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Abstract: Supply chain network is important for the enterprise to improve the operation and 

management, but has become more complicated to optimize in reality. With the consideration of 

multiple objectives and constraints, this paper proposes a constrained large-scale multi-objective 

supply chain network (CLMSCN) optimization model. This model is to minimize the total operation 

cost (including the costs of production, transportation, and inventory) and to maximize the customer 

satisfaction under the capacity constraints. Besides, a coevolutionary algorithm based on the auxiliary 

population (CAAP) is proposed, which uses two populations to solve the CLMSCN problem. One 

population is to solve the original complex problem, and the other population is to solve the problem 

without any constraints. If the infeasible solutions are generated in the first population, a linear repair 

operator will be used to improve the feasibility of these solutions. To validate the effectivity of the 

CAAP algorithm, the experiment is conducted on the randomly generated instances with three different 

problem scales. The results show that the CAAP algorithm can outperform other compared algorithms, 

especially on the large-scale instances. 

Keywords: supply chain network; large-scale optimization; multi-objective optimization; constrained 
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1. Introduction  

In the traditional manufacturing industry, enterprises always focus on their own single business, 

such as supplying raw materials, producing parts, assembling parts, or transporting. The isolating 

management pattern may be uncompetitive in the face of the volatile market, because enterprises 

cannot obtain complete information in time [1]. Afterwards, the pattern of supply chain management 

is proposed. Supply chain network (SCN) organizes enterprises from different stages together, and 

these enterprises work cooperatively and create a win-win situation [2,3]. Therefore, supply chain 

network (SCN) plays a significant role in the whole operation of the enterprise [4,5].  

In the practical application of supply chain network, researchers can solve the SCN optimization 

problem through the mathematical modeling, the simulation, the data-driven, the game model, and 

other methods [6–8]. Evolutionary algorithms adopt a set of solutions (i.e., the population composed 

of multiple solution individuals) to solve problems, which have good global optimization ability and 

have become important methods to solve complex optimization problems in recent years [9,10]. For 

example, to solve the constrained optimization problems, evolutionary algorithms were combined with 

the random direction repair which was an effective constraint-handling method [11]. A constraint-

objective cooperative coevolution framework was proposed to solve the large-scale constrained 

optimization problems, which allocated different computing resources to the decomposed sub-

problems according to their contributions [12]. Therefore, evolutionary algorithms are often used to 

solve the complicated SCN optimization problems [13–15].  

For example, Wang et al. [16] used genetic algorithm to choose suppliers and distribution centers 

and optimize the production quantity and the transportation volume in the iron and steel supply chain 

network, so as to minimize the operation cost and carbon emission of the network system. The problem 

is a multi-objective optimization problem of mixed integer programming with constraints. Sun et al. [17] 

used ant colony optimization algorithm to solve the scheduling optimization problem of mass 

customization supply chain and to minimize the production scheduling time by determining the 

optimal scheduling of cooperative suppliers. Zhang et al. [18] used the cooperative particle swarm 

optimization algorithm to solve the large-scale supply chain network design problem in the uncertain 

environment and to minimize the operation cost of the whole system by determining the optimal 

supplier and warehouse location scheme and the transportation logistics between network nodes. 

Akkad et al. [19] used a multi-objective heuristic approach to solve the collection and distribution 

problems of city logistics and to minimize both the fuel consumption and the emission of greenhouse 

gases. Saragih et al. [20] used a heuristic method to solve a location-inventory-routing problem in a 

three-echelon supply chain system with large scales. These problems have the characteristics of large 

scale, multiple objectives, or constraints which are the common difficulties of the SCN problems in 

the reality. However, the researchers did not solve the problem which has the three characteristics 

simultaneously. 

