train control data and ensure the smooth and healthy operation of the high-speed rail system. 

With the development of communication and information technologies, some of the researchers 

try to solve problems with big data and blockchain technology [10–15]. Inspired by this idea, 

researchers in the train control field also employ the mighty computing power of distributed computing 

platforms to design multi-task parallel detection algorithms and improve the efficiency of train control 

data detection [16,17]. Even though some progress has been made, the high coupling dependencies 

inside the train control data stop the detection work from performing concurrently. It causes the result 

that the detection efficiency for the control data is low, and the utilization of resources is not high.  

In response to the above problems, this paper employed the parallel speculation technique 

commonly used in multi-core areas and raised a speculative parallel detection algorithm for high-speed 

train control data. In the beginning, the structure of the train control data is analyzed. Then the 

algorithm divides the train control data into small segments and eliminates internal dependencies that 

hide in the data. Secondly, based on the divided data, the traditional DFA-based algorithm is 

parallelized and transformed based on the parallel speculation technology, so that the inline control 

dependencies that impact the algorithm flow can be modified. Finally, the parallel algorithm is 

implemented on Apache Spark, the widely used distributed platform, to detect the divided data 

simultaneously, making full use of the mighty computing power to improve the detection efficiency of 

the high-speed rail train control data. The main contributions of this article are as follows. 

1) The internal dependencies which impact the algorithm’s parallelism are found based on the 

modeling analysis for the conventional data detection process.  

2) The speculation technique is introduced to overcome the internal dependencies and parallelizes the 
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conventional data detection algorithm. 

3) Implement the proposed algorithm with the speculation mechanism onto the distributed platform 

and improve abnormal data detection efficiency. 

2. Motivation  

The high-speed train control data refers to the data generated by the control system during the 

operation of high-speed trains and is related to the safety of high-speed train operation. For example, 

the high-speed train control data includes the synthetic platform signal data, the monitoring level 

conversion data, the driver operation data, the electronic control equipment operation data, the central 

control system failure data, the emergency braking command data, and so on. Unlike the equipment 

operation data collected by onboard train sensors, the train control data is recorded by the dedicated 

onboard train control system ATS (Automatic Train Supervision) and transmitted through a remote 

wireless network: as shown in Figure 1. In CTCS-3, the train control data is collected at set intervals. 

When the collection works end, the collected information is manually dumped by a laptop and then 

sent to the railway bureau via WLAN or wireless network GSM-R (Global System for Mobile 

Communications-Railway). Otherwise, the onboard computer automatically stores the collected 

information and transmits it through GSM-R [18]. 
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Figure 1. Schematic diagram on high-speed train control data transmission in CTCS-3. 

However, due to the lack of security audits and intrusion prevention measures, GSM-R, the 

enclosed network system, is very vulnerable to outside security issues such as hacking, extortion, and 

virus attacks. The railway bureau also tends to be in danger because of the unsafe network. Even 

though safety methods such as SIM cloning, anti-blocking, and other IoT-based safety precautions are 

introduced to enhance transmission security, there is still the risk of damage or tampering [19]. 

Some researchers attempt to detect abnormal data with novel machine learning techniques to 

solve the problem and boost data detection efficiency. For instance, Belgrana and Maruno have 

improved network intrusion detection rates and reduced processing time with Neural Network [20,21]. 

In contrast, other researchers proposed a multi-stage optimized ML-based NIDS framework or fuzzy 

detection system that reduces computational complexity and maintains the detection performance [22,23]. 

However, these methods cannot be adopted by the high-speed train intrusion prevention system. Because 
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the safe operation of high-speed trains depends on accurate train control data, but deep learning-based 

methods cannot ensure 100% reliability of train control data [24]. 

On the contrary, CTCS-3 brings the DFA-based data detection algorithm into the communication 

server to eliminate the risk that impacts data transmission safety. In this way, the abnormal data can be 

identified, and the attacks and threats can be defended. Specifically, when the communication server 

receives the train control data, it will be compared with the abnormal characteristics predefined by a 

DFA. Then it can be known that whether there is abnormal information in the control data. 

The DFA is made up of five tuples like  0, , , ,S s F  , where S  is the set of states;  is the 

alphabet, which represents the set of finite input symbols; 0s is the initial state of the DFA; F is the set 

of accepting states ( F S ); is the transfer function, and it means that a state in state set S calculates 

with a letter from the alphabet , then the calculation result is another state in state set S . The DFA-

based data detection process begins from the start state 0s , reading the train control data character 

by character ( *   ,* means the connection of the elements in the alphabet ) and changing its state 

according to the transfer function . Once the DFA transfers its state to the acceptance state (the state 

in the set F ), it means that abnormality is found in the train control data . Otherwise, there is no 

abnormality after detection. The pseudo-code is shown in Table 1. 

