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Abstract: Purpose: Lung adenocarcinoma (LUAD) is a highly lethal subtype of primary lung cancer 
with a poor prognosis. N6-methyladenosine (m6A), the most predominant form of RNA modification, 
regulates biological processes and has critical prognostic implications for LUAD. Our study aimed to 
mine potential target genes of m6A regulators to explore their biological significance in subtyping 
LUAD and predicting survival. Methods: Using gene expression data from TCGA database, 
candidate target genes of m6A were predicted from differentially expressed genes (DEGs) in tumor 
based on M6A2 Target database. The survival-related target DEGs identified by Cox-regression 
analysis was used for consensus clustering analysis to subtype LUAD. Uni-and multi-variable Cox 
regression analysis and LASSO Cox-PH regression analysis were used to select the optimal 
prognostic genes for constructing prognostic score (PS) model. Nomogram encompassing PS score 
and independent prognostic factors was built to predict 3-year and 5-year survival probability. 
Results: We obtained 2429 DEGs in tumor tissue, within which, 1267 were predicted to m6A target 
genes. A prognostic m6A-DEGs network of 224 survival-related target DEGs was established. We 
classified LUAD into 2 subtypes, which were significantly different in OS time, clinicopathological 
characteristics, and fractions of 12 immune cell types. A PS model of five genes (C1QTNF6, THSD1, 
GRIK2, E2F7 and SLCO1B3) successfully split the training set or an independent GEO dataset into 
two subgroups with significantly different OS time (p < 0.001, AUC = 0.723; p = 0.017, AUC = 0.705).A 
nomogram model combining PS status, pathologic stage, and recurrence was built, showing good 
performance in predicting 3-year and 5-year survival probability (C-index = 0.708, 0.723, p-value = 0). 
Conclusion: Using candidate m6A target genes, we obtained two molecular subtypes and designed a 
reliable five-gene PS score model for survival prediction in LUAD. 
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1. Introduction  

Lung adenocarcinoma (LUAD) is the most common histological subtype of lung primary lung 
malignancy, approximately accounting for 40% of all cases [1]. LUAD is a leading cause of 
cancer-related mortality worldwide, with overall survival (OS) time shorter than five years [2]. 
LUAD frequently involves disseminated metastasis and is highly resistant to conventional 
radiotherapies and chemotherapies [3]. LUAD patients have high recurrence rate after surgical 
excision [4]. Therefore, identification of prognostic biomarkers of LUAD is critical for improving 
long-term survival of LUAD patients and facilitates developing novel effective treatment strategies. 

N6-methyladenosine (m6A) is the most abundant and prevalent modification in the regulation of 
splicing, stability, translocation, and translation of eukaryotic mRNAs [5]. The m6A regulators are 
primarily comprised of “writers” (methyltransferase), such as METTL3, RBM15/15B, “erasers” 
(demethylase), such as FTO and ALKBH5, and “readers” (m6A-binding proteins that targets the m6A 
site on mRNA), such as YTHDF1 and YTHDF2 [6]. The aberrantly expressed m6A regulators play a 
critical role in tumorigenesis [7]. Several pieces of evidences have revealed that m6A regulators have 
important prognostic implications in LUAD [8,9]. m6A writers, erasers, and readers could serve 
prognostic biomarkers in LUAD [10]. Moreover, a growing number of studies have developed useful 
risk scoring systems based on the m6A regulators to predict survival in LUAD [1113]. However, 
these studies only characterize prognostic roles of m6A regulators in LUAD, their regulatory 
mechanisms including downstream target genes and relevant prognostic implications remain elusive. 

Here we drew on gene expression data of LUAD from The Cancer Genome Atlas (TCGA) 
database to identify the potential target genes of m6A methylation regulators and investigate their 
associations with LUAD subtyping and prognosis prediction. We developed a prognostic score (PS) 
system based on prognostic target genes to predict survival of patients. This study provided 
illumulating insights into the biological roles of m6A methylation regulators in LUAD.  