In this paper, a constrained large-scale multi-objective supply chain network (CLMSCN) model 

is proposed, which is much closer to the reality and considers large scale, multiple objectives, and 

constraints in the same time. This model is to optimize the total operation cost and the customer 

satisfaction under the capacity constraints simultaneously. The total operation cost includes the 

production cost of the products, the inventory cost of the products, and the transportation cost among 

different SCN members. The proposed CLMSCN is a demand-driven model, which starts from the 

customers raising the demand to the SCN platform. According to the demand quantity of customers, 
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the SCN members on the platform, including distributors and suppliers, begins to ordering, supplying, 

or distributing. This model is more competitive in the industry 4.0 era, since it starts from the market 

demand directly and helps to improve the operation efficiency with lower cost. 

Besides, this paper proposes a coevolutionary algorithm based on the auxiliary population 

(CAAP), which uses two populations to solve the CLMSCN problem with complicated constraints. 

The first population is to solve the original problem with constraints, and a linear repair operator is 

designed to improve the feasibility of the infeasible solutions. The second population is to solve the 

problem without any constraints, which plays an auxiliary role to explore more solution space. With 

the cooperative work of the two populations, the CAAP algorithm can solve the CLMSCN problem in 

the experiment. 

The rest of this paper is organized as follows. Section 2 describes the proposed CLMSCN problem 

in detail. Section 3 introduces all the components of the proposed CAAP algorithm. Afterwards, 

Section 4 discusses and analyzes the experimental results from different angles. Finally, Section 5 

gives the conclusion of this paper. 

2. Problem description of CLMSCN 

To optimize the total operation cost and the customer satisfaction, the CLMSCN model is 

proposed in this paper. The illustration of the CLMSCN problem is shown in Figure 1, which involves 

three kinds of members (including suppliers, distributors, and customers) and four stages (including 

customers sending demands to distributors, distributors sending orders to suppliers, suppliers 

supplying materials to distributors, and distributors transporting materials to customers). The whole 

process will last for several time periods. The numbers of suppliers, distributors, customers, and time 

periods are denoted as S, D, C and T, correspondingly. Before the description of the four stages of the 

problem, all variables involved in the CLMSCN problem model are described as follows: 

1) Demand2) Order

3) Supply 4) Transport

Supplier Distributor Customer

 

Figure 1. Illustration of the CLMSCN problem. 

Indices: 

i: index of suppliers, i ∈ {1, …, S} 

j: index of distributors, j ∈ {1, …, D} 

k: index of customers, k ∈ {1, …, C} 

t: index of time periods, t ∈ {1, …, T} 
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Parameters: 

S: number of suppliers 

S_capi: capacity of the supplier i 

S_pdCosti: production cost per unit capacity and time of the supplier i 

D: number of distributors 

D_capj: capacity of the distributor j 

D_invj,t: inventory quantity of the distributor j in the period t 

D_invj,0: initial inventory quantity of the distributor j 

D_invCostj: inventory cost per unit capacity and time of the distributor j 

C: number of customers 

C_demk,t: demand quantity of the customer k in the period t 

SD_tpCosti,j: transport cost per unit capacity and time from the supplier i to the distributor j 

DC_tpCostj,k: transport cost per unit capacity and time from the distributor j to the customer k 

T: number of time periods 

Decision variables: 

DS_ordi,j,t: order quantity of the supplier i from the distributor j in the period t 

DC_tpj,k,t: transport quantity of the distributor j to the customer k in the period t 

The whole process of the CLMSCN problem in Figure 1 can be described as follows: 

Stage 1) Demand: Each customer sends demands to the supply chain platform in each time period 

(C_demk,t). It should be noted that the total demand quantity of the customer k is known, but the 

demand quantity of the customer to each distributor is unknown. 

Stage 2) Order: If the previous inventory cannot satisfy the customer demands, distributors will 

send orders to the suppliers (DS_ordi,j,t). In this stage, two capacity constraints should be satisfied. 

Firstly, in the period t, the total order quantity and the previous inventory of the distributor should not 

be larger than its capacity (i(DS_ordi,j,t) + D_invj,t-1 ≤ D_capj). Secondly, the total order quantity of a 

supplier should not be larger than its capacity (j(DS_ordi,j,t) ≤ S_capi). Besides, the production cost 

of suppliers should be expended (Prod_cost = ijt(S_pdCosti × DS_ordi,j,t)).  