Table 1. Pseudo-code of algorithm 1. 

Algorithm 1: DFA-based data detection algorithm 

Input 1: Train control data and its length I 

Input 2: Specific DFA that recognizes the abnormality 

Output: Whether the abnormality is found 

1   state = start_ state; 

2   for i = 0 to |I-1| do 

3        input char =ω[i]; 

4        state = δ[state][input char]; 

5        if state∈F then 

6            return Abnormality Found; 

7        end 

8   end 

9   return NotFound ; 

It can be seen from Table 1 that the procedure of algorithm 1 consists of a series of iterations, in 

which the current character  i and the current state are sequentially calculated, and then the state of 

the DFA migrated after the calculation. Assuming that the time for processing one single character is 

M, the length of the train control data is I, then the time and space complexity for detecting the whole 

train control data will be M * I and I, respectively. In total, the traditional algorithm is inefficient. This 

brings a problem that when the data volume becomes large or the state number increases, the time and 

space overhead will promote dramatically. Meanwhile, the efficiency of the detection algorithm will 

experience a significant reduction.  
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Most researchers use parallel computing or distributed computing technology to solve the 

problem and raise data detection efficiency. For example, Ding proposed a multi-step regular 

expression matching algorithm based on a parallel character index, which improves the matching 

throughput by 48.5% on average [25]. Liu proposed a multi-DFA parallel detection algorithm based 

on a distributed computing platform, improving the query response time by up to 43.9% [14]. Lu 

pointed out that the GPU platform can also implement large-scale detecting [26]. These measures focus 

on transplanting traditional algorithms onto new platforms and improving detection efficiency by 

synchronizing multiple DFAs. 

However, these solutions are mainly on multiple DFAs cooperation, and the overall efficiencies 

are limited when the data amount grows larger. Even some parallel detection tasks with high latency 

would make the whole procedure time-consuming. By analyzing the underlying logic of these 

proposed algorithms in-depth, it can be known that the DFA-based data detection procedure proceeds 

iterations by iterations, but the current solutions are hard to optimize these iterative computations in 

parallel. When the data scale becomes large, the detection procedure becomes a long iteration chain, 

which is hardly shortened or parallelized by any optimization measures above. Thus the efficiency of 

the detection algorithm on high-speed train control data is considered low. 

In summary, in order to solve the problem that the time and space overhead generated in the 

iterative operation affects the detection efficiency of the high-speed train control data. This paper 

proposes a highly effective data detection algorithm based on speculative parallel optimization 

techniques. Firstly, the high-speed train control data are divided into small blocks of the same size. 

Secondly, by introducing the speculative parallel optimization technique widely used in multi-core 

platforms, this paper reforms the traditional DFA-based detection algorithm with a parallel speculation 

mechanism to avoid the control dependencies between different iterations and make the iteration 

computations work in parallel. Finally, the reformed algorithm is implemented on Apache Spark, the 

most popular distributed computing platform with high concurrency, to detect the small divided blocks 

in parallel. In this way, not only can the data detection efficiency be improved, but also the computing 

resource utilization of the distributed computing platform can be raised simultaneously. 

3. Algorithm design 

Based on the description of existing problems and solutions, the speculative parallel detection 

algorithm for high-speed train control data is designed as follows: The algorithm is divided into three 

parts, namely high-speed train control data partition, speculative parallel detection, and speculation 

result verification. The design ideas of the algorithm are described in detail below in order. 

3.1. High-speed train control data division 

First and foremost, according to the typical speculative parallel optimization process, the input 

data should be divided into blocks and then gathered into the dataset [27]. Precisely, in the proposed 

algorithm, the control data should be cut into segments of the same size. Besides, to support parallel 

execution, every part except the first one should also be assigned an initial DFA state. In this way can 

all the segments be detected independently, without waiting for the state from its former part. Thereby 

the goal of parallel detecting the multiple data segments can be achieved. 

Except for establishing the data dividing principle, the size of the division granularity also needs 
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to be considered. Because in the speculative parallel data detection algorithm, if the division size is 

too small, resulting in indirectly that the derived parallel tasks workload increases, and the number of 

parallel tasks is affected at the same time. Besides, the coordination between different speculative 

parallel tasks may be complicated and complex to be adjusted. In the worst case, fine granular data 

partitioning will also increase the communication frequency between parallel tasks and affect the 

overall performance of the proposed algorithm. On the contrary, if the granularity of the data is too 

coarse, the load imbalance and data skew problems in distributed computing would happen, which 

leads to an increase in the running time of a single parallel task and affects the overall performance of 

the proposed speculative parallel algorithm. Therefore, it is necessary to establish a theoretical model 

to reveal the relationship between data partitioning granularity and parallel algorithm time spending. 