2 Materials and methods 

2.1. Data source and preprocessing 

Microarray gene expression data of 501 tumor samples and 58 normal samples with 
corresponding clinical characteristics (Illumina HiSeq 2000 RNA Sequencing platform) were 
downloaded from TCGA database (https://gdc-portal.nci.nih.gov/) and used as training set. 

We launched a search for validation datasets in the Gene Expression Omnibus (GEO) [14] at the 
National Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/geo/). The 
following criteria should be met: gene expression data; tumor tissue samples; histology type 
information available; all samples no less than 150 and eligible samples no less than 100; survival 
information available. GSE50081 [15] included 127 tumor samples with corresponding clinical 
information (GPL570 Affymetrix Human Genome U133 Plus 2.0 Array platform) and was used as 
the validation dataset. 
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2.2. Differential expression analysis 

Differentially expressed genes (DEGs) were screened between normal tissue samples and tumor 
tissue samples, with FDR < 0.05 and |log2FC| > 1 as the cutoff. Using expression data of top 50 
up-regulated DEGs and top 50 down-regulated DEGs according to descending value of |log2FC|, 
two-way hierarchical clustering analysis was performed using pheatmap version 1.0.8 
(https://cran.r-project.org/web/packages/pheatmap/index.html) in R3.6.1 based on centered 
pearson correlation. 

2.3. Construction of prognostic m6A-DEGs network 

In order to investigate the m6A-related regulatory mechanisms, target genes of m6A regulators 
were predicted based on M6A2 Target database [16] (http://m6a2target.canceromics.org/) and were 
then mapped to the identified DEGs. The overlapped genes were subjected to the uni-variate 
Cox-regression analysis. The significant survival-related target genes and m6A RNA methylation 
regulators were used to construct a prognostic m6A-DEGs network. The network was visualized and 
its topological characteristics was analyzed using Cytoscape software [17] (version 3.6.1, 
https://cytoscape.org/). Gene ontology (GO) function and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis was performed for the genes in the network using 
the Database for Annotation, Visualization and Integrated Discovery (DAVID) tool (version 6.8. 
https://david. ncifcrf.gov/). The cutoff was set at p-value < 0.05 and the count of significantly 
enriched genes > 5. 

2.4. LUAD subtypes analysis 

Using gene expression data of the survival-related target genes, consensus clustering analysis 
was performed by ConsensusClusterPlus  Version 1.54.0 to identify subtypes of LUAD. 
ConsensusClusterPlus implements the consensus clustering method in R that provides quantitative 
and visual stability evidence for estimating the number of unsupervised classes in a dataset [18]. The 
optimal clusters were determined according to cumulative distribution function. Overall survival (OS) 
time, clinical characteristics and fractions of tumor-infiltrating immune cells (TIICs) were compared 
between different subtypes. CIBERSORT [19] software (https://cibersort.stanford.edu/index.php) 
was used to estimate proportions of tumor-infiltrating immune cells.  

2.5. Development of A PS model for prognosis prediction 

To build a PS model for predicting prognosis in LUAD, firstly, multi-variable Cox regression 
analysis was performed to identify independent prognostic genes with log-rank p-value < 0.05 from 
the survival-related target genes. Least absolute shrinkage and selection operator (LASSO) Cox-PH 
regression model [20] was used to determine the optimal prognostic genes from the independent 
prognostic genes. Prognostic score (PS) was defined as the linear combination of logarithmically 
transformed gene expression levels of the optimal prognostic genes weighted by canonical 
discriminant function coefficients and was used to evaluate mortality risk of a patient. Using 
expression levels and regression coefficients of the optimal prognostic genes, PS score was 
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calculated for every sample using the following formula: 

Prognostic score (PS) = ∑Coefgenes ×Exp genes 

where Coefgenes represents regression coefficient of a prognostic gene and Expgenes represents 
expression level of a prognostic gene. 

According to median PS score, all samples of the training set or the validation set were 
separated into a high-risk group and a low-risk group.  

