
MBE, 19(1): 271–286.

DOI: 10.3934/mbe.2022014

Received: 15 September 2021

Accepted: 02 November 2021

Published: 12 November 2021

http://www.aimspress.com/journal/MBE

Research article

A coevolutionary algorithm based on the auxiliary population for

constrained large-scale multi-objective supply chain network

Xin Zhang1,2, Zhaobin Ma1, Bowen Ding1, Wei Fang1 and Pengjiang Qian1,*

1 School of Artificial Intelligence and Computer Science, and Jiangsu Key Laboratory of Media

Design and Software Technology, Jiangnan University, Wuxi 214122, China
2 Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,

Jilin University, Changchun 130012, China

* Correspondence: Email: qianpjiang@126.com.

Abstract: Supply chain network is important for the enterprise to improve the operation and

management, but has become more complicated to optimize in reality. With the consideration of

multiple objectives and constraints, this paper proposes a constrained large-scale multi-objective

supply chain network (CLMSCN) optimization model. This model is to minimize the total operation

cost (including the costs of production, transportation, and inventory) and to maximize the customer

satisfaction under the capacity constraints. Besides, a coevolutionary algorithm based on the auxiliary

population (CAAP) is proposed, which uses two populations to solve the CLMSCN problem. One

population is to solve the original complex problem, and the other population is to solve the problem

without any constraints. If the infeasible solutions are generated in the first population, a linear repair

operator will be used to improve the feasibility of these solutions. To validate the effectivity of the

CAAP algorithm, the experiment is conducted on the randomly generated instances with three different

problem scales. The results show that the CAAP algorithm can outperform other compared algorithms,

especially on the large-scale instances.

Keywords: supply chain network; large-scale optimization; multi-objective optimization; constrained

optimization; coevolutionary algorithm

272

Mathematical Biosciences and Engineering Volume 19, Issue 1, 271–286.

1. Introduction

In the traditional manufacturing industry, enterprises always focus on their own single business,

such as supplying raw materials, producing parts, assembling parts, or transporting. The isolating

management pattern may be uncompetitive in the face of the volatile market, because enterprises

cannot obtain complete information in time [1]. Afterwards, the pattern of supply chain management

is proposed. Supply chain network (SCN) organizes enterprises from different stages together, and

these enterprises work cooperatively and create a win-win situation [2,3]. Therefore, supply chain

network (SCN) plays a significant role in the whole operation of the enterprise [4,5].

In the practical application of supply chain network, researchers can solve the SCN optimization

problem through the mathematical modeling, the simulation, the data-driven, the game model, and

other methods [6–8]. Evolutionary algorithms adopt a set of solutions (i.e., the population composed

of multiple solution individuals) to solve problems, which have good global optimization ability and

have become important methods to solve complex optimization problems in recent years [9,10]. For

example, to solve the constrained optimization problems, evolutionary algorithms were combined with

the random direction repair which was an effective constraint-handling method [11]. A constraint-

objective cooperative coevolution framework was proposed to solve the large-scale constrained

optimization problems, which allocated different computing resources to the decomposed sub-

problems according to their contributions [12]. Therefore, evolutionary algorithms are often used to

solve the complicated SCN optimization problems [13–15].

For example, Wang et al. [16] used genetic algorithm to choose suppliers and distribution centers

and optimize the production quantity and the transportation volume in the iron and steel supply chain

network, so as to minimize the operation cost and carbon emission of the network system. The problem

is a multi-objective optimization problem of mixed integer programming with constraints. Sun et al. [17]

used ant colony optimization algorithm to solve the scheduling optimization problem of mass

customization supply chain and to minimize the production scheduling time by determining the

optimal scheduling of cooperative suppliers. Zhang et al. [18] used the cooperative particle swarm

optimization algorithm to solve the large-scale supply chain network design problem in the uncertain

environment and to minimize the operation cost of the whole system by determining the optimal

supplier and warehouse location scheme and the transportation logistics between network nodes.

Akkad et al. [19] used a multi-objective heuristic approach to solve the collection and distribution

problems of city logistics and to minimize both the fuel consumption and the emission of greenhouse

gases. Saragih et al. [20] used a heuristic method to solve a location-inventory-routing problem in a

three-echelon supply chain system with large scales. These problems have the characteristics of large

scale, multiple objectives, or constraints which are the common difficulties of the SCN problems in

the reality. However, the researchers did not solve the problem which has the three characteristics

simultaneously.

In this paper, a constrained large-scale multi-objective supply chain network (CLMSCN) model

is proposed, which is much closer to the reality and considers large scale, multiple objectives, and

constraints in the same time. This model is to optimize the total operation cost and the customer

satisfaction under the capacity constraints simultaneously. The total operation cost includes the

production cost of the products, the inventory cost of the products, and the transportation cost among

different SCN members. The proposed CLMSCN is a demand-driven model, which starts from the

customers raising the demand to the SCN platform. According to the demand quantity of customers,

273

Mathematical Biosciences and Engineering Volume 19, Issue 1, 271–286.

the SCN members on the platform, including distributors and suppliers, begins to ordering, supplying,

or distributing. This model is more competitive in the industry 4.0 era, since it starts from the market

demand directly and helps to improve the operation efficiency with lower cost.

Besides, this paper proposes a coevolutionary algorithm based on the auxiliary population

(CAAP), which uses two populations to solve the CLMSCN problem with complicated constraints.

The first population is to solve the original problem with constraints, and a linear repair operator is

designed to improve the feasibility of the infeasible solutions. The second population is to solve the

problem without any constraints, which plays an auxiliary role to explore more solution space. With

the cooperative work of the two populations, the CAAP algorithm can solve the CLMSCN problem in

the experiment.