Then select a suitable data partitioning granularity after careful calculation. 

The model building process is as follows. Firstly, the time cost is in Eq (1). As shown in Eq (1), the 

time cost T of the speculative parallel algorithm consists of two parts: Ts is the time of distributing parallel 

tasks and dividing the high-speed train control data into equal-length data segments. But comparing 

with the time of parallel tasks distribution and transmission, the time for data division is so short that 

it can be ignored. In addition, the Te is the time for parallel tasks’ execution. 

s eT T T   (1) 

Assuming that the total amount of data is s, the data division granularity is n, the number of 

processors in the distributed cluster is k, the data transmission speed in the cluster is p. Besides, the 

mathematical expectation of the execution time of a single task is t, the data segmentation is s/n, and 

correspondingly, the number of the parallel tasks is the same as s/n. Then after bringing the relevant 

parameters, Eq (1) can be represented as Eq (2). 

n s n n s t
T t

p k p n k


    


 (2) 

The first part in Eq (2) is the parallel tasks’ distribution time, which is subjected to the division 

granularity. Furthermore, the second part in Eq (2) is the time for parallel tasks’ execution, and it 

is determined by the total data amount and every single task processing time. In the practical 

running environment, the high-speed train control data s, the number of the cluster’s processors k, 

the data transmission speed p, and the mathematical expectation of a single task execution time t 

is known. Therefore, Eq (2) represents the relationship between the data partitioning granularity 

and parallel algorithm time cost, and the schematic diagram on Eq (2) is described in Figure 2. 
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Figure 2. The diagram on data division granularity and algorithm run time. 

Since the partitioning granularity and execution time cannot be negative numbers, only the first 

quadrant is adopted. It can be seen from Figure 2 that when the data partitioning granularity tends to 0, 

the number of the divided data segments tends to have positive infinity. In such circumstances, the 

execution time of the parallel algorithm will increase significantly. In an actual operating environment, 

this circumstance refers to that fine data division granularity would lead the task distribution, the 

message communication and the coordination of parallel tasks become complicated, and finally, the 

overall performance of the proposed algorithm would slow down. Instead, when the data partitioning 

granularity increases, the proposed algorithm’s execution time increases gradually due to the rise in 

the running time of the single parallel task. In extreme cases, the partitioning granularity is equal to s, 

and the proposed algorithm degenerates to the traditional, unparallel algorithm. 

Thus, the goal for setting a proper division granularity becomes to find the minimum in Eq (2). 

Taking the derivative of Eq (2) and setting the derivative to 0, and it is easy to know that when the 

division granularity meets the demand of Eq (3), the execution time of the speculative parallel 

algorithm is minimum, which also means that the parallel algorithm takes the shortest time. 

s t p
n

k

 
   (3) 

3.2. Speculative parallel detection 

Then the corresponding speculative parallel detection mechanism is designed to ensure that the 

divided data can be detected simultaneously. The proposed algorithm takes the speculative parallel 

optimization technique to reform the traditional data detection algorithm and make the detection 

procedure for large-scale data faster. 

At first, it is necessary to analyze the inline relationship of the traditional DFA-based detection 

processes. From Algorithm 1 in Table 1, it can be seen that during the first iteration, when the first 
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letter of the high-speed train control data is read, based on the initial state, the algorithm starts to 

migrate the current DFA state with the help of the transfer function. When the state changes, the 

algorithm decides to continue detecting the following letters or reporting the abnormal information. In 

addition, it is easy to know that any iterations except the first iteration could not predict the former 

DFA states in advance by analyzing the relationship between different iterations. Similarly, any 

iterations except the first iteration could not execute until the former iterations finish. However, even 

though the DFA state is the critical factor that impacts the detection procedure through the analysis, 

for lack of the DFA state prediction method, it is still challenging to achieve the parallelization of 

traditional data detection procedure by a simple divide conquer strategy. 

Under this circumstance, the speculative parallel optimization technique, commonly seen in the 

multi-core parallelism research field, is borrowed to resolve these difficulties. This technique is an 

explicit parallelization technology. By temporarily ignoring the dependencies between the concurrent 

units, threads that were initially thought not to be parallel can be tentatively executed in parallel, and 

the performance would be improved when such parallel execution succeeds. The speculative execution 

model is shown in Figure 3. 

 

Figure 3. Schematic diagram of the speculative execution model. 