2.6. Construction and assessment of a nomogram model 

Uni-variable and multi-variable Cox regression analysis was performed for all clinical 
characteristics and PS status. Nomogram is a graphical calculating tool for individualized risk 
estimation based on use of multiple variables and continuous variables continuously [21]. A 
nomogram model incorporating all independent prognostic factors was built to predict 3-year and 5-year 
survival probability. Calibration curves of the nomogram were plotted and concordance index 
(C-index) [22] was calculated to evaluate its predictive performance. 

2.7. Statistical analysis 

Survival analysis was performed to compare OS probabilities of different groups using 
Kaplan-Meier method and log-rank test with the threshold of p-value < 0.05. Receiver Operating 
Characteristic (ROC) curves were plotted to analyze accuracy of the PS system. 

The bioinformatics analyses below were carried out using different packages of R software 
(version 3.6.1): limma [23] package (version 3.34.7) for differential expression analysis 
(https://bioconductor.org/packages/release/bioc/html/ limma.html); pheatmap [24] package (version 
1.0.8, https://cran.r-project.org/web/ packages/pheatmap/index. html) for hierarchical clustering 
analysis; survival [25] package (version 2.41-1, http://bioconductor.org/packages/survivalr/) for uni- 
and multi- variable Cox regression analysis and survival analysis; ConsensusClusterPlus [18] package 
(version 1.54.0, http://www.bioconductor.org/packages/release/ bioc/html/ConsensusClusterPlus.html) for 
consensus clustering analysis; lars package (version 1.2) for LASSO Cox-PH regression model; rms 
package [26] (version 5.12, https://cran.r-project.org/web/packages/rms/index.html) for nomogram. 
P-value < 0.05 suggested significance. Analytical flow chart of this study is shown in Figure 1. 

3. Results 

3.1. Identification of DEGs in LUAD 

A total of 2429 genes that met the criteria of FDR < 0.05 and |log2FC| > 1 were significantly 
differentially expressed between tumor samples (N = 501) and normal samples (N = 58, Figure 2A) 
in the training set. As shown in a heatmap (Figure 2B), expression patterns of top 50 up-regulated 
DEGs and top 50 down-regulated DEGs were obviously different between tumor samples and 
normal samples, indicating the DEGs are able to distinguish tumor and normal samples.
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3.2. A prognostic m6A-DEGs network included 12 m6A RNA methylation regulators and 224 genes 

Total 1267 DEGs were predicted to be target genes of m6A RNA methylation regulators based 
on m6A2 Target database and 224 of these were significantly associated with survival in uni-variable 
Cox regression analysis. Consequently, 12 m6A RNA methylation regulators (writers: RBM15, 
RBM15B; erasers: FTO; readers: YTHDF1, YTHDF2, YTHDF3, YTHDC1, YTHDC2, HNRNPC, 
IGF2BP1, IGF2BP2, IGF2BP3) and the 224 survival-related target genes formed a prognostic 
m6A-DEGs network (Figure 3). Topological analysis showed that IGF2BP1 was the most hub gene 
with a degree of 145. The other nodes with high degree included YTHDF1, YTHDC1, IGF2BP2 and 
IGF2BP3 (Table 1). The genes in the network were significantly involved in 26 GO biological 
processes largely related to cell cycle, and 5 KEGG pathways, such as cell cycle and p53 signaling 
pathways (Table 2).  

Table 1. The top 20 hub-genes in the m6A-DEG network. 