The rest of this paper is organized as follows. Section 2 describes the proposed CLMSCN problem

in detail. Section 3 introduces all the components of the proposed CAAP algorithm. Afterwards,

Section 4 discusses and analyzes the experimental results from different angles. Finally, Section 5

gives the conclusion of this paper.

2. Problem description of CLMSCN

To optimize the total operation cost and the customer satisfaction, the CLMSCN model is

proposed in this paper. The illustration of the CLMSCN problem is shown in Figure 1, which involves

three kinds of members (including suppliers, distributors, and customers) and four stages (including

customers sending demands to distributors, distributors sending orders to suppliers, suppliers

supplying materials to distributors, and distributors transporting materials to customers). The whole

process will last for several time periods. The numbers of suppliers, distributors, customers, and time

periods are denoted as S, D, C and T, correspondingly. Before the description of the four stages of the

problem, all variables involved in the CLMSCN problem model are described as follows:

1) Demand2) Order

3) Supply 4) Transport

Supplier Distributor Customer

Figure 1. Illustration of the CLMSCN problem.

Indices:

i: index of suppliers, i ∈ {1, …, S}

j: index of distributors, j ∈ {1, …, D}

k: index of customers, k ∈ {1, …, C}

t: index of time periods, t ∈ {1, …, T}

274

Mathematical Biosciences and Engineering Volume 19, Issue 1, 271–286.

Parameters:

S: number of suppliers

S_capi: capacity of the supplier i

S_pdCosti: production cost per unit capacity and time of the supplier i

D: number of distributors

D_capj: capacity of the distributor j

D_invj,t: inventory quantity of the distributor j in the period t

D_invj,0: initial inventory quantity of the distributor j

D_invCostj: inventory cost per unit capacity and time of the distributor j

C: number of customers

C_demk,t: demand quantity of the customer k in the period t

SD_tpCosti,j: transport cost per unit capacity and time from the supplier i to the distributor j

DC_tpCostj,k: transport cost per unit capacity and time from the distributor j to the customer k

T: number of time periods

Decision variables:

DS_ordi,j,t: order quantity of the supplier i from the distributor j in the period t

DC_tpj,k,t: transport quantity of the distributor j to the customer k in the period t

The whole process of the CLMSCN problem in Figure 1 can be described as follows:

Stage 1) Demand: Each customer sends demands to the supply chain platform in each time period

(C_demk,t). It should be noted that the total demand quantity of the customer k is known, but the

demand quantity of the customer to each distributor is unknown.

Stage 2) Order: If the previous inventory cannot satisfy the customer demands, distributors will

send orders to the suppliers (DS_ordi,j,t). In this stage, two capacity constraints should be satisfied.

Firstly, in the period t, the total order quantity and the previous inventory of the distributor should not

be larger than its capacity (i(DS_ordi,j,t) + D_invj,t-1 ≤ D_capj). Secondly, the total order quantity of a

supplier should not be larger than its capacity (j(DS_ordi,j,t) ≤ S_capi). Besides, the production cost

of suppliers should be expended (Prod_cost = ijt(S_pdCosti × DS_ordi,j,t)).

Stage 3) Supply: Suppliers transport materials to distributors. The transport cost from suppliers

to distributors (Tp_cost1 = ijt(SD_tpCosti,j × DS_ordi,j,t)) and the inventory cost of distributors

(Inv_cost = jt(D_invCostj × D_invj,t)) should be expended. Besides, the inventory quantity of

distributors should be updated (D_invj,t = D_invj,t-1 + i(DS_ordi,j,t) − k(DC_tpj,k,t) = l(i(DS_ordi,j,t)

− k(DC_tpj,k,t)) + D_invj,0 , l ∈ {1, …,t}).

Stage 4) Transport: Distributors transport materials to customers (DC_tpj,k,t). The transport cost

from distributors to customers (Tp_cost2 = jkt(DC_tpCostj,k × DC_tpj,k,t)) should be expended.

When the demands of all customers are completely satisfied, the customer satisfaction is highest.

There are two assumptions in the problem model:

1) The production quantity of a supplier is equal to the total order quantity.

2) The production time of suppliers and the transport time from suppliers to distributors and

from distributors to customers are ignored.

The two objectives of this problem is to minimize the operation cost (f1 = Prod_cost + Tp_cost1

+ Inv_cost + Tp_cost2) and to maximize the customer satisfaction (f2 = kt(j(DC_tpj,k,t)/C_demk,t)),

which are mutually exclusive. The second objective can be equivalent to minimize f2 = kt(C_demk,t)/

275

Mathematical Biosciences and Engineering Volume 19, Issue 1, 271–286.

(jkt(DC_tpj,k,t) + 1.0).

Based on the above descriptions, the final mathematical model of this CLMSCN problem can be

described as follows:

Minimize

, , , , ,

1 1 1 1 1 1

, , , , ,0

1 1 1 1 1

, , ,

1 1

 1 =

 + (())

 +

S D T S D T

i i j t i j i j t

i j t i j t

D T t S C

j i j l j k l j

j t l i k

C T

j k j k t

j k t

f S_pdCost DS_ord SD_tpCost DS_ord

D_invCost DS_ord DC_tp D_inv

DC_tpCost DC_tp

     

    

 

 

  



   

    

 
1

D





 (1)

,

1 1

, ,

1 1 1

_

2

1.0

C T

k t

k t

C T D

j k t

k t j

C dem

f

DC_tp

 

  








 (2)

Subject to

, , 0, {1,..., }, {1,..., }, {1,..., }i j tDS_ord i S j D t T    (3)

, , 0, {1,..., }, {1,..., }, {1,..., }j k tDC_tp j D k C t T    (4)