As Figure 3(a) shows, T1 and T2 can only be executed serially during the sequential execution 

procedure due to the control dependence inside the two parts. However, as shown in Figure 3(b), the 

speculative parallel optimization technique can eliminate the influence of the existing control 

dependence with the pre-calculation method so that T2 could execute in advance instead of waiting 

for the result of T1. When T1 finishes, the result of T1 could validate the correctness of the pre-

calculation content; thereby, the speculative result of T2 could also be validated at the same time: if 

the pre-calculation content is correct after validation, then the result of T2 is also correct, and the 

speculative execution succeeds in general; but if the validation result turns wrong, then the speculative 

execution on T2 fails. As shown in Figure 3(c), the speculative result will be discarded, and T2 will be 
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re-executed with the parameter that comes from T1. 

Eliminating the dependencies between different iterations is the key to optimizing the 

conventional data detection algorithm based on DFA. After analyzing Algorithm 1, it can be seen that 

the dependencies are that the output of the previous operation is the input of the current iteration. The 

current iteration cannot execute independently because of the lack of the DFA state from its previous 

iteration. Therefore, when the division of the high-speed train control data finishes, every iteration 

(except the first iteration) in the data detection procedure should be assigned one DFA state so that 

they can perform independently. Instead of waiting for the DFA state from its former iteration, such 

assignment refers to the pre-calculation method in the speculative parallel optimization technique. In 

this way, all iterations could perform independently without relying on the results of its previous 

iteration, and the concurrent detection on divided segments could be achieved at the same time. 

However, since the parallel iterations execute with the predicted states, the results may not be 

correct. So the validation procedure is established after the speculative parallel detection procedure to 

provide the correctness of parallel iterations. The specific step is as follows: if no abnormal data is 

detected after the speculative parallel detection, all data segments should be re-detected by its former 

iterations’ result: the state calculated by speculative execution. At last, if the re-detection result is the 

same as the result of the speculative execution. It proves the speculative result is correct, and there is 

no anomaly in the control data. However, if the result conflicts, it indicates that incorrect speculation 

occurs in the speculative parallel detection, and the result of the re-detection process shall prevail. 

For instance, DFA(M) could detect the abnormal data VIRUS like Eq (4). 

   

 

0,1,2,3,4,5 , , , , , ,
=

,0, 5

V I R U S OTHERS
M



 
  
 

，
 (4) 

Wherein the migration function δ is described in Eq (5). 

{ (0, ) 1, (1, ) 2, (2, ) 3,

(3, ) 4, (4, ) 5,

({2,3,4,5}, ) 1,

({2,3,4,5}, ) 1}

f V f I f R

f U f S

f V

f OTHERS

    

 





 (5) 

Moreover, the corresponding state transition diagram of δ is like Figure 4. The dotted line in 

Figure 4 means that the transition direction when letters except for V, I, R, U, S, is met in DFA(M). 

1 2 3 4 45
V I R

0
U S

VVVV

OTHERS  

Figure 4. State transition diagram of function δ. 

Suppose that a part of high-speed train control data I=AVOIDS_VIRULENCE needs to be checked 

with DFA(M). According to the proposed algorithm, in the beginning, the data is separated into two 
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parts of equal length, wherein I1=AVOIDS_V and I2=IRULENCE. On this basis, the predicted state for 

I2 is 0, then I1 and I2 can detect abnormal data simultaneously, and the specific process is in Figure 5. 
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0   0    0    0   0    0    0    

0   0    0    0   0    0    0    0

(a) (b)
 

Figure 5. Schematic diagram of speculative parallel detection. 

Figure 5 shows the parallel detection process of data segments I1 and I2, where Figure 5(a) 

represents the definitive, non-speculative task based on the initial state 0. The execution result for 

detecting I1 must be correct. Figure 5(b) illustrates the speculative task based on the pre-calculated 

state 0, and the execution result for detecting I2 may be incorrect. In addition, the result of each state 

transition on the speculative task is recorded in the cache to validate the speculative result after parallel 

detection. 

It can also be seen from Figure 5 that for the high-speed train control data I with 16 letters, the 

conventional algorithm would spend 16 rounds of iterations to fulfill the detection work. In contrast, 

only eight iterations are required (s1 to s8 in Figure 5) when we adopt the speculative parallel detection 

procedure. If the computing resources are sufficient and the division granularity is reasonable enough, 

the detection efficiency will be higher. 

When the detection comes to an end, and abnormal data is found, the abnormality will be reported, 

and the proposed algorithm ends without validation. However, as shown in Figure 5, if no potential 

exception is found after the detection, we are not sure such results are correct. Therefore the speculative 

result in Figure 5(b) should be validated. 