Symbol Average Shortest Path Length Betweenness Centrality Closeness Centrality Degree 

IGF2BP1 1.7167382 0.34083022 0.5825 145 

YTHDF1 1.89699571 0.25043473 0.52714932 123 

YTHDC1 1.97424893 0.27286644 0.50652174 114 

IGF2BP2 2.07725322 0.15502202 0.48140496 103 

IGF2BP3 2.19742489 0.10570453 0.45507813 90 

RBM15B 2.62660944 0.01980201 0.38071895 38 

YTHDF2 2.72961373 0.0403311 0.3663522 26 

YTHDF3 2.77253219 0.0139253 0.36068111 22 

RBM15 2.83261803 0.00242151 0.3530303 14 

HNRNPC 2.87553648 0.00141667 0.34776119 11 

CDCA5 1.97424893 0.00901307 0.50652174 9 

HHIPL2 2.03433476 0.00668609 0.49156118 8 

ASPM 1.99141631 0.00712224 0.50215517 8 

ZIC2 2 0.00689356 0.5 8 

PLK1 1.99141631 0.00648788 0.50215517 7 

CDK5R1 2 0.00649329 0.5 7 

FAM83A 2.43776824 0.00945876 0.41021127 7 

ZIC5 2.04291845 0.00450393 0.4894958 7 

HCN2 1.99141631 0.00648788 0.50215517 7 

CENPF 2.02575107 0.00463828 0.49364407 7 

3.3. Two LUAD subtypes had different OS time, clinicopathological characteristics and fractions of TIICs 

Consensus clustering analysis for the 224 survival-related genes led to the identification of two 
LUAD subtypes (Figure 4A). In the training set, 222 tumor samples belonged to subtype 1, while 279 
tumor samples fell into subtype 2. Kaplan-Meier survival curves in Figure 4B showed that subtype 2 
had significantly shorter OS time compared to subtype 1 (p-value = 0.00096). Subtype 2 had less 
patients older than 60 years (p-value = 2.51E03), less female patients (p-value = 1.15E03), higher 
Pathologic N stage (p-value = 4.68E03), higher Pathologic T stage (p-value = 2.85E03), higher 



258 

Mathematical Biosciences and Engineering                                 Volume 19, Issue 1, 253270. 
 

pathologic stage (p-value = 5.81E04), and less never-smokers (p-value = 1.33E02, Table 3) in 
comparison with subtype 1. 

Table 2. Significant GO biological processes and KEGG signaling pathways. 

Category Term Count of genes P-value FDR 

GO 

Biology 

Process 

Cell division 39 2.10E25 2.31E22 

Mitotic nuclear division 34 5.76E25 3.17E22 

Sister chromatid cohesion 21 7.80E19 2.87E16 

Mitotic sister chromatid segregation 10 8.34E12 2.30E09 

Chromosome segregation 13 3.00E11 6.61E09 

DNA replication 17 6.75E11 1.24E08 

G2/M transition of mitotic cell cycle 16 1.17E10 1.84E08 

G1/S transition of mitotic cell cycle 13 3.88E09 5.34E07 

Mitotic cytokinesis 8 4.38E08 5.37E06 

Mitotic metaphase plate congression 8 2.66E07 2.67E05 

Regulation of cell cycle 12 3.32E07 3.05E05 

Anaphase-promoting complex-dependent catabolic 

process 

10 4.77E07 3.75E05 

Spindle organization 6 9.87E07 7.25E05 

Mitotic spindle assembly checkpoint 6 3.37E06 2.32E04 

Mitotic spindle assembly 7 4.29E06 2.78E04 

Microtubule-based movement 9 6.23E06 3.81E04 

Mitotic cell cycle checkpoint 6 3.89E05 2.14E03 

Cell proliferation 16 4.26E05 2.23E03 

DNA repair 12 1.45E04 6.39E03 

CENP-A containing nucleosome assembly 6 1.67E04 6.80E03 

Cytokinesis 6 2.82E04 1.07E02 

KEGG 

Pathway 

Cell cycle 20 2.67E16 3.71E14 

Oocyte meiosis 13 8.39E09 5.83E07 

Progesterone-mediated oocyte maturation 10 1.02E06 4.74E05 

p53 signaling pathway 7 1.63E04 5.66E03 

Fanconi anemia pathway 4 2.74E02 7.61E01 

Note: Count of genes stand for the number of significantly enriched genes. GO, gene ontology; KEGG, Kyoto 

Encyclopedia of Genes and Genomes. 