Stage 3) Supply: Suppliers transport materials to distributors. The transport cost from suppliers 

to distributors (Tp_cost1 = ijt(SD_tpCosti,j × DS_ordi,j,t)) and the inventory cost of distributors 

(Inv_cost = jt(D_invCostj × D_invj,t)) should be expended. Besides, the inventory quantity of 

distributors should be updated (D_invj,t = D_invj,t-1 + i(DS_ordi,j,t) − k(DC_tpj,k,t) = l(i(DS_ordi,j,t) 

− k(DC_tpj,k,t)) + D_invj,0 , l ∈ {1, …,t}). 

Stage 4) Transport: Distributors transport materials to customers (DC_tpj,k,t). The transport cost 

from distributors to customers (Tp_cost2 = jkt(DC_tpCostj,k × DC_tpj,k,t)) should be expended. 

When the demands of all customers are completely satisfied, the customer satisfaction is highest. 

There are two assumptions in the problem model: 

1) The production quantity of a supplier is equal to the total order quantity. 

2) The production time of suppliers and the transport time from suppliers to distributors and 

from distributors to customers are ignored. 

The two objectives of this problem is to minimize the operation cost (f1 = Prod_cost + Tp_cost1 

+ Inv_cost + Tp_cost2) and to maximize the customer satisfaction (f2 = kt(j(DC_tpj,k,t)/C_demk,t)), 

which are mutually exclusive. The second objective can be equivalent to minimize f2 = kt(C_demk,t)/ 
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( jkt(DC_tpj,k,t) + 1.0). 

Based on the above descriptions, the final mathematical model of this CLMSCN problem can be 

described as follows: 

Minimize 
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The operation cost (f1) and the customer satisfaction (equivalent to f2) are calculated as Eqs (1) 

and (2), correspondingly. As for the domain of variables, the decision variables DS_ordi,j,t and DC_tpj,k,t 

and the inventory quantity of distributors (D_invj,t, which is updated in the third stage Supply) are all 

not smaller than zero, as shown in Eqs (3), (4), and (6), correspondingly. As for the capacity constraints 
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in the second stage (Order), for the supplier i, its order quantity from all distributors (j(DS_ordi,j,t)) 

should not exceed its capacity (S_capi), as shown in Eq (5). For the distributor j, its order quantity to 

all suppliers (i(DS_ordi,j,t)) and previous inventory (D_invj,t-1) should not exceed its capacity (D_capj), 

as shown in Eq (7). 

3. CAAP algorithm 

3.1. Solution encoding 

The solution in the proposed CAAP approach is encoded into a single dimensional array, as shown 

in Figure 2. Each solution has (dim = S×D×T+D×C×T) dimensions. The first (S×D×T) dimensions are 

consisted of DS_ord, and the last (D×C×T) dimensions are consisted of DC_tp. 

 

Dimension: 1 … S×D×T S×D×T +1 … S×D×T + D×C×T 

 DS_ord DC_tp 

Figure 2. Illustration of the solution encoding. 

3.2. Initialization 

Before the iteration, the two populations in the CAAP approach are randomly initialized. To 

generate more feasible solutions, reasonable lower and upper bounds should be determined. From the 

observation of Eqs (3) and (4), the lower bounds of DS_ord and DC_tp of the solution can be set as 

0. For DS_ord of a solution, the decision variable DS_ordi,j,t represents the order quantity of the 

distributor j to the supplier i in the period t, so it should not be larger than the capacity of the supplier 

i and the distributor j. Therefore, the upper bound of DS_ordi,j,t is the smaller one between S_capi and 

D_capj (min(S_capi, D_capj)). For DC_tp of a solution, the decision variable DC_tpj,k,t represents the 

transport quantity of the distributor j to the customer k in the period t, so it should not be larger than 

the capacity of the supplier i and the demand quantity of the customer k. Therefore, the upper bound 

of DC_tpj,k,t is the smaller one between D_capj and C_demk,t (min(D_capj, C_demk,t)). Finally, the 

decision variables are initialized randomly within the reasonable range. 