 , ,

1

, {1,..., }, {1,..., }
D

i j t i

j

DS_ord S_cap i S t T


   (5)

, , 1 , , , ,

1 1

, , , , ,0

1 1 1

, {1,..., }, {1,..., }

 = () 0

S C

j t j t i j t j k t

i k

t S C

i j l j k l j

l i k

D_inv D_inv DS_ord DC_tp j D t T

DS_ord DC_tp D_inv



 

  

    

  

 

  

 (6)

, , , 1

1

1

, , , , , , ,0

1 1 1 1

() ,

{1,..., }, {1,..., }

S

i j t j t

i

S t S C

i j t i j l j k l j j

i l i k

DS_ord D_inv

DS_ord DS_ord DC_tp D_inv D_cap

j D t T







   

 

   

 



    (7)

The operation cost (f1) and the customer satisfaction (equivalent to f2) are calculated as Eqs (1)

and (2), correspondingly. As for the domain of variables, the decision variables DS_ordi,j,t and DC_tpj,k,t

and the inventory quantity of distributors (D_invj,t, which is updated in the third stage Supply) are all

not smaller than zero, as shown in Eqs (3), (4), and (6), correspondingly. As for the capacity constraints

276

Mathematical Biosciences and Engineering Volume 19, Issue 1, 271–286.

in the second stage (Order), for the supplier i, its order quantity from all distributors (j(DS_ordi,j,t))

should not exceed its capacity (S_capi), as shown in Eq (5). For the distributor j, its order quantity to

all suppliers (i(DS_ordi,j,t)) and previous inventory (D_invj,t-1) should not exceed its capacity (D_capj),

as shown in Eq (7).

3. CAAP algorithm

3.1. Solution encoding

The solution in the proposed CAAP approach is encoded into a single dimensional array, as shown

in Figure 2. Each solution has (dim = S×D×T+D×C×T) dimensions. The first (S×D×T) dimensions are

consisted of DS_ord, and the last (D×C×T) dimensions are consisted of DC_tp.

Dimension: 1 … S×D×T S×D×T +1 … S×D×T + D×C×T

 DS_ord DC_tp

Figure 2. Illustration of the solution encoding.

3.2. Initialization

Before the iteration, the two populations in the CAAP approach are randomly initialized. To

generate more feasible solutions, reasonable lower and upper bounds should be determined. From the

observation of Eqs (3) and (4), the lower bounds of DS_ord and DC_tp of the solution can be set as

0. For DS_ord of a solution, the decision variable DS_ordi,j,t represents the order quantity of the

distributor j to the supplier i in the period t, so it should not be larger than the capacity of the supplier

i and the distributor j. Therefore, the upper bound of DS_ordi,j,t is the smaller one between S_capi and

D_capj (min(S_capi, D_capj)). For DC_tp of a solution, the decision variable DC_tpj,k,t represents the

transport quantity of the distributor j to the customer k in the period t, so it should not be larger than

the capacity of the supplier i and the demand quantity of the customer k. Therefore, the upper bound

of DC_tpj,k,t is the smaller one between D_capj and C_demk,t (min(D_capj, C_demk,t)). Finally, the

decision variables are initialized randomly within the reasonable range.

3.3. Linear repair operator

If an infeasible solution is generated in the population, the linear repair operator will be used to

improve the feasibility of the solution. It can be seen that the constraints (Eqs (5)–(7)) of this problem

are all the linear functions of decision variables (DS_ord and DC_tp). Therefore, to improve the

feasibility of solutions, the decision variables can be linearly changed according to the constraints

Eqs (5)–(7).

From the observation of the constraints Eqs (5)–(7), three conclusions can be obtained as follows:

1) To improve the solutions which violate the constraint Eq (5), the decision variables in

DS_ord should decrease.

277

Mathematical Biosciences and Engineering Volume 19, Issue 1, 271–286.

2) To improve the solutions which violate the constraint Eq (6), the decision variables in

DS_ord should increase, or the decision variables in DC_tp should decrease.

3) To improve the solutions which violate the constraint Eq (7), the decision variables in

DS_ord should decrease, or the decision variables in DC_tp should increase.

Therefore, to maintain consistency as much as possible, three rules are formulated to repair

infeasible solutions as follows:

1) To repair the infeasible solutions violating the constraint Eq (5), the decision variables in

DS_ord will decrease proportionally.

2) To repair the infeasible solutions violating the constraint Eq (6), the decision variables in

DC_tp will decrease proportionally.

3) To repair the infeasible solutions violating the constraint Eq (7), the decision variables in

DS_ord will decrease proportionally.

For example, for the infeasible solutions violating the constraint Eq (5), the new DS_ordi,j,t (j ∈

{1, …, D}) need to approximately decrease by (j(DS_ordi,j,t) − S_capi)/D proportionally, and the

details are shown in Algorithm 1. For the infeasible solutions violating the constraint Eq (6), DC_tpj,k,t

(k ∈ {1, …, C}) need to approximately decrease by –D_invj,t/C proportionally, and the details are

shown in Algorithm 2. For the infeasible solutions violating the constraint Eq (7), DS_ordi,j,t

(i ∈ {1, …, S}) need to approximately decrease by (i(DS_ordi,j,t) + D_invj,t-1 – D_capj)/D

proportionally, and the details are shown in Algorithm 3.

It should be noted that the repair operator is time-consuming. Therefore, a self-adaptive repair

probability of each solution is set. The initial repair probability of each solution is set as 10-4 × dim.

After an evaluation, if the solution is repaired, its repair probability will decrease by 10-5 × dim;

otherwise, the probability will increase by 10-5 × dim.