3.3. Validation on speculative results 

The validation of speculative results only occurs when abnormalities are not detected after parallel 

detection. The specific process is as follows: the current data segment obtains the final state, which 

comes from the detection result on the previous data segment. Then the re-detection for the current 

data segment operates. Still take data segment I2 in Figure 5(b) for example. Figure 6 illustrates the 

specific validation process. After the parallel detection on data segments I1 and I2, the validation on 

the speculative task begins with state 1, and state 1 is the final state when the definitive task on segment 
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I1 is over. During the validation, every state that the validation process produced would be compared 

with the previous speculative task generated state. 

As shown in Figure 6, the speculative result for data segment I2 is stored in the cache. The 

validation is from s9 to s12, and in total, four rounds of iterations are performed. During the validation, 

whenever a new state is obtained, it would be compared with the result in cache immediately: If the 

two states are the same, the validation procedure, as well as the whole parallel algorithm, finishes, and 

there is no necessity to validate the subsequent speculation results. Because if such a situation occurs, 

even if the verification continues, the following verification result must be consistent with the 

speculative result, and there are no abnormalities in high-speed train control data I. 

0         0           0          0        0        0       0       0Cache

s9

s10

s11

s12

I          R          U         L        E       N      C      EI2

2≠0   0           0          0        0        0       0       0

            3≠0    0          0        0        0       0       0

                        4≠0    0        0        0       0       0

                                    0＝0  0        0       0       0
 

Figure 6. Schematic diagram of speculative parallel detection. 

If the state generated by iteration during validation is different from that of the speculative result, 

the validation continues, and the validation process stops in two situations. The first situation is that 

an acceptance state appears. It demonstrates that the speculative result is proved wrong after validation, 

and the abnormality is recorded. The second situation is that the validation of the speculative result is 

over. It demonstrates that even though the speculative result is still incorrect, this fault does not affect 

the outcome; that is, the high-speed train control data indeed does not contain abnormal data. The 

efficiency of the speculative parallel algorithm is similar to the conventional, un-parallel algorithm. 

In summary, the essence of the validation stage is the duplicate detection for the divided data with 

speculative results. Therefore, whether the additional detection affects the efficiency of the parallel 

algorithm is an issue worthy of discussion. Moreover, the validation for the speculative result relies on 

an assuming value (the last state that comes from the previous detection result), so the accuracy of the 

validation also needs to be considered. In response to the problems, we make the following analysis. 

At first, by cleaning up the logical relations between the speculative parallel detection procedure 

and the validation of speculative result procedure, it can be seen that both of the two procedures are 

performed on the divided data concurrently, rather than detecting the data from the beginning to the 

end. Thus, once an acceptance state is met, it indicates that an anomaly is detected. The parallel 

algorithm will report the anomaly and stop immediately. In such a case, the parallel algorithm is highly 

effective compared with the conventional algorithm. Or a state in the validation stage is consistent with 

the speculative result (for example, step s12 in Figure 6). The algorithm also finishes early, and the 

performance is still better than the un-parallel algorithm. In the worst case, the proposed algorithm 

cannot find abnormalities after the two rounds of parallel data detection. The execution time of the 

proposed algorithm is only equivalent to the sum of the traditional algorithm’s running time and some 
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parallel overheads, so the detection efficiencies of both the speculative parallel algorithm and the 

conventional algorithm are almost the same. In total, it can be concluded that the additional detection 

would not affect the performance of our algorithm markedly. 

Secondly, it is necessary to make an argument on the correctness of the validation procedure. The 

argument can be described as: for any divided data segment uk, whether the validation for uk based on 

the speculative result from its previous segments uk-1 is correct. The specific description of this 

argument and the corresponding proof is demonstrated as Theorem 1. 

Theorem 1: For a specific DFA(N) who is responsible for detecting the abnormal data T in the 

high–speed train control data, and s0 is the initial state of the DFA. For any continuous data segments 

-1 1, ,k k ku u u  , if    10 0-1 1, ,k k k ku u u us s   , then    -1 1 10 0, ,k k k k kus su u u u   . 

Proof: Assume that Theorem 1 is incorrect; it means that     1-1 1 10 0, ,k k k ks s su u u u    , and 

1 2s s . Besides, since that T can be recognized by DFA(N), there must be a segment u, which can let 

the result of the state transfer function  1,s u or  2,s u be the acceptance state. Then the following 

assumptions can be made based on the above conditions. 

1st assumption: the result of  1,s u is the acceptance state while the result of  2,s u is not. In 

this assumption, according to the fundamental state transfer law, it is easy to know that

      011 10, , , ,k ks u s u s uu u      , so the result of  0 1, k uus  is the same as  1,s u , and it is 

apparent that 1ku u T  . Then according to the conversion principle of DFA and regular expression,

1 1kk ku T u u Tu u     , so the result of  0 1, k ks u uu   is also an acceptance state. Based on the 

deduction,       010 21, , , ,k k kks u u s u s uu u u      , and it means that the result of  2,s u is as 

same as the result of  1,s u . So, contradiction happens, and the 1st assumption is invalid. 

