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Abstract: Multi-robot path planning is a hot problem in the field of robotics. Compared with 
single-robot path planning, complex problems such as obstacle avoidance and mutual collaboration 
need to be considered. This paper proposes an efficient leader follower-ant colony optimization 
(LF-ACO) to solve the collaborative path planning problem. Firstly, a new Multi-factor heuristic 
functor is proposed, the distance factor heuristic function and the smoothing factor heuristic function. 
This improves the convergence speed of the algorithm and enhances the smoothness of the initial 
path. The leader-follower structure is reconstructed for the position constraint problem of 
multi-robots in a grid environment. Then, the pheromone of the leader ant and the follower ants are 
used in the pheromone update rule of the ACO to improve the search quality of the formation path. 
To improve the global search capability, a max-min ant strategy is used. Finally, the path is optimized 
by the turning point optimization algorithm and dynamic cut-point method to improve path quality 
further. The simulation and experimental results based on MATLAB and ROS show that the 
proposed method can successfully solve the path planning and formation problem. 

Keywords: multi-robot; leader follower-ant colony algorithm (LF-ACO); formation path planning; 
dynamic tangent point method 
 

1. Introduction  

Cooperative group control of multiple mobile robots is an essential branch of robotic systems. 
In recent years, multi-robot systems that can perform complex tasks faster and better than individual 
robots，have been used in practical scenarios such as logistics and transportation [1], collision rescue [2], 
precise positioning [3], and mobile sensing networks [4]. In these applications, robots are typically 
required to satisfy formations or other constraints to accomplish complex tasks. Compared to a single 
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robot, a multi-robot system provides adequate access to environmental information and improves the 
ability and role efficiency of the robot to complete the job. When multi-robot systems need to 
accomplish spatially distributed tasks [5], such as target search [6], their path planning [7] in 
complex environments is critical. 

With increased environmental complexity and robot task difficulty, multi-robot formation 
collaboration has received extensive research and attention in recent years. Studying an effective 
formation path planning method can help solve the multi-robot obstacle avoidance and navigation 
problems. The research of multi-robot path planning based on formation control is a further 
extension of single-robot path planning. When the robots move in an environment full of obstacles, 
some specific evaluation metrics [8], such as path length, planning time, and energy consumption, 
must be considered and converged to a specific formation [9]. However, the problem of positional 
constraints between robots [10] and cooperative obstacle avoidance [11] exacerbates the difficulty of 
planning. 

For the study of global path planning of robots, good results have been achieved by using 
intelligent optimization algorithms such as the sparrow search algorithm [12], the whale optimization 
algorithm [13], and the ant colony algorithm [14–20]. The ant colony algorithm was proposed by 
Italian scholar Dorigo [14]. It has strong robustness and better solving ability, but has disadvantages 
such as low search efficiency and ease of falling into local optimality [15]. Many scholars have 
conducted in-depth studies on the structural design, operation mechanism, and parameter 
optimization of the ant colony algorithm and proposed many improvement strategies in response to 
these problems. Liu et al. [16] combined the ant colony algorithm with geometric optimization to 
optimize the cross-path nodes generated during the pathfinding process, enabling subsequent 
pheromone updates to improve the algorithm's path quality and efficiency. You et al. [17] designed a 
new heuristic operator to improve the diversity and convergence of the population search. Dai et 
al. [18] improved the ant colony algorithm based on the A* algorithm and the maximum-minimum 
ant system to speed up global convergence speed and path smoothing, and introduced a retraction 
mechanism to solve the deadlock problem. Jiao et al. [19] used an adaptive state transfer strategy and 
an adaptive pheromone update strategy to ensure the relative importance of pheromone strength and 
heuristic information in the iterative process of the algorithm, which improved to some extent the 
adaptability of the algorithm for different environments and the ability to jump out of the optimal 
local solution. Khaled et al. [20] improved the state transfer formula to preferentially select the 
neighbor node with more exits as the next node, and by segmenting the multi heuristic function, and 
by rewarding and punishing the optimal worst path separately, the improved algorithm enhances the 
diversity of the search and attenuates the influence of invalid pheromones. 