Algorithm 1: Linear Repair Operator 1

Input: the solution including DS_ord, i, t, D, T

Output: the repaired solution

1: Calculate eValue = j(DS_ordi,j,t) − S_capi;

2: count = 0;

3: While eValue > 0 and count < T do: // the loop will continue until j(DS_ordi,j,t) > S_capi

or the number of the loop iterations count is smaller than T

4: decrease = eValue / D;

5: sum = 0;

6: For j {1, …, D} do:

7: If DS_ordi,j,t > decrease do://after decreasing, DS_ordi,j,t should not be smaller than 0

8: DS_ordi,j,t = DS_ordi,j,tdecrease;

9: sum = sum + DS_ordi,j,t;

10: eValue = sum  S_capi;

11: count= count + 1;

278

Mathematical Biosciences and Engineering Volume 19, Issue 1, 271–286.

Algorithm 2: Linear Repair Operator 2

Input: the solution including DC_tp, j, t, C, T

Output: the repaired solution

1: Calculate eValue = – D_invj,t;

2: Calculate tmp = – eValue + k(DC_tpj,k,t);

3: count = 0;

4: While eValue > 0 and count < T do: // the loop will continue until the constraint (6) is

satisfied or the number of the loop iterations count is smaller than T

5: decrease = eValue / C;

6: sum = 0;

7: For k {1, …, C} do:

8: If DC_tpj,k,t > decrease do:

9: DC_tpj,k,t = DC_tpj,k,t decrease;

10: sum = sum + DC_tpj,k,t;

11: eValue = sum  tmp;

12: count= count + 1;

Algorithm 3: Linear Repair Operator 3

Input: the solution including DS_ord, j, t, S, T

Output: the repaired solution

1: Calculate eValue = i(DS_ordi,j,t) + D_invj,t-1 – D_capj;

2: Calculate tmp = eValue – i(DS_ordi,j,t);

3: count = 0;

4: While eValue > 0 and count < T do: // the loop will continue until the constraint (7) is

satisfied or the number of the loop iterations count is smaller than T

5: decrease = eValue / S;

6: sum = 0;

7: For i {1, …, S} do:

8: If DS_ordi,j,t > decrease do:

9: DS_ordi,j,t = DS_ordi,j,t  decrease;

10: sum = sum + DS_ordi,j,t;

11: eValue = sum + tmp;

12: count= count + 1;

3.4. Complete CAAP algorithm

The CAAP algorithm applies the coevolutionary constrained multi-objective optimization

framework [21], and uses two populations (pop1 and pop2) to solve the CLMSCN problem. pop1 is

to solve the original problem with complex constraints, and pop2 is to solve the CLMSCN problem

without constraints. Besides, the linear repair operator is designed to repair the infeasible solutions in

pop1 as much as possible.

279

Mathematical Biosciences and Engineering Volume 19, Issue 1, 271–286.

Algorithm 4 shows the pseudo code of the CAAP algorithm in details. The input parameter,

Popsize, is the population size of pop1 and pop2, and the output parameters, PS and PF, are the Pareto

solutions (the best solutions of a multi-objective problem) and their fitness values correspondingly.

Firstly, pop1 and pop2 are initialized randomly, and the infeasible solutions in pop1 are repaired by

the linear repair operator. Then, the iterative process is conducted, and the termination condition of

this algorithm in line 4 is set as the maximal running time. In the iterative process, Parent1 and Parent2

are selected from Parent2 correspondingly by the roulette wheel selection. Then, in lines 7 and 8,

offsprings are generated by NSGA_II with the simulated binary crossover and polynomial

mutation [22–24]. Then, pop1 and pop2 are updated and evaluated in lines 9 to 13. In lines 12 and 13,

the fast-non-dominated-sort in [22] and the farthest-candidate approach in [25] are used to select the

non-dominated solutions. Finally, PS and PF are updated.

Algorithm 4: CAAP

Input: Popsize

Output: PS, PF

1: Randomly initialize and evaluate pop1, and repair the solutions in pop1 according to the

repair probabilities;

2: Randomly initialize and evaluate pop2;

3: Update PS and PF;

4: While the termination condition is not satisfied do:

5: Parent1 ← Select popsize/2 parents from pop1 by the roulette wheel selection;

6: Parent2 ← Select popsize/2 parents from pop2 by the roulette wheel selection;

7: Off1 ← Generate popsize/2 offsprings based on Parent1 by NSGA_II;

8: Off2 ← Generate popsize/2 offsprings based on Parent2 by NSGA_II;

9: pop1 ← pop1 ∪ Off1 ∪ Off2;

10: pop2 ← pop2 ∪ Off1 ∪ Off2;

11: Evaluate pop1 and pop2, and repair solutions in pop1;

12: pop1 ← Select popsize solutions in pop1 by the fast-non-dominated-sort and the

farthest-candidate approach;

13: pop2 ← Select popsize solutions in pop2 by the fast-non-dominated-sort and the

farthest-candidate approach;

14: Update PS and PF;

4. Experimental verification and comparisons

4.1. Experimental settings

To validate the performance of the CAAP algorithm, three different scales of instance sets are

randomly generated. Each scale has five instances, such as I_1 to I_5 of the small scale, II_1 to II_5

of the middle scale, and III_1 to III_5 of the large scale, and the configurations and the maximum

execution time of the instance sets are shown in Table 1. Besides, MPCMO_BBPSO (multiple

populations for constrained multi-objective optimization with bare-bones particle swarm optimization),

280

Mathematical Biosciences and Engineering Volume 19, Issue 1, 271–286.