3.3. Linear repair operator 

If an infeasible solution is generated in the population, the linear repair operator will be used to 

improve the feasibility of the solution. It can be seen that the constraints (Eqs (5)–(7)) of this problem 

are all the linear functions of decision variables (DS_ord and DC_tp). Therefore, to improve the 

feasibility of solutions, the decision variables can be linearly changed according to the constraints 

Eqs (5)–(7).  

From the observation of the constraints Eqs (5)–(7), three conclusions can be obtained as follows: 

1) To improve the solutions which violate the constraint Eq (5), the decision variables in 

DS_ord should decrease. 
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2) To improve the solutions which violate the constraint Eq (6), the decision variables in 

DS_ord should increase, or the decision variables in DC_tp should decrease. 

3) To improve the solutions which violate the constraint Eq (7), the decision variables in 

DS_ord should decrease, or the decision variables in DC_tp should increase. 

Therefore, to maintain consistency as much as possible, three rules are formulated to repair 

infeasible solutions as follows: 

1) To repair the infeasible solutions violating the constraint Eq (5), the decision variables in 

DS_ord will decrease proportionally. 

2) To repair the infeasible solutions violating the constraint Eq (6), the decision variables in 

DC_tp will decrease proportionally. 

3) To repair the infeasible solutions violating the constraint Eq (7), the decision variables in 

DS_ord will decrease proportionally. 

For example, for the infeasible solutions violating the constraint Eq (5), the new DS_ordi,j,t (j ∈ 

{1, …, D}) need to approximately decrease by (j(DS_ordi,j,t) − S_capi)/D proportionally, and the 

details are shown in Algorithm 1. For the infeasible solutions violating the constraint Eq (6), DC_tpj,k,t 

(k ∈ {1, …, C}) need to approximately decrease by –D_invj,t/C proportionally, and the details are 

shown in Algorithm 2. For the infeasible solutions violating the constraint  Eq (7), DS_ordi,j,t 

(i ∈ {1, …, S}) need to approximately decrease by (i(DS_ordi,j,t) + D_invj,t-1 – D_capj)/D 

proportionally, and the details are shown in Algorithm 3. 

It should be noted that the repair operator is time-consuming. Therefore, a self-adaptive repair 

probability of each solution is set. The initial repair probability of each solution is set as 10-4 × dim. 

After an evaluation, if the solution is repaired, its repair probability will decrease by 10-5 × dim; 

otherwise, the probability will increase by 10-5 × dim. 

 

Algorithm 1: Linear Repair Operator 1 

Input: the solution including DS_ord, i, t, D, T 

Output: the repaired solution 

1: Calculate eValue = j(DS_ordi,j,t) − S_capi; 

2: count = 0; 

3: While eValue > 0 and count < T do: // the loop will continue until j(DS_ordi,j,t) > S_capi 

or the number of the loop iterations count is smaller than T 

4:   decrease = eValue / D; 

5:   sum = 0; 

6:   For j {1, …, D} do: 

7:     If DS_ordi,j,t > decrease do://after decreasing, DS_ordi,j,t should not be smaller than 0 

8:       DS_ordi,j,t = DS_ordi,j,tdecrease; 

9:     sum = sum + DS_ordi,j,t; 

10:   eValue = sum   S_capi; 

11:   count= count + 1; 
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Algorithm 2: Linear Repair Operator 2 

Input: the solution including DC_tp, j, t, C, T 

Output: the repaired solution 

1: Calculate eValue = – D_invj,t; 

2: Calculate tmp = – eValue + k(DC_tpj,k,t); 

3: count = 0; 

4: While eValue > 0 and count < T do: // the loop will continue until the constraint (6) is 

satisfied or the number of the loop iterations count is smaller than T 

5:   decrease = eValue / C; 

6:   sum = 0; 

7:   For k {1, …, C} do: 

8:     If DC_tpj,k,t > decrease do: 

9:       DC_tpj,k,t = DC_tpj,k,t decrease; 

10:     sum = sum + DC_tpj,k,t; 