It has been reported that the m6A genes are important regulators in tumor microenvironment of 
LUAD and affect TIICs [7]. Therefore, we also analyzed composition of TIICs in the two subtypes. 
Remarkably, compared to subtype 1, subtype 2 had significantly less memory B cells, more CD8+ T 
cells, less resting CD4+ memory T cells, more activated CD4+ memory T cells, more Tfh cells, more 
activated NK cells, less monocytes, more M0 and M1 macrophages, less M2 macrophages, more 
resting myeloid dendritic cells, less activated mast cells, more resting mast cells, and more 
Neutrophils (p-value < 0.001, Figure 5). 
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Table 3. Comparative analysis of clinicopathological characteristics of two subtypes. 

Characteristics N of cases Subtype P-value 

Subtype 1 (N = 

222) 

Subtype 2 (N = 

279) 

Age(years)         

≤ 60 157 54 103 2.51E03 

 60 334 164 170 

Gender         

Male 231 84 147 1.15E03 

Female 270 138 132 

Pathologic M         

M0 333 149 184 8.63E02 

M1 24 6 18 

Pathologic N         

N0 324 158 166 4.68E03 

N1 94 34 60 

N2 72 22 50 

Pathologic T         

T1 167 93 74 2.85E03 

T2 267 100 167 

T3 45 19 26 

T4 19 8 11 

Pathologic stage         

Stage I 268 140 128 5.81E04 

Stage II 119 42 77 

Stage III 81 27 54 

Stage IV 25 7 18 

Recurrence         

Yes 151 59 92 8.38E02 

No 275 132 143 

Tobacco smoking history         

Never 28 17 11 1.33E02 

Reform 127 67 60 

Current 46 14 32 

3.4. A five-gene PS model for stratification of LUAD patients  

Total 93 genes in the m6A-DEGs network were found to be independent prognostic factors in 
multi-variable Cox regression analysis. Five independent prognostic genes [C1QTNF6 (C1q/tumor 
necrosis factor-related protein 6), THSD1 (Thrombospondin type I domain 1), GRIK2 (Glutamate 
receptor, ionotropic, kainate 2), E2F7 (E2F transcription factor 7) and SLCO1B3 (solute carrier 
organic anion transporter family member 1B3)] achieved the optimal lambda value and were selected 
by LASSO Cox-PH model as the optimal gene panel for prognosis prediction (Table 4 and Figure 6). 
Kaplan-Meier survival curves in Figure 7 showed that for each of the five optimal prognostic genes, 
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the high expression and low expression samples had significantly different OS time (p < 0.001, p 
= 0.0052, p = 0.00092, p = 0.00012, and p = 0.0036) in the training set. 

Based on expression levels and regression coefficients of the five optimal prognostic genes, PS 
score was calculated for every sample in the training set. With median PS score as the cutoff, the 
training set was split in a high-risk group and a low-risk group. The high-risk patients had 
significantly shorter OS time compared to the low-risk patients (p < 0.0001, Figure 8A). AUC for the 
training set was 0.723 (specificity = 0.560, sensitivity = 0.820, Figure 8B). Similarly, the validation 
set (GSE50081) was divided by the five-gene PS score into high-risk and low-risk groups with 
significantly different OS time (p = 0.017, Figure 8A). AUC for the validation set was 0.705 
(specificity = 0.711, sensitivity = 0.627, Figure 8B). 

Table 4. Details of the five optimal prognostic genes by LASSO-PH mode. 