PBBPSO (bare-bones particle swarm optimization with the Pareto optimality), NSGA_II

(nondominated sorting genetic algorithm II, [22]), MOEA/D (multi-objective evolutionary algorithm

based on decomposition, [26]), and NSLS (nondominated sorting and local search, [25]) are used to

compare with the CAAP algorithm for the CLMSCN problem. MPCMO_BBPSO, which applies the

multiple populations for multiple objectives framework [27], takes the constraints as a new objective

and uses the bare-bones particle swarm optimization to solve the CLMSCN problem. PBBPSO uses

bare-bones particle swarm optimization which is competitive in solving the supply chain optimization

problem. NSGA_II, MOEA/D, and NSLS are the competitive algorithms for the multi-objective

optimization problems. For the fair comparison, the population size of all algorithms is set 50, and the

linear repair operator proposed in this paper is also used in the all compared algorithms to repair the

infeasible solutions.

Table 1. Configurations and execution time of the instance sets.

No. S W C T Dimension (D) Execution time (Seconds)

I 5 10 15 10 2015 10

II 10 20 50 20 24030 100

III 30 50 100 30 195080 500

4.2. Compared results

Table 2. The HV values of all algorithms on different instances.

Instance CAAP MPCMO_BBPSO PBBPSO NSGA_II MOEA/D NSLS

I_1 1.65E + 06 1.38E + 06 7.64E + 05 1.07E + 06 1.20E + 06 9.98E + 05

I_2 3.89E + 06 3.04E + 06 2.05E + 06 2.38E + 06 3.96E + 06 2.50E + 06

I_3 4.28E + 06 3.41E + 06 2.19E + 06 2.49E + 06 3.81E + 06 2.58E + 06

I_4 4.44E + 06 3.65E + 06 2.17E + 06 3.23E + 06 4.83E + 06 2.93E + 06

I_5 2.95E + 06 2.37E + 06 1.06E + 06 1.64E + 06 2.57E + 06 1.84E + 06

Avg. 3.44E + 06 2.77E + 06 1.65E + 06 2.16E + 06 3.27E + 06 2.17E + 06

II_1 6.02E + 05 5.48E + 05 4.88E + 05 5.32E + 05 3.42E + 05 3.56E + 05

II_2 9.01E + 05 8.10E + 05 7.41E + 05 8.13E + 05 5.66E + 05 5.35E + 05

II_3 1.53E + 06 1.38E + 06 1.19E + 06 1.45E + 06 9.70E + 05 9.20E + 05

II_4 9.53E + 05 8.64E + 05 7.93E + 05 8.89E + 05 6.66E + 05 5.60E + 05

II_5 7.94E + 05 6.94E + 05 6.26E + 05 7.18E + 05 5.20E + 05 4.28E + 05

Avg. 9.57E + 05 8.59E + 05 7.67E + 05 8.81E + 05 6.13E + 05 5.60E + 05

III_1 1.57E + 06 1.39E + 06 1.29E + 06 1.52E + 06 9.80E + 05 6.59E + 05

III_2 1.42E + 06 1.23E + 06 1.14E + 06 1.37E + 06 8.17E + 05 5.91E + 05

III_3 1.34E + 06 1.17E + 06 1.11E + 06 1.30E + 06 8.57E + 05 5.45E + 05

III_4 1.23E + 06 1.09E + 06 1.00E + 06 1.20E + 06 7.26E + 05 5.17E + 05

III_5 1.16E + 06 1.03E + 06 9.25E + 05 1.13E + 06 7.07E + 05 5.16E + 05

Avg. 1.34E + 06 1.18E + 06 1.09E + 06 1.30E + 06 8.17E + 05 5.66E + 05

281

Mathematical Biosciences and Engineering Volume 19, Issue 1, 271–286.

To evaluate the performance of the CAAP algorithm and other contestant algorithms from diverse

angles, two metrics are used, HV (hypervolume) and C(A, B) (A and B are two algorithms) [28]. The

HV value represents the hypervolume surrounded by the reference point and the Pareto front. For the

minimization problem solved in this paper, if the HV value of an algorithm is higher, it means the

algorithm is better than other algorithms. The C(A, B) value means the ratio of the solutions which are

obtained by the algorithm B and are dominated by the solutions obtained by the algorithm A. Therefore,

if the C(A, B) value is larger than the C(B, A) value, it means that the algorithm A can obtain better

solutions than the algorithm B.

Table 2 shows the HV values of all algorithms on different instances. The data in bold represent

the best result among all algorithms. It can be observed from Table 2 that for the instances in small

scale, CAAP can obtain the best results on 3 instances, followed by MPCMO_BBPSO and MOEA/D.

For the instances in middle and large scale, CAAP can obtain the best results on all instances, followed

by MPCMO_BBPSO and NSGA_II. With the problem scale increasing, the advantage of the

performance of CAAP does not deteriorate.

Table 3 and Table 4 show the C(A, B) values of all compared algorithms with CAAP on different

instances. From the observation of Table 3, CAAP can obtain 2, 5 and 4 better results than

MPCMO_BBPSO, PBBPSO, and NSGA_II on small instances, correspondingly. For the middle and

large instances, CAAP obtains the best results on all instances compared with MPCMO_BBPSO,

PBBSO, and NSGA_II. From the observation of Table 4, CAAP outperforms MOEA/D and NSLS on

all different instances.

Table 3. The C(A, B) values of MPCMO_BBPSO, PBBPSO, and NSGA_II with CAAP

on different instances (%).