11:   eValue = sum   tmp; 

12:   count= count + 1; 

 

Algorithm 3: Linear Repair Operator 3 

Input: the solution including DS_ord, j, t, S, T 

Output: the repaired solution 

1: Calculate eValue = i(DS_ordi,j,t) + D_invj,t-1 – D_capj; 

2: Calculate tmp = eValue – i(DS_ordi,j,t); 

3: count = 0; 

4: While eValue > 0 and count < T do: // the loop will continue until the constraint (7) is 

satisfied or the number of the loop iterations count is smaller than T 

5:   decrease = eValue / S; 

6:   sum = 0; 

7:   For i {1, …, S} do: 

8:     If DS_ordi,j,t > decrease do: 

9:       DS_ordi,j,t = DS_ordi,j,t   decrease; 

10:     sum = sum + DS_ordi,j,t; 

11:   eValue = sum + tmp; 

12:   count= count + 1; 

3.4. Complete CAAP algorithm 

The CAAP algorithm applies the coevolutionary constrained multi-objective optimization 

framework [21], and uses two populations (pop1 and pop2) to solve the CLMSCN problem. pop1 is 

to solve the original problem with complex constraints, and pop2 is to solve the CLMSCN problem 

without constraints. Besides, the linear repair operator is designed to repair the infeasible solutions in 

pop1 as much as possible. 
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Algorithm 4 shows the pseudo code of the CAAP algorithm in details. The input parameter, 

Popsize, is the population size of pop1 and pop2, and the output parameters, PS and PF, are the Pareto 

solutions (the best solutions of a multi-objective problem) and their fitness values correspondingly. 

Firstly, pop1 and pop2 are initialized randomly, and the infeasible solutions in pop1 are repaired by 

the linear repair operator. Then, the iterative process is conducted, and the termination condition of 

this algorithm in line 4 is set as the maximal running time. In the iterative process, Parent1 and Parent2 

are selected from Parent2 correspondingly by the roulette wheel selection. Then, in lines 7 and 8, 

offsprings are generated by NSGA_II with the simulated binary crossover and polynomial 

mutation [22–24]. Then, pop1 and pop2 are updated and evaluated in lines 9 to 13. In lines 12 and 13, 

the fast-non-dominated-sort in [22] and the farthest-candidate approach in [25] are used to select the 

non-dominated solutions. Finally, PS and PF are updated. 

 

Algorithm 4: CAAP 

Input: Popsize 

Output: PS, PF 

1: Randomly initialize and evaluate pop1, and repair the solutions in pop1 according to the 

repair probabilities; 

2: Randomly initialize and evaluate pop2; 

3: Update PS and PF; 

4: While the termination condition is not satisfied do: 

5:   Parent1 ← Select popsize/2 parents from pop1 by the roulette wheel selection;  

6:   Parent2 ← Select popsize/2 parents from pop2 by the roulette wheel selection; 

7:   Off1 ← Generate popsize/2 offsprings based on Parent1 by NSGA_II; 

8:   Off2 ← Generate popsize/2 offsprings based on Parent2 by NSGA_II; 

9:   pop1 ← pop1 ∪ Off1 ∪ Off2; 

10:   pop2 ← pop2 ∪ Off1 ∪ Off2; 

11:   Evaluate pop1 and pop2, and repair solutions in pop1; 

12:   pop1 ← Select popsize solutions in pop1 by the fast-non-dominated-sort and the 

farthest-candidate approach; 

13:   pop2 ← Select popsize solutions in pop2 by the fast-non-dominated-sort and the 

farthest-candidate approach;  

14:   Update PS and PF; 

4. Experimental verification and comparisons 

4.1. Experimental settings 

To validate the performance of the CAAP algorithm, three different scales of instance sets are 

randomly generated. Each scale has five instances, such as I_1 to I_5 of the small scale, II_1 to II_5 

of the middle scale, and III_1 to III_5 of the large scale, and the configurations and the maximum 

execution time of the instance sets are shown in Table 1. Besides, MPCMO_BBPSO (multiple 

populations for constrained multi-objective optimization with bare-bones particle swarm optimization), 
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PBBPSO (bare-bones particle swarm optimization with the Pareto optimality), NSGA_II 