Gene name Hazard 

Ratio 

95% Confidence 

Interval 

Standard 

error 

Z 

score 

P-value LASSO 

Coefficient 

C1QTNF6 1.477  1.2391.761 0.090  4.341 1.420E05 0.02171  

THSD1 0.683  0.4880.958 0.172  2.210 2.711E02 0.00642  

GRIK2 1.491  1.0832.052 0.163  2.451 1.423E02 0.00173  

E2F7 1.386  1.0911.759 0.122  2.679 7.390E03 0.00650  

SLCO1B3 1.261  1.0841.466 0.077  3.002 2.680E03 0.00430  

3.5. A nomogram model was based on pathologic stage, tumor recurrence and PS status 

In uni-variable Cox regression analysis, Pathologic M (p = 5.361E03), Pathologic N (p = 3.993E11), 
Pathologic T (p = 3.102E06), Pathologic stage (p = 2.942E14) and recurrence (p = 2.438E07) 
were significantly related to OS time. Pathologic stage (p = 3.850E02, HR (95% CI) = 1.919[1.0353.559]), 
recurrence (p = 1.510E05, HR (95% CI) = 2.496[1.6493.778]) and PS status (p = 3.550E03, HR 
(95% CI) = 1.584[1.0322.433]) were further found to be independent prognostic factors in  
multi-variable Cox regression analysis (Figure 9A, Table 5). In order to improve predictive 
performance of the five-gene PS score and facilitate its application, we combined pathologic stage, 
recurrence and PS status to build a nomogram for predicting 3-year and 5-year survival probability 
(Figure 9B). Calibration plots for the nomogram showed good consistence between the predicted and 
actual 3-year and 5-year survival probabilities (C-index = 0.708, 0.723, p-value = 0, Figure 9C), 
suggesting good predictive accuracy of the composite nomogram based on pathologic stage, recurrence and 
PS status. All these results demonstrated that the five-gene PS score was a useful prognostic tool in LUAD.  

4. Discussions 

m6A RNA methylation is a critical player in tumor initiation and progression through affecting 
gene expression and various cellular processes [27]. m6A genes have been increasingly 
acknowledged as potential prognostic biomarkers of LUAD [28]. However, candidate target genes of 
m6A modification regulators and their prognostic significance remain poorly studied. Our present 
study predicted 1267 DEGs in LUAD tumor as candidate target genes of m6A regulators based on 
m6A2 Target database. Using the 224 survival-related target genes, we obtained a prognostic 
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m6A-DEGs network and two molecular subtypes (subtype 1 and 2) of LUAD with significantly 
different OS time, distinct clinical characteristics and composition of immune cells. Moreover, we 
developed and validated a robust five-gene PS system for survival prediction in LUAD. This study 
deepens our understanding on the regulatory mechanisms underlying the roles of m6A RNA 
methylation in LUAD, contributing to improvement of prognosis prediction and aiding in 
individualized genome-based therapy in LUAD. 

Table 5. Uni-variable and multi-variable Cox-regression results for clinical 
characteristics and PS status. 

Clinical characteristics TCGA(N = 

501) 

Uni-variable cox Multi-variable cox 

HR (95% CI) P value HR (95% CI) P value 

Age(years, mean ± sd) 65.28 ± 10.05 1.009[0.9941.0

24] 

2.640E0

1 

  

Gender(Male/Female) 231/270 1.060[0.7921.4

18] 

6.954E0

1 

  

Pathologic M(M0/M1/-) 333/24/144 2.111[1.2323.6

16] 

5.361E0

3 

0.304[0.0611.

511] 

1.455E
01 

Pathologic N(N0/N1/N2/-) 324/94/72/11 1.782[1.4932.1

28] 

3.993E1

1 

0.965[0.5521.

685] 

8.998E
01 

Pathologic T(T1/T2/T3/T4/-) 167/267/45/1

9/3 

1.550[1.2891.8

63] 

3.102E0

6 

1.221[0.8231.

531] 

4.672E
01 

Pathologic stage( I / II / III / IV /-) 268/119/81/2

5/8 

1.679[1.4631.9

28] 

2.942E1

4 

1.919[1.0353.

559] 

3.850E
02 

Recurrence(Yes/No/-) 151/275/75 2.392[1.7003.3

67] 

2.438E0

7 

2.496[1.6493.