 MPCMO_BBPSO PBBPSO NSGA_II

Instance C(CAAP, –) C(–, CAAP) C(CAAP, –) C(–, CAAP) C(CAAP, –) C(–, CAAP)

I_1 0.18 0.30 1.00 0.00 1.00 0.00

I_2 0.40 0.16 1.00 0.00 0.51 0.09

I_3 0.26 0.44 1.00 0.00 1.00 0.00

I_4 0.27 0.38 1.00 0.00 0.00 0.58

I_5 0.23 0.22 1.00 0.00 1.00 0.00

Avg. 0.27 0.30 1.00 0.00 0.70 0.13

II_1 0.91 0.07 0.95 0.00 0.85 0.29

II_2 0.95 0.04 1.00 0.00 0.88 0.12

II_3 1.00 0.00 1.00 0.00 0.91 0.03

II_4 0.93 0.07 1.00 0.00 0.54 0.20

II_5 1.00 0.00 1.00 0.00 0.88 0.04

Avg. 0.96 0.04 0.99 0.00 0.81 0.14

III_1 0.92 0.04 0.88 0.12 0.82 0.21

III_2 0.78 0.12 0.84 0.22 0.70 0.12

III_3 0.89 0.07 0.78 0.17 0.81 0.12

III_4 0.79 0.09 0.60 0.32 0.66 0.26

III_5 0.92 0.00 0.97 0.00 0.58 0.26

Avg. 0.86 0.06 0.82 0.17 0.71 0.19

282

Mathematical Biosciences and Engineering Volume 19, Issue 1, 271–286.

Table 4. The C(A, B) values of MOEA/D and NSLS with CAAP on different instances (%)

 MOEA/D NSLS

Instance C(CAAP, –) C(–, CAAP) C(CAAP, –) C(–, CAAP)

I_1 0.93 0.34 1.00 0.00

I_2 0.68 0.66 1.00 0.00

I_3 1.00 0.00 1.00 0.00

I_4 0.34 0.33 1.00 0.00

I_5 0.64 0.33 1.00 0.00

Avg. 0.72 0.33 1.00 0.00

II_1 1.00 0.00 1.00 0.00

II_2 1.00 0.00 1.00 0.00

II_3 1.00 0.00 1.00 0.00

II_4 1.00 0.00 1.00 0.00

II_5 1.00 0.00 1.00 0.00

Avg. 1.00 0.00 1.00 0.00

III_1 0.46 0.40 0.96 0.01

III_2 0.59 0.22 0.39 0.20

III_3 1.00 0.00 1.00 0.00

III_4 0.52 0.17 0.69 0.15

III_5 0.90 0.05 1.00 0.00

Avg. 0.69 0.17 0.81 0.07

For further illustration, Figure 3 depicts the Pareto fronts of all algorithms on three instances from

different problem scales. For the minimization problem solved in this paper, if the Pareto front of an

algorithm is the closest to the coordinate axes, it means that the algorithm can get the best results

among these algorithms. Besides, if the Pareto front of an algorithm is longest, it represents that the

algorithm can obtain most non-dominated solutions that spread widely in the solution space. It can be

observed from Figure 3 that the Pareto fronts of CAAP on the three instances are almost all the closest

and longest among all algorithms, which demonstrates that CAAP can obtain the best results on

different instances for the CLMSCN problem.

From the above observations, CAAP can outperform the compared algorithms on different

instances. The reason may be that CAAP uses two populations to cooperatively solve the complicated

constrained multi-objective problems. One population is to solve the original problem with complex

constraints, and the linear repair operator with the self-adaptive repair probability is used to improve

the feasibility of solutions. The other population is to solve the simplified problem without constraints,

which helps to explore more solution space quickly. The cooperative mechanism of the two

populations is effective to solve the complex constrained problem.

283

Mathematical Biosciences and Engineering Volume 19, Issue 1, 271–286.

1.0x10
5

2.0x10
5

3.0x10
5

4.0x10
5

2.0

3.0

4.0

5.0

6.0

7.0

8.0
 MPCMO_BBPSO

 PBBPSO

 NSGA_II

 MOEA/D

 NSLS

 CAAP

S
h

o
rt

ag
e

R
at

e

Cost
1.8x10

6

1.9x10
6

2.0x10
6

2.1x10
6

2.2x10
6

2.3x10
6

2.4x10
6

2.5x10
6

2.6x10
6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

6.2 MPCMO_BBPSO

 PBBPSO

 NSGA_II

 MOEA/D

 NSLS

 CAAP

S
h

o
rt

ag
e

R
at

e

Cost
(a) I_1 (b) II_1

6.5x10
6

7.0x10
6

7.5x10
6

8.0x10
6

8.5x10
6

9.0x10
6

4.2

4.4

4.6

4.8

5.0

5.2
 MPCMO_BBPSO

 PBBPSO

 NSGA_II

 MOEA/D

 NSLS

 CAAP

S
h

o
rt

ag
e

R
at

e

Cost
 (c) III_1

Figure 3. Pareto Fronts of all algorithms on instances.

4.3. Effectiveness of the linear repair operator

Table 5. The repair probability of all algorithms on different instances (%).

Instance CAAP MPCMO_BBPSO PBBPSO NSGA_II MOEA/D NSLS

I 21.58 10.80 24.44 17.17 0.79 93.40

II 60.52 83.71 99.79 13.53 100.00 100.00

III 78.47 95.59 99.91 49.59 100.00 100.00

Avg. 53.52 63.37 74.71 26.77 66.93 97.80

Table 6. The C (A, B) of CAAP and CAAP_noRep on different instances (%).

Instance C(CAAP, CAAP_noRep) C(CAAP_noRep, CAAP)

I 0.49 0.42

II 1.00 0.00

III 1.00 0.00

Avg. 0.83 0.14

284

Mathematical Biosciences and Engineering Volume 19, Issue 1, 271–286.