(nondominated sorting genetic algorithm II, [22]), MOEA/D (multi-objective evolutionary algorithm 

based on decomposition, [26]), and NSLS (nondominated sorting and local search, [25]) are used to 

compare with the CAAP algorithm for the CLMSCN problem. MPCMO_BBPSO, which applies the 

multiple populations for multiple objectives framework [27], takes the constraints as a new objective 

and uses the bare-bones particle swarm optimization to solve the CLMSCN problem. PBBPSO uses 

bare-bones particle swarm optimization which is competitive in solving the supply chain optimization 

problem. NSGA_II, MOEA/D, and NSLS are the competitive algorithms for the multi-objective 

optimization problems. For the fair comparison, the population size of all algorithms is set 50, and the 

linear repair operator proposed in this paper is also used in the all compared algorithms to repair the 

infeasible solutions. 

Table 1. Configurations and execution time of the instance sets. 

No. S W C T Dimension (D) Execution time (Seconds) 

I 5 10 15 10 2015 10 

II 10 20 50 20 24030 100 

III 30 50 100 30 195080 500 

4.2. Compared results 

Table 2. The HV values of all algorithms on different instances. 

Instance CAAP MPCMO_BBPSO PBBPSO NSGA_II MOEA/D NSLS 

I_1 1.65E + 06 1.38E + 06 7.64E + 05 1.07E + 06 1.20E + 06 9.98E + 05 

I_2 3.89E + 06 3.04E + 06 2.05E + 06 2.38E + 06 3.96E + 06 2.50E + 06 

I_3 4.28E + 06 3.41E + 06 2.19E + 06 2.49E + 06 3.81E + 06 2.58E + 06 

I_4 4.44E + 06 3.65E + 06 2.17E + 06 3.23E + 06 4.83E + 06 2.93E + 06 

I_5 2.95E + 06 2.37E + 06 1.06E + 06 1.64E + 06 2.57E + 06 1.84E + 06 

Avg. 3.44E + 06 2.77E + 06 1.65E + 06 2.16E + 06 3.27E + 06 2.17E + 06 

II_1 6.02E + 05 5.48E + 05 4.88E + 05 5.32E + 05 3.42E + 05 3.56E + 05 

II_2 9.01E + 05 8.10E + 05 7.41E + 05 8.13E + 05 5.66E + 05 5.35E + 05 

II_3 1.53E + 06 1.38E + 06 1.19E + 06 1.45E + 06 9.70E + 05 9.20E + 05 

II_4 9.53E + 05 8.64E + 05 7.93E + 05 8.89E + 05 6.66E + 05 5.60E + 05 

II_5 7.94E + 05 6.94E + 05 6.26E + 05 7.18E + 05 5.20E + 05 4.28E + 05 

Avg. 9.57E + 05 8.59E + 05 7.67E + 05 8.81E + 05 6.13E + 05 5.60E + 05 

III_1 1.57E + 06 1.39E + 06 1.29E + 06 1.52E + 06 9.80E + 05 6.59E + 05 

III_2 1.42E + 06 1.23E + 06 1.14E + 06 1.37E + 06 8.17E + 05 5.91E + 05 

III_3 1.34E + 06 1.17E + 06 1.11E + 06 1.30E + 06 8.57E + 05 5.45E + 05 

III_4 1.23E + 06 1.09E + 06 1.00E + 06 1.20E + 06 7.26E + 05 5.17E + 05 

III_5 1.16E + 06 1.03E + 06 9.25E + 05 1.13E + 06 7.07E + 05 5.16E + 05 

Avg. 1.34E + 06 1.18E + 06 1.09E + 06 1.30E + 06 8.17E + 05 5.66E + 05 
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To evaluate the performance of the CAAP algorithm and other contestant algorithms from diverse 

angles, two metrics are used, HV (hypervolume) and C(A, B) (A and B are two algorithms) [28]. The 

HV value represents the hypervolume surrounded by the reference point and the Pareto front. For the 

minimization problem solved in this paper, if the HV value of an algorithm is higher, it means the 

algorithm is better than other algorithms. The C(A, B) value means the ratio of the solutions which are 

obtained by the algorithm B and are dominated by the solutions obtained by the algorithm A. Therefore, 

if the C(A, B) value is larger than the C(B, A) value, it means that the algorithm A can obtain better 

solutions than the algorithm B. 