778] 

1.510E
05 

Smoking 

history(Never/Reform/Current/-) 

28/127/46/30

0 

0.765[0.5421.0

81] 

1.287E0

1 

  

PS status(High/Low) 250/251 2.201[1.6252.9

81] 

1.805E0

7 

1.584[1.0322.

433] 

3.550E
03 

Note: PS status stands for prognostic score status. 

LUAD has various histological subtypes ranged from pre-invasive lesion to aggressive 
adenocarcinoma [2]. Our study identified two molecular subtypes of LUAD (subtype 1 and 2) using 
consensus clustering analysis based on expression data of the survival-related target genes. Subtype 2 
had poorer survival then subtype 1. Subtype 2 was prone to be at more advanced stage and behave 
more aggressively and invasively. These results suggest that these survival-related target genes are 
important determinants in LUAD progression in consistence with a previous report [29]. Besides, 
subtype 2 is more likely to be observed in young male smokers, while subtype 1 has a greater 
propensity to be found in older female never-smokers. TIICs have a close association with LUAD 
progression and prognosis [30]. Our study found that subtype 1 and 2 were significantly different in 
proportions of 14 types of immune cells. These findings together demonstrate diverse 
clinicopathological characteristics and varied composition of immune cells between the two subtypes. 
Identification of the two m6A methylation-related molecular subtypes may have important clinical 
implications and lend support to targeted therapies to combat LUAD. 
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The present study showed that our PS model was a reliable and robust tool for survival 
prediction in LUAD, manifested in several levels. Firstly, the PS score could discriminate high-risk 
patients from low-risk patients in the training set. Secondly, prognostic performance of our PS model 
was successfully verified in an independent dataset from GEO database, supporting the 
generalizability of the PS model. Thirdly, AUC values of ROC curves for the two sets were larger 
than 0.7, providing evidence for predictive accuracy of the PS model. Fourthly, PS status had been 
identified as an independent prognostic factor of LUAD. Finally, the nomogram model incorporating 
PS status, pathologic stage and recurrence performed well in predicting 3-year and 5-year survival 
probability of LUAD patients (C-index > 0.7). 

Our PS model was developed based on five optimal prognostic genes (C1QTNF6, THSD1, 
GRIK2, E2F7 and SLCO1B3). According to the HR values, 4 genes (C1QTNF6, GRIK2, E2F7 and 
SLCO1B3) were associated with increased risk of LUAD, while the expression level of one gene 
(TNSD1) was associated with reduced risk of LUAD. C1QTNF6 overexpression is involved in cell 
proliferation, migration and invasion and may be an independent prognostic factor in LUAD [31,32]. 
Inhibition of C1QTNF6 could attenuate cell proliferation, migration, and invasion and promote 
apoptosis, indicating C1QTNF6 might be a new perspective in treating non-small-cell lung 
cancer [33]. GRIK2 belongs to an ionotropic glutamate receptor and is identified as a novel 
epigenetic target in gastric cancer [34]. Its high expression is related to a poor prognosis in urinary 
tract carcinoma [35]. E2F7 is an E2F transcription factor, which plays an essential role in regulation 
of cell cycle progression [36]. E2F7 is highly upregulated in non-small-cell lung cancer samples, and 
aberrantly allow the cells to enter into S phase of cell cycle [37]. High expression of E2F7 is 
associated with short OS time of LUAD patients [38]. SLCO1B3 is mainly expressed in the 
basement membrane of liver cells and plays important roles in transporting endogenous compounds 
into cells [39]. It has been recognized as a positive prognostic biomarker of breast cancer [40]. 
SLCO1B3 exerts an oncogenic effect through promoting epithelial‑mesenchymal transition in 
progression of non-small cell lung cancer [41]. Nagai et al. showed that SLCO1B3 is expressed in 
lung cancer tissues but not in normal tissues [42]. Taken together, C1QTNF, GRIK2, E2F7 and 
SLCO1B3 are highly expressed in cancer samples, which are consistent with our results. THSD1 is a 
novel tumor suppressor gene mapping to 13q14. It is demonstrated to be downregulated in 
esophageal squamous cell carcinoma, which might be related with promoter hypermethylation [43]. 
In LUAD, THSD1 is found being aberrantly methylated and its expression is significantly correlates 
with prognosis of LUAD patients [44]. Our result found that TNSD1 was associated with reduced 
risk of LUAD, further suggesting its role as a tumor suppressor gene. Nevertheless, molecular 
mechanism and prognostic significance of GRIK2 in LUAD remains poorly understood. The 
molecular and cellular mechanisms of different caners share similarities, such as mutations in 
proto-oncogenes and tumor suppressors, exposures to chemicals and discordant regulation or 
activities of many critical signaling pathways [45]. The dysregulation or association with prognosis 
of the identified predictive genes in other neoplastic conditions might provide evidence of their role 
in LUAD carcinogenesis. However,  downstream analysis on the roles of them in carcinogenesis 
broadly are still warranted to identify cross-talk and pleiotropic mechanisms as well as potential 
adjuvant therapies and repurposable drugs across different neoplastic conditions.  