2nd assumption: the result of  2,s u is the acceptance state while the result of  1,s u is not. 

Then according to the state transfer law,       0 1 12 0, , , ,k k kks u s uu u uu s u      , so the result 

of  0 1, k ks u uu   is the same as  2,s u  , and it is apparent that 1kku u Tu    . According to the 

conversion principle of DFA and regular expression, 1 1 1kk kku Tu T u u uu     , so the result of

 1 10, kk ks u u uu   is an acceptance state, and       10 1 0 1 1 1, , , ,k kk k kks u u u s u u s uu u u        . It 

means the result of  1,s u is as same as the result of  2,s u . So, contradiction happens, and the 2nd 

assumption is also invalid. 
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In conclusion, the two assumptions all make contradictions, 1 2s s , and Theorem 1 is tenable. 

Through Theorem 1 and its proof, it can be known that even if the validation procedure is based 

on the speculative execution result, the outcome of the validation is still correct. To sum up, the 

accuracy of the validation stage can be guaranteed. 

4. Algorithm implementation 

The implementation platform for the proposed algorithm is Apache Spark, which is the most 

popular distributed computing platform in both the industrial and the scientific fields. Apache Spark 

with high concurrency and reliability is widely used as the general computing engine for data-

intensive works in power, communications, and other areas [28–32]. According to the design 

philosophy of the CTCS-3 control system, Apache Spark would be deployed on the communication 

server. Therefore, the proposed algorithm would also work on the communication server-based 

Apache Spark. 

Before the implementation, some parameters should be adjusted. Firstly, the task scheduling 

policy on Apache Spark is switched from FIAR to FIFO. In such a policy, the proposed algorithm 

can dynamically adjust the parallelism degree based on computation resource amount and ensure the 

smooth operation of every parallel task. Besides, the working threads for each task, the memory size, 

and other parameters should also be adjusted according to the standard tuning measure on Apache 

Spark. At last, the degradation of the local data latency is limited to 3000 ms so that some parallel 

tasks with high latency would not slow down the overall performance of the proposed algorithm. 

Based on parameter adjustment, Table 2 shows the pseudo-code of the proposed algorithm.  

In Table 2, algorithm 2 consists of four parts: the first part is from lines 1 to 2, whose 

responsibility is to calculate the data division step according to Eq (3) and initialize the state cache. 

The second part is from line 3 to line 5, and the main job of this part is to divide the high-speed train 

control data into data segments of the same length. The third part starts from line 6 and ends at line 17, 

and it is the speculative parallel detection part. Unlike the detection part in algorithm 1, every state 

that the DFA transferred should be recorded for validation later during the parallel detection part. 

The last part is the validation part from line 18 to line 31. In this part, the second round of data 

detection based on the speculative results is in parallel. In particular, line 27 and line 28 mean that 

if the current DFA state and the state in cache is consistent, it indicates that the speculative execution 

result is correct, no further validation is required, and the algorithm ends immediately. 

Besides, the deployment diagram of the speculative parallel detection algorithm for high-speed 

train control data on the distributed computing platform Apache Spark is shown in Figure 7. Figure 7(a) 

shows the deployment diagram of the conventional serial data detection algorithm. It can be seen 

from Figure 7(a) that since the data cannot be divided in the traditional algorithm, the execution 

process in Figure 7(a) is restricted by the data composition order; thus, the conventional algorithm 

is time-consuming and unable to make full use of the computing resources. However, in Figure 7(b), 

by the speculative parallel optimization technique, all computing nodes in the cluster-including the 

main node and the worker nodes, are joining in the computation, and the high-speed train control 

data can be divided and conquered, which not only improves the detection efficiency of the train 

control data but also provide the effective use of the computing resources of the distributed 
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computing platform. 

Table 2. Pseudo-code of algorithm 2. 

Algorithm 2: Speculative parallel detection algorithm for high-speed train control data 

Input 1: Train control data D1 

Input 2: Specific DFA that recognizes the abnormality 

Output: Position j where abnormality is found 

1    n = ceil ( formula3, D1.size )    

2    buffer [D1.size/n][n] = NULL   

3    In parallel:{  

4     Specblk[D1.size/n] = divide (D1, n)   

5    } 

6    Parallel_for (i = 0 ; i < Specblk.length ; i++):{   

7     ω = Specblk[i] 

8     I = Specblk[i].length 

9     state = start_state   

10     for j = 0 to |I-1| do:{   

11       input char =ω[j] 

12       state = δ[state][input char] 

13       if state∈F then 

14         return j  

15       else buffer[i][j] = state   

16       } 

17    } 

18    Parallel_for (i = 1 ; i < Specblk.length ; i++):{ 

19     ω = Specblk[i]   

20     I = Specblk[i].length 

21     state = buffer[ |I-1| ][i-1]   

22     for j = 0 to |I-1| do:{   

23       input char =ω[j] 

24       state = δ[state][input char] 

25       if state∈F then 

26         return j   

27       else if buffer[i][j] == state   

28             return NotFound 

29     } 

30     return NotFound 

31    } 
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Figure 7. Deployment diagram of the speculative algorithm on Apache Spark. 