Table 2 shows the HV values of all algorithms on different instances. The data in bold represent 

the best result among all algorithms. It can be observed from Table 2 that for the instances in small 

scale, CAAP can obtain the best results on 3 instances, followed by MPCMO_BBPSO and MOEA/D. 

For the instances in middle and large scale, CAAP can obtain the best results on all instances, followed 

by MPCMO_BBPSO and NSGA_II. With the problem scale increasing, the advantage of the 

performance of CAAP does not deteriorate. 

Table 3 and Table 4 show the C(A, B) values of all compared algorithms with CAAP on different 

instances. From the observation of Table 3, CAAP can obtain 2, 5 and 4 better results than 

MPCMO_BBPSO, PBBPSO, and NSGA_II on small instances, correspondingly. For the middle and 

large instances, CAAP obtains the best results on all instances compared with MPCMO_BBPSO, 

PBBSO, and NSGA_II. From the observation of Table 4, CAAP outperforms MOEA/D and NSLS on 

all different instances. 

Table 3. The C(A, B) values of MPCMO_BBPSO, PBBPSO, and NSGA_II with CAAP 

on different instances (%). 

 MPCMO_BBPSO PBBPSO NSGA_II 

Instance C(CAAP, –) C(–, CAAP) C(CAAP, –) C(–, CAAP) C(CAAP, –) C(–, CAAP) 

I_1 0.18 0.30 1.00 0.00 1.00 0.00 

I_2 0.40 0.16 1.00 0.00 0.51 0.09 

I_3 0.26 0.44 1.00 0.00 1.00 0.00 

I_4 0.27 0.38 1.00 0.00 0.00 0.58 

I_5 0.23 0.22 1.00 0.00 1.00 0.00 

Avg. 0.27 0.30 1.00 0.00 0.70 0.13 

II_1 0.91 0.07 0.95 0.00 0.85 0.29 

II_2 0.95 0.04 1.00 0.00 0.88 0.12 

II_3 1.00 0.00 1.00 0.00 0.91 0.03 

II_4 0.93 0.07 1.00 0.00 0.54 0.20 

II_5 1.00 0.00 1.00 0.00 0.88 0.04 

Avg. 0.96 0.04 0.99 0.00 0.81 0.14 

III_1 0.92 0.04 0.88 0.12 0.82 0.21 

III_2 0.78 0.12 0.84 0.22 0.70 0.12 

III_3 0.89 0.07 0.78 0.17 0.81 0.12 

III_4 0.79 0.09 0.60 0.32 0.66 0.26 

III_5 0.92 0.00 0.97 0.00 0.58 0.26 

Avg. 0.86 0.06 0.82 0.17 0.71 0.19 
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Table 4. The C(A, B) values of MOEA/D and NSLS with CAAP on different instances (%) 

 MOEA/D NSLS 

Instance C(CAAP, –) C(–, CAAP) C(CAAP, –) C(–, CAAP) 

I_1 0.93 0.34 1.00 0.00 

I_2 0.68 0.66 1.00 0.00 

I_3 1.00 0.00 1.00 0.00 

I_4 0.34 0.33 1.00 0.00 

I_5 0.64 0.33 1.00 0.00 

Avg. 0.72 0.33 1.00 0.00 

II_1 1.00 0.00 1.00 0.00 

II_2 1.00 0.00 1.00 0.00 

II_3 1.00 0.00 1.00 0.00 

II_4 1.00 0.00 1.00 0.00 

II_5 1.00 0.00 1.00 0.00 

Avg. 1.00 0.00 1.00 0.00 

III_1 0.46 0.40 0.96 0.01 

III_2 0.59 0.22 0.39 0.20 

III_3 1.00 0.00 1.00 0.00 

III_4 0.52 0.17 0.69 0.15 

III_5 0.90 0.05 1.00 0.00 

Avg. 0.69 0.17 0.81 0.07 

For further illustration, Figure 3 depicts the Pareto fronts of all algorithms on three instances from 