To validate the effectiveness of the linear repair operator, the repair probability of all algorithms

on different instances are recorded in Table 5. It can be observed that the repair probability of all

algorithms is all much larger than zero, and with the problem scale increasing, the repair probability

increases. The results illustrate that the linear repair operator can help algorithms improve the

feasibility of solutions. Besides, the C(A, B) of CAAP and CAAP_noRep (CAAP without the linear

repair operator) on different instances is shown in Table 6. It should be noted that CAAP_noRep uses

the superiority of feasible solutions [29] as the constraint handling method. CAAP can get much better

results than CAAP_noRep, especially on middle and large instances. It can also be concluded that the

linear repair operator is effective to improve the solution quality of algorithms for solving the

CLMSCN problem.

5. Conclusions

This paper designs the CLMSCN model with complex constraints and multiple objectives which

both considers the minimization of the total operation cost and the customer satisfaction as the

optimization objectives. Besides, to solve the complex problem effectively, the CAAP algorithm is

proposed in this paper, which applies two populations to solve the problem. The first population is to

solve the original CLMSCN problem with complex constraints, and the linear repair operator will be

used to improve the feasibility of solutions. The second population is to solve the simplified problem

without constraints, which helps to quickly expend the search space of solutions. The experimental

results show that the cooperative mechanism of CAAP helps to obtain much better solutions than the

compared algorithms on the CLMSCN problem with complex constraints and multiple objectives,

especially on the large-scale instances. In the future work, we will design more relatively general

constraint-handling methods for the complex problems, and apply the cooperative mechanism of

CAAP to solve other supply chain network optimization with complex constraints and multiple

objectives, such as the minimization of the fuel consumption and the emission of greenhouse gases.

Acknowledgments

The work described in this paper was substantially supported in part by the National Key R&D

Program of China under Grant 2017YFC1601000 and 2017YFC1601800, the National Natural

Science Foundation of China under Grant No. 62106088, No. 62172192, and No. 62073155, in part

by the High level personnel project of Jiangsu Province (JSSCBS20210852), and in part by the

Fundamental Research Funds for the Central Universities, Jiangnan University and Jilin University.

Conflict of interest

The authors declare there is no conflicts of interest.

285

Mathematical Biosciences and Engineering Volume 19, Issue 1, 271–286.

References

1. M. Aranguren, K. K. Castillo-Villar, M. Aboytes-Ojeda, A two-stage stochastic model for co-

firing biomass supply chain networks, J. Clean. Prod., 319 (2021), 128582. doi:

10.1016/j.jclepro.2021.128582.

2. C. Dong, C. Chen, X. Shi, C. T. Ng, Operations strategy for supply chain finance with asset-

backed securitization: Centralization and blockchain adoption, Int. J. Prod. Econ., 241 (2021),

108261. doi: 10.1016/j.ijpe.2021.108261.

3. D. Ramón-Lumbierres, F. J. H. Cervera, J. Minguella-Canela, A. Muguruza-Blanco, Optimal

postponement in supply chain network design under uncertainty: an application for additive

manufacturing, Int. J. Prod. Res., 59 (2020), 5198–5215. doi: 10.1080/00207543.2020.1775908.

4. X. Zhang, Z. H. Zhan, J. Zhang, Multi-objective direction driven local search for constrained

supply chain configuration problem, in Proceedings of ACM Genetic and Evolutionary

Computation Conference (GECCO), Cancun, (2020), 299–300. doi: 10.1145/3377929.3389929.

5. X. Zhang, Z. H. Zhan, J. Zhang, A fast efficient local search-based algorithm for multi-objective

supply chain configuration problem, IEEE Access, 8 (2020), 62924–62931. doi:

10.1109/ACCESS.2020.2983473

6. H. Shirazi, R. Kia, P. Ghasemi, A stochastic bi-objective simulation-optimization model for

plasma supply chain in case of COVID-19 outbreak, Appl. Soft. comput., 112 (2021), 107725. doi:

10.1016/j.asoc.2021.107725.

7. X. Xu, M. D. Rodgers, W. Guo, Hybrid simulation models for spare parts supply chain considering

3D printing capabilities, J. Manuf. Syst., 59 (2021), 272–282. doi: 10.1016/j.jmsy.2021.02.018.

8. Y. Zhang, S. A. R. Khan, Green supply chain network optimization under random and fuzzy

environment, Int. J. Fuzzy Syst., 2021 (2021). doi: 10.1007/s40815-020-00979-7.

9. X. Ma, X. Li, Q. Zhang, K. Tang, Z. Liang, W. Xie, et al., A survey on cooperative co-evolutionary

algorithms, IEEE Trans. Evolut. Comput., 23 (2019), 421–441. doi:

10.1109/TEVC.2018.2868770.

10. R. Tanabe, H. Ishibuchi, A review of evolutionary multimodal multi-objective optimization, IEEE

Trans. Evolut. Comput., 24 (2020), 193–200. doi: 10.1109/TEVC.2019.2909744.

11. P. Xu, W. Luo, X. Lin, J. Zhang, Y. Qiao, Evolutionary continuous constrained optimization using

random direction repair, Inf. Sci., 566 (2021), 80–102. doi: 10.1016/j.ins.2021.02.055.

12. P. Xu, W. Luo, X. Lin, J. Zhang, Y. Qiao, X. Wang, Constraint-objective cooperative coevolution

for large-scale constrained optimization, ACM Trans. Evol. Learn. Optim., 1 (2021), 1–26. doi:

10.1145/3469036.

13. Q. Gao, H. Xu, A. Li, The analysis of commodity demand predication in supply chain network

based on particle swarm optimization algorithm, J. Comput. Appl. Math., 400 (2022), 113760. doi:

10.1016/j.cam.2021.113760.

14. F. Goodarzian, S. F. Wamba, K. Mathiyazhagan, A. Taghipour, A new bi-objective green medicine

supply chain network design under fuzzy environment: Hybrid metaheuristic algorithms, Comput.