Last but not least, Figure 7(b) also shows the time cost for the proposed algorithm in the worst 

case. If the abnormal data is found or the validation succeeds within a few iterations in the actual 

runtime environment, the algorithm will end earlier. In addition, data synchronization occurs after the 

end of the speculative parallel detection, and its purpose is to submit the cache data in each parallel 

task to the master node, in order to ensure the validation of the speculation result.  

5. Experimental results and analysis 

5.1. Experimental design 

First of all, in cooperating with Shaanxi Provincial Key Laboratory of Network Computing and 

Security Technology, we built our distributed cluster on the high-speed EMU network control platform. 

The operating system is Ubuntu Server 20.04, while the distributed computing cluster is Apache 

Spark 2.2.0. The cluster is built up in the master-slave model with nine Lenovo Think Server TS80X 

servers. 

The experimental scheme and specific configuration are shown in Table 3. Five groups of 

schemes are designed in this experiment, involving traditional serial detection algorithm and 

speculative parallel detection algorithm. In scheme 1, only one working node is equipped for this 

experiment because the traditional algorithm cannot use additional computing resources to detect train 

control data in parallel. Instead, other schemes in Table 3 are equipped with a different number of 

working nodes to test the performance of the proposed algorithms supported by the different scales of 

the computing resources.  
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Table 3. Experimental scheme and configuration. 

Name Experimental subject Specific configuration 

Scheme 1 Traditional serial algorithm 1 main node + 1 working node 

Scheme 2 Speculative parallel algorithm 1 main node + 2 working nodes 

Scheme 3 Speculative parallel algorithm 1 main node + 4 working nodes 

Scheme 4 Speculative parallel algorithm 1 main node + 6 working nodes 

Scheme 5 Speculative parallel algorithm 1 main node + 8 working nodes 

Besides, with the help of Xi’an Railway Bureau, we randomly select eight pieces of high-speed 

train control data from all trains running from July to December 2020. Besides, all train models and the 

corresponding marshaling orders are included in the experiment. The specific experimental data is split 

into two sets according to the marshaling order; and the details are shown in Table 4. 

Table 4. Information of the experimental data. 

Dataset Train number Time Model Marshaling Data size 

Dataset 1 D1913 4 h 7 min CRH380B 8 10.43 GB 

Dataset 1 G858 4 h 28 min CR400AF 8 12.05 GB 

Dataset 1 G2231 5 h 31 min CRH380B 8 14.69 GB 

Dataset 1 D1903 7 h 40 min CRH380B 8 19.79 GB 

Dataset 2 D1927 3 h 32 min CRH380B 16 18.11 GB 

Dataset 2 G2233 5 h 56 min CRH380B 16 30.19 GB 

Dataset 2 D1925 7 h 7 min CRH380B 16 38.54 GB 

Dataset 2 G98 7 h 42 min CRH380AL 16 43.27 GB 

As to the detection rule, 217 regular expression rules from the famous intrusion detection system 

Bro are selected to construct a complex DFA with 8094 states in our experiment. In addition, the data 

division granularity is set 32 MB by Eq (3) during the experiment. 

At last, all experimental schemes on each set of data are performed ten times to ensure the 

accuracy of the results, and the average value of the results on ten executions will be adopted as the 

experimental results. If the variance of the results on ten executions is enormous after statistics, the 

experiment will be repeated. 

5.2. Experimental results 

The experimental results on five different schemes with two sets of experimental data are in 

Figure 8. As Figure 8 demonstrates, the abscissa represents the experimental data, and the ordinate 

represents the time. Each column represents the time it takes to process a column of experimental data 

using a practical scheme. In addition, Figure 8(a) shows the performance of different experimental 

schemes for data set 1, while Figure 8(b) shows the performance of different experimental schemes 

when processing data set 2. 



303 

Mathematical Biosciences and Engineering  Volume 19, Issue 1, 287-308. 

         

(a)                                        (b) 

Figure 8. Experimental result for datasets 1 & 2. 

It can be seen from Figure 8 that compared with the traditional algorithm, the speculative parallel 

algorithm with multiple working nodes significantly reduces the detection time for the train control 

data. Meanwhile, by observing different experimental schemes in the same dataset, it can be seen that 

along with the increment of the computing resources, the execution efficiency of the speculative 

parallel algorithm grows gradually. 