different problem scales. For the minimization problem solved in this paper, if the Pareto front of an 

algorithm is the closest to the coordinate axes, it means that the algorithm can get the best results 

among these algorithms. Besides, if the Pareto front of an algorithm is longest, it represents that the 

algorithm can obtain most non-dominated solutions that spread widely in the solution space. It can be 

observed from Figure 3 that the Pareto fronts of CAAP on the three instances are almost all the closest 

and longest among all algorithms, which demonstrates that CAAP can obtain the best results on 

different instances for the CLMSCN problem. 

From the above observations, CAAP can outperform the compared algorithms on different 

instances. The reason may be that CAAP uses two populations to cooperatively solve the complicated 

constrained multi-objective problems. One population is to solve the original problem with complex 

constraints, and the linear repair operator with the self-adaptive repair probability is used to improve 

the feasibility of solutions. The other population is to solve the simplified problem without constraints, 

which helps to explore more solution space quickly. The cooperative mechanism of the two 

populations is effective to solve the complex constrained problem. 
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Figure 3. Pareto Fronts of all algorithms on instances. 

4.3. Effectiveness of the linear repair operator 

Table 5. The repair probability of all algorithms on different instances (%). 

Instance CAAP MPCMO_BBPSO PBBPSO NSGA_II MOEA/D NSLS 

I 21.58 10.80 24.44 17.17 0.79 93.40 

II 60.52 83.71 99.79 13.53 100.00 100.00 

III 78.47 95.59 99.91 49.59 100.00 100.00 

Avg. 53.52 63.37 74.71 26.77 66.93 97.80 

Table 6. The C (A, B) of CAAP and CAAP_noRep on different instances (%). 

Instance C(CAAP, CAAP_noRep) C(CAAP_noRep, CAAP) 

I 0.49 0.42 

II 1.00 0.00 

III 1.00 0.00 

Avg. 0.83 0.14 
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To validate the effectiveness of the linear repair operator, the repair probability of all algorithms 

on different instances are recorded in Table 5. It can be observed that the repair probability of all 

algorithms is all much larger than zero, and with the problem scale increasing, the repair probability 

increases. The results illustrate that the linear repair operator can help algorithms improve the 

feasibility of solutions. Besides, the C(A, B) of CAAP and CAAP_noRep (CAAP without the linear 

repair operator) on different instances is shown in Table 6. It should be noted that CAAP_noRep uses 

the superiority of feasible solutions [29] as the constraint handling method. CAAP can get much better 

results than CAAP_noRep, especially on middle and large instances. It can also be concluded that the 

linear repair operator is effective to improve the solution quality of algorithms for solving the 

CLMSCN problem. 

5. Conclusions 

This paper designs the CLMSCN model with complex constraints and multiple objectives which 

both considers the minimization of the total operation cost and the customer satisfaction as the 

optimization objectives. Besides, to solve the complex problem effectively, the CAAP algorithm is 

proposed in this paper, which applies two populations to solve the problem. The first population is to 

solve the original CLMSCN problem with complex constraints, and the linear repair operator will be 

used to improve the feasibility of solutions. The second population is to solve the simplified problem 

without constraints, which helps to quickly expend the search space of solutions. The experimental 

results show that the cooperative mechanism of CAAP helps to obtain much better solutions than the 

compared algorithms on the CLMSCN problem with complex constraints and multiple objectives, 

especially on the large-scale instances. In the future work, we will design more relatively general 

constraint-handling methods for the complex problems, and apply the cooperative mechanism of 

CAAP to solve other supply chain network optimization with complex constraints and multiple 

objectives, such as the minimization of the fuel consumption and the emission of greenhouse gases. 
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