Indust. Eng., 160 (2021), 107535. doi: 10.1016/j.cie.2021.107535.

15. F. Goodarzian, V. Kumar, A. Abraham, Hybrid meta-heuristic algorithms for a supply chain

network considering different carbon emission regulations using big data characteristics, Soft

Comput., 25 (2021), 7527–7557. doi: 10.1007/s00500-021-05711-7.

https://doi.org/10.1016/j.jclepro.2021.128582
https://doi.org/10.1016/j.ijpe.2021.108261
https://www.tandfonline.com/author/Ram%C3%B3n-Lumbierres%2C+Daniel
https://www.tandfonline.com/author/Heredia+Cervera%2C+F+Javier
https://www.tandfonline.com/author/Muguruza-Blanco%2C+Asier
https://doi.org/10.1145/3377929.3389929
https://doi.org/10.1016/j.asoc.2021.107725
https://doi.org/10.1016/j.jmsy.2021.02.018
https://xueshu.baidu.com/s?wd=author%3A%28Y%20Zhang%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
https://xueshu.baidu.com/s?wd=author%3A%28SAR%20Khan%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
https://doi.org/10.1109/TEVC.2019.2909744
https://doi.org/10.1145/3469036
https://doi.org/10.1016/j.cam.2021.113760
https://doi.org/10.1016/j.cie.2021.107535
https://link.springer.com/article/10.1007/s00500-021-05711-7

286

Mathematical Biosciences and Engineering Volume 19, Issue 1, 271–286.

16. Z. Dai, Multi-material and multi-cycle cost optimization of supply chain network and hybrid

genetic algorithm, Appl. Res. Comput., 31 (2014), 2620–2624.

17. J. Sun, J. Lin, Study of supply chain optimization scheduling in mass customization based on ant

colony algorithm, J Comput. Appl., 11 (2006), 2631–2638.

18. X. Zhang, K. J. Du, Z. H. Zhan, S. Kwong, T. L. Gu, J. Zhang, Cooperative coevolutionary bare-

bones particle swarm optimization with function independent decomposition for large-scale

supply chain network design with uncertainties, IEEE Trans. Cybern., 50 (2020), 4454–4468. doi:

10.1109/TCYB.2019.2937565.

19. M. Z. Akkad, T. Bányai, Multi-objective approach for optimization of city logistics considering

energy efficiency, Sustainability, 12 (2020), 7366. doi: 10.3390/su12187366.

20. N. I. Saragih, S. N. Bahagia, Suprayogi, I. Syabri, A heuristic method for location-inventory-

routing problem in a three-echelon supply chain system, Comput. Ind. Eng., 127 (2019), 875–886.

doi: 10.1016/j.cie.2018.11.026.

21. Y. Tian, T. Zhang, J. Xiao, X. Zhang, Y. Jin, A coevolutionary framework for constrained multi-

objective optimization problems, IEEE Trans. Evolut. Comput., 25 (2021), 102–116. doi:

10.1109/TEVC.2020.3004012.

22. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multi-objective genetic algorithm:

NSGA-II, IEEE Trans. Evolut. Comput., 6 (2002), 182–197. doi: 10.1109/4235.996017.

23. K. Deb, K. Sindhya, T. Okabe, Self-adaptive simulated binary crossover for real-parameter

optimization, in Proceedings of ACM Genetic and Evolutionary Computation Conference

(GECCO), (2007), 1187–1194. doi: 10.1145/1276958.1277190.

24. K. Liagkouras, K. Metaxiotis, An elitist polynomial mutation operator for improved performance

of MOEAs in computer networks, in International Conference on Computer Communication and

Networks (ICCCN), (2013), 1–5. doi: 10.1109/ICCCN.2013.6614105.

25. B. Chen, W. Zeng, Y. Lin, D. Zhang, A new local search-based multi-objective optimization

algorithm, IEEE Trans. Evolut. Comput., 19 (2015), 50–73. doi: 10.1109/TEVC.2014.2301794.

26. Q. Zhang, H. Li, MOEA/D: A multi-objective evolutionary algorithm based on decomposition,

IEEE Trans. Evolut. Comput., 11 (2007), 712–731. doi: 10.1109/TEVC.2007.892759.

27. Z. Zhan, J. Li, J. Cao, J. Zhang, H. S. Chung, Y. Shi, Multiple populations for multiple objectives:

a coevolutionary technique for solving multi-objective optimization problems, IEEE Trans.

Evolut. Comput., 43 (2013), 445–463. doi: 10.1109/TSMCB.2012.2209115.

28. E. Zitzler, L. Thiele, Multi-objective evolutionary algorithms: a comparative case study and the

strength Pareto approach, IEEE Trans. Evolut. Comput., 3 (1999), 257–271. doi:

10.1109/4235.797969.

29. K. Deb, An efficient constraint handling method for genetic algorithms, Comput. Methods Appl.

Mech. Eng., 186 (2000), 311–338. doi: 10.1016/S0045-7825(99)00389-8.

©2022 the Author(s), licensee AIMS Press. This is an open access

article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0)

https://doi.org/10.1109/TCYB.2019.2937565
https://doi.org/10.3390/su12187366
https://doi.org/10.1016/j.cie.2018.11.026
https://doi.org/10.1109/TEVC.2020.3004012
https://doi.org/10.1109/4235.996017
http://dx.doi.org/10.1145/1276958.1277190
https://doi.org/10.1109/ICCCN.2013.6614105
https://doi.org/10.1109/TEVC.2014.2301794
http://dx.doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.1109/4235.797969
https://doi.org/10.1016/S0045-7825(99)00389-8