Theoretically, paths based on optimization algorithms can achieve global optimality, but most 
research has focused on individual robots. To improve the efficiency of robotic systems, 
collaborative path planning problems considering multiple factors have become a focus of 
researchers [21]. Dasa et al. [22] added the consideration of path deviation and energy consumption 
optimization by embedding the social and cognitive behavior of an improved particle swarm 
algorithm (IPSO) into the newtonian gravity of an improved gravity search algorithm (IGSA). They 
proposed IPSO-IGSA to implement path planning for multiple robots in dynamic environments and 
improve search capability by simultaneously updating particle positions using IPSO velocity and 
IGSA acceleration. In a subsequent research, the authors [22] also investigated the multi-robot 
collision-free planning problem by mixing improved particle swarm optimization (IPSO) and 
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evolutionary operators (EOPs) [23]. Milad et al. [24] proposed a path planning algorithm for single 
and multiple robots that simultaneously optimizes path length, smoothness, and safety in continuous 
environments using a multi-objective enhanced genetic algorithm (EGA), which eliminates the risk 
of possible collisions between multiple robots by adding a collision elimination operator to the EGA. 
However, the research was only implemented in a static environment and lacked interference factors 
such as moving obstacles. In addition, some scholars [25] set different priorities for each robot by 
prioritization methods, thus reducing the possibility of robot collisions. 

In recent years, scholars have combined intelligent optimization algorithms with formation 
control methods for multi-robot systems to further improve the effectiveness of multi-robot path 
planning. Zheng et al. [26] proposed a path planning method to maintain the team formation for 
agents, which used the A* algorithm to obtain the path of the leader, obtained the critical point table 
and team transformation table by optimizing the path of the leader, then get the path of followers in 
the team. The study by Zheng et al. [26] prioritized the leader path of A* realization and neglected 
the overall coordination of the formation. Jiang et al. [27] used an improved genetic algorithm to 
search for the shortest path from the starting point to the endpoint for the leader robot in a grid 
environment. Based on the path planning of the leader robot, a better path from the starting point to 
the endpoint is planned for the followers to achieve a multi-mobile robot population that achieves 
obstacle avoidance while maintaining a particular formation. The study of Jiang et al. [27], like 
Zheng et al. [26], ignored the problem of robot collaboration. The Rapidly-Exploring Random Tree 
algorithm (RRT) has been particularly favored by scholars in the study of cooperative path planning 
in formation. Similar to the implementation of Zheng et al. [26], Dong et al. [28] used the RRT 
algorithm to generate a leader UAV’s trajectory, followed by generating the trajectory of the follower 
UAVs and verifying its effectiveness based on the ROS-Gazebo platform. Liu et al. [29] proposed a 
decentralized path planning method for multiple mobile robot formations on the basis of RRT, which 
plans a separate path for each robot and uses a dynamic prioritization strategy to avoid conflict in 
formation motion [30]. Wang et al. [31] proposed a multi-robot formation-keeping path planning 
method with an improved RRT algorithm, which dynamically adjusts the formation to change the 
formation orientation during the planning process by establishing a link between the search tree 
expansion and the formation direction. The study is feasible for robotic systems with a prime point 
model and an incomplete dynamics constraint model. The RRT method has the advantages of fast 
search speed and low difficulty in modeling the environment space in path planning, but the 
generated paths have many nodes and discontinuous corner curvature compared with the ant colony 
algorithm. If the robot travels along the path in practice, it will affect the stability of the trajectory 
tracking and even cause instability due to trajectory oscillation and increase the difficulty of 
multi-robot formation reconstruction. This problem is especially prominent in the complex map 
environment. 

To further promote the effect of multi-robot path planning, this paper proposes a new formation 
path planning method (LF-ACO, leader follower-ant colony optimization) by considering the ant 
colony algorithm’s excellent robustness and the advantages of the leader-following method on 
formation collaboration. The contributions can be summarized as follows: 

• Firstly, the slow convergence of traditional ant colony algorithms and most improved ant 
colony algorithms [14–20] mostly ignore the initial path smoothness problem. Based on the idea of 
the greedy algorithm to improve the traditional distance heuristic function with Euclidean distance as 
the indicator to improve the convergence. Furthermore, the smoothing heuristic function proposed 
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increases the chance of ants searching in the linear direction during local exploration to improve the 
smoothness of the initial path. 

• The leader-follower formation structure is reconstructed for the multi-robot position constraint 
problem in a grid environment. Then, the path of the leader ant is generated using an improved ant 
colony algorithm, and the paths of the follower ants are efficiently generated based on the location 
information of the leader ant and the obstacle information. 