Moreover, by summarizing the performance of schemes 1 and 2 in Figure 8, it is easy to know 

that for the large-scale high-speed train control data. The average time consumption of the speculative 

parallel algorithm based on dual working nodes is reduced by about 35% compared with the traditional 

serial algorithm. Similarly, in schemes 1 and 3, schemes 1 and 4, and schemes 1 and 5 from Figure 8, 

it can be seen that when comparing with the traditional, un-parallel algorithm, the speculative parallel 

algorithm based on 4/6/8 working nodes reduces the detection time by 62, 70, and 80% respectively. 

In total, the experiment shows that compared with the traditional DFA-based abnormal data detection 

algorithm, the speculative parallel detection algorithm can significantly improve the detection 

efficiency for high-speed train control data. 

5.3. Analysis of the experimental result 

The analysis of experimental results is designed to make a deep understanding of the growth law 

of the proposed algorithm. The speedup of each experimental scheme is calculated as Eq (6). In Eq (6), 

s represents the speedup value, T1 indicates the conventional algorithm execution time, which is also 

known as the time cost in experimental scheme 1, and Tn represents the speculative parallel algorithm 

execution time. 

1

n

T
s

T
  (5) 

After calculation, the results are collected and counted, and Figure 9 illustrates the change of the 

speedup curve. In this figure, the abscissa represents the experimental scheme, and the ordinate 
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represents the speedup value. 

      

(a)                                        (b) 

Figure 9. Speedup change on the parallel experimental scheme. 

Specifically, the speedup changes on parallel experimental schemes (Scheme 2 to Scheme 5) with 

data sets 1 and 2 are illustrated in Figure 9(a),(b), respectively. By observing the changing patterns on 

different speedups, it can be concluded that our algorithm shows good scalability. The speedup grows 

steadily and regularly when the computing resources keep increasing. 

Besides, after calculating the slope of each speedup curve in Figure 9(a), a phenomenon can be 

observed that the curve slopes in Schemes 2 and 3 are large, decreasing in Schemes 4 and 5. This 

phenomenon happens in every speedup curve in Figure 9(a), and it means that the algorithm’s 

scalability at the very beginning is better than the one in the end. In a real environment, it indicates 

that in Schemes 2 and 3, the investment of computing resources leads to a significant improvement in 

algorithm efficiency. However, in Schemes 4 and 5, an obvious diminishing marginal utility appears. 

It brings a problem that with the continuous investment of computing resources, the performance 

improvement of parallel algorithms is becoming increasingly limited. 

The same change patterns are also witnessed in Figure 9(b), proving that this phenomenon is 

common in the proposed algorithm. This phenomenon is because the continuous investment of 

computing resources will increase network communications and data exchanges between different 

computing nodes in the cluster, resulting in the proposed algorithm’s performance no longer 

maintaining the same growth rate. 

In addition, comparing the curves in Figure 9 (a),(b), it can be seen that in the same experimental 

schemes, the curves’ slopes in small size data (for instance, D1913 and G858 in dataset 1) are always 

greater than the curves’ slopes in big size data (for example, D1925 and G98 in dataset 2). Because 

the increase in the amount of data will also affect the algorithm’s inner processes like task scheduling, 

process communication, and data exchange, which in turn affect the performance of the proposed 

algorithm. Therefore, the focus of subsequent research work will be how to optimize the scheduling 

strategy of parallel units in the algorithm, reduce data exchange, and reduce communication delay. 

Furthermore, since the edge computing model and IoT computing devices are more flexible than the 

conventional centralized computing model [33–35], implementing the proposed on edge computing 
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equipments would also be the future work direction. 

6. Conclusions 

This paper proposes a parallel data detection algorithm for a high-speed rail control system based 

on the parallel speculation optimization technique and Apache Spark. The parallel speculation 

optimization technique helped overcome the complex dependencies that impact the detection order for 

high-speed train control data, so that the data can be detected in a parallel and speculative way. The 

introduction of Apache Spark provided support for large-scale concurrency. The experiment and the 

corresponding analysis showed that the proposed algorithm obtained better performance than the 

conventional data detection algorithm. Besides, the proposed algorithm also possessed outstanding 

scalability, and the detection efficiency could be markedly improved by increasing more computing 

resources. At present, with the support of Xi’an Railway Bureau, this algorithm has been implemented 

in the railway control center to help detect the control data generated by high-speed trains, and the 

overall performance was very satisfying. However, through the experiment, it was also known that 

there was still room for algorithm optimizations, and in-depth research on the scheduling strategy for 

the proposed algorithms in distributed systems would continue in the future. 
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