There are some limitations in our study. First, we have identified two subtypes of LUAD based 
on the expression level of 222 DEGs that were significantly related with survival. These subtypes 
might be clinically meaningful. However, sub-types need to be widely validated before they could be 
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agreed upon as acceptable. Second, downstream analyses on the roles of the identified predictive 
genes are still warranted. Third, clinical information of some patients in the training set and 
validation set is lacking, which might lead to bias in Cox regression analysis. 

 

Figure 1. Analytical flow chart. 

 

Figure 2. Graphical illustrations of the DEGs in LUAD. A, volcano plot. Red and blue 
dots represent up-regulated and down-regulated DEGs, respectively. The horizontal 
dashed line represents a threshold of FDR=0.05. The vertical dashed line represents the 
threshold of Log2FC  =  −1 or 1. B, two-way hierarchical clustering heatmap of top 50 
up-regulated and down-regulated DEGs. Clustering is performed based on centered 
pearson correlation. 
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Figure 3. A prognostic m6A-DEGs network. Yellow square nodes represent m6A genes. 
Oval nodes represent DEGs. Color bar from blue to red indicate the range of log2 FC 
value (5 to 5). 

 

Figure 4. Identification of two LUAD subtypes by consensus clustering analysis. A, 
heatmap of the matrix of co-occurrence proportions for LUAD samples; B, Kaplan-Meier 
survival curves for two subtypes. 
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Figure 5. Proportions of 14 types of immune cells between two subtypes of LUAD. ***p-value < 0.001. 

 

Figure 6. Forest plot of the five optimal prognostic genes. 



266 

Mathematical Biosciences and Engineering                                 Volume 19, Issue 1, 253270. 
 

 

Figure 7. Kaplan-Meier survival curves of high expressed and low expressed samples for 
C1QTNF6, THSD1, GRIK2, E2F7 or SLCO1B3. 

 

Figure 8. Performance of the five-gene PS score in the training set and the validation set. 
A, Kaplan-Meier survival curves of high-risk and low-risk samples in the training set and 
the validation set. B, ROC curves of the training set (AUC = 0.723, specificity = 0.560, 
sensitivity = 0.820) and the validation set (AUC = 0.705, specificity = 0.711, sensitivity 
= 0.627). 
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Figure 9. Nomogram model for predicting 3-year and 5-year survival probability. A, 
Forest plot of independent prognostic factors. B, nomogram of pathologic stage, 
recurrence and PS status. C, calibration plots for nomogram in predicting 3-year (upper) 
and 5-year survival probability (lower). 

5. Conclusions 

Using predicted target genes of m6A regulators, we obtained two molecular subtypes of LUAD 
with differential survival time, distinct clinicopathological and immunological features. Based on 
five prognostic target genes, we developed and validated a PS model for risk in LUAD. This study 
contributes to better tumor classification and supplies a reference for individualized survival 
estimation and targeted treatment strategy for LUAD. 
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