• The pheromones of leader and follower ants are introduced in the pheromone update rule to 
improve the searchability of subsequent leader ants for the formation path. This solves the problem 
that other scholars [26–29,31] have not taken full advantage of the optimization algorithm in their 
studies of formation paths. Then the maximum-minimum ant system is used to improve the global 
searchability of the algorithm and avoid the problem of local optimum. 

• The turning point optimization algorithm and dynamic tangent point method [32] optimize the 
planned path, remove the redundant turning points of the path, and perform corner arc optimization. 

• Finally, the comparative simulation experiment is conducted for a single robot in the grid map 
environment to verify that the improved ant colony algorithm can converge to the shortest path faster 
and with better path smoothing. Then, we have performed formation path planning simulations in 
multiple environments to verify the effectiveness of our LF-ACO. 

2. Environmental description and problem statement 

2.1. Environment description 

Using the grid method to construct the environment map can effectively represent the working 
environment of mobile robots, and the grid area can be divided into obstacle grid 𝒯ை and free grid 
𝒯௙ (where the robot can move). Most scholars [14–20] currently ignore the effect of map modeling 
accuracy on the pathfinding quality, and most of the obstacles are also treated with simple 
expansions, as shown in Figure 1(a) for the actual shape of obstacles and in Figure 1(b) for the shape 
of obstacles after the expansion process in the grid map. However, to some extent, the size of grid 
granularity and the determination of obstacle expansion determine the merit of the model building [33]. 
When the effect of the expansion rate is not considered, if the granularity of grid division is too small, it 
will intensify the difficulty of path search, and the search results are not guaranteed to be optimal. In 
contrast, the environment model will deviate from the natural environment, and the paths searched 
cannot guarantee authenticity. Moreover, when the grid granularity is determined, the selection of the 
set value of obstacle expansion rate affects the searchable space of the algorithm and the quality of 
the path search. For facilitating our subsequent experiments, the expansion of obstacles is defined as 
follows: when the percentage area of the free grid portion occupied by the edges of obstacles is 
greater than or equal to the set value, the expansion is performed; if it is less than the set value, the 
obstacles in the region are discarded. 

The above work will build its workspace for the robot in a two-dimensional coordinate system 
of M × M. As shown in Figure 2, the black grids represent the obstacles, and the white grids 
represent the free grids. Finally, for determining the path information of the robot, we use a sequence 
number method to mark each grid [18], and the relation between the coordinate centers ሺ𝑥, 𝑦ሻ of the 
grid and the sequence number N is as follows: 
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where 𝑚𝑜𝑑 is a remainder operation, 𝑐𝑒𝑖𝑙 is an upward rounding operation. 

 

Figure 1. Grid environment for mobile robots. (a) The actual shape of the obstacle. (b) 
The result of the barrier dilatation treatment. 

 

Figure 2. Illustration of formation-coordination area. (a) Multi-robot formations. (b) Search 
direction of leader ant. 

Formation-coordination area: To ensure the integrity of the multi-robot formation, the initial 
path planned for the leader robot should be at a certain distance from the obstacle. This allows the 
follower robots to maintain a more stable formation when passing through narrow areas. As shown in 
Figure 2(a), given a𝒯ை, the 𝒯௙ in four directions are defined as the formation-coordinate grids 𝒯ℎ, 
and the leader robot should avoid passing through this area continuously. However, they should be 
allowed to pass if necessary (e.g., narrow passages). For this purpose, we improved the pathfinding 
mechanism of the ant colony algorithm. Figure 2(b) shows the path search direction of the leader ant. 
If the leader ant is located in the 𝒯ℎ, the optional grid for the even transfer direction can be 𝒯ℎ and 
𝒯௙, but the odd transfer direction is that the grid can only be 𝒯௙. 
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2.2. Problem statements 

Here we present the problem statements considered in this work. The grid-based path planning 
problem is defined as follows. 

Given a start grid 𝑆 and a goal grid 𝐸, define a𝜋ሺ𝑡ሻ to represent the path of the robot by finding 
a set of grids 𝜋ሺ𝑡ሻ: ሾ0, 𝑡ሿ → 𝒯௙ such that 𝜋ሺ0ሻ ൌ 𝑆 and 𝜋ሺ𝑡ሻ ൌ 𝐸. In addition, we define a formation 
structure of leader robot and follower robot, including the corresponding obstacle avoidance strategy. 
Then, 𝜋ሺ𝑡ሻ generates route nodes gradually from 𝑆 to 𝐸 and guarantees the path of the leader robot 
does not collide with any 𝒯ை, which is necessary to improve the coordination of the whole multi-robot 
formation system. Next, the follower robot tracks the location information of the leading robot and 
executes the corresponding obstacle avoidance strategy. Finally, the path is optimized in terms of 
length and smoothness. As several criteria are optimized, the global path planning problem is also 
categorized as a multi-goal optimization problem [34]. 

3. Ant colony formation algorithm 

For generating a better formation path in complex environments, we propose an ant colony 

formation algorithm (LF-ACO, leader follower-ant colony Optimization) by combining the ant colony 
algorithm and the leader-following method. We divide the ant population into the leader and follower 
layers based on the traditional ant colony algorithm, where: the initial path of the leader ant is 
generated by the improved ant colony algorithm, and the follower layer ant follows the path of the 
leader ant to reach the formation. This section focuses on the improved ant colony algorithm process, 
and Chapter 4 introduces the design ideas of the follower layer ant. 

Algorithm 1  Ant Colony Formation Algorithm 
1: procedure LF-ACO 
2: Building a robot working environment using the grid method
3: initialize the number of ants m, maximum iteration number Nmax, weights α, β, ρ, start S, goal E 
4: for N = 1 to Nmax do 
5: Put all ants into S 
6: while ant k is not in E do 
7: allowdi  ← the set of reachable grids for k 
10: choose the next grid by (4)
11: end while 
12: if all ants have arrived E then
13:         Sk ← comprehensive index of ant k’s path
14: Sbest,b ← the best path in all ants
15: Sworst,w ← the worst path in all ants 
16: end if 
17: select the ants as the leader ants
18:     follower ant tracking the path of leader ants by formation control strategy ( 4.1. and 4.2. )
19:     Fk ←comprehensive index of follower ants’s path 
20: update the pheromone by (9)(17)
21: end if 
22: end for 
23: output the best path 
24: end procedure 

To improve the ant colony algorithm, we propose an enhancement function based on the 
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principle of optimal-worst ant system to make the ant search more focused around the best path 
found up to the current cycle and evolve toward the global optimum. The achieved path is poor 
because the traditional ant colony algorithm has only a single path length as the objective. For this 
reason, we improve the heuristic function and pheromone by weighing the path length and 
smoothness to improve the performance of ant pathfinding. In addition, we can adjust the goal 
weights of the algorithm to focus on a single goal. The pseudo-code of the ant colony formation 
algorithm is given in Algorithm 1. 

3.1. Enhancement function 

In foraging, once an ant finds the food source, it starts the return trip and deposits pheromones on 
the path that it has passed to guide the following ants. This creates a positive feedback loop that all ants 
in the colony eventually follow the optimum path to the food source. Since the paths established by 
ants in any loop affect the subsequent decisions of the colony, if the established paths are not optimal, 
they will mislead the subsequent ants.  

In this paper, the optimal and worst solutions are found according to the principle of the 
best-worst ant system after one iteration, and the global pheromone update is effectively determined, 
enhancing the optimal solution and weakening the worst solution. Using the path enhancement factor, 
the ant’s search can focus more on the neighborhood of the best path found in the current cycle and 
evolve towards the global optimum. The global pheromone enhancement factor is as follows: 

( ) w

b

Sq t p
S

  (2)

bp w  (3)

where 𝑡 is the current iteration number, 𝑞ሺ𝑡ሻ is a coefficient of enhancement factor, b and w are the 
best and worst ant count in this iteration, respectively, Sw and Sb are the comprehensive index for the 
best and worst routes in this iteration. The number of optimal ants is small, and the number of worst 
ants is significant in the early iterations of the algorithm, and the overall performance of the path is 
poor. As the number of iterations increases, the number of optimal ants increases, the number of worst 
ants decreases, and the overall optimization ability of ants become better, while the 𝑞ሺ𝑡ሻ gradually 
converges to 𝑝. That enhances the overall optimization capacity of the algorithm and accelerates the 
convergence speed of the algorithm. 

3.2. Process of improved-ACO 

Like most scholarly studies on the formation control of multi-agent systems, the leader ant plays a 
prominent role in this paper. To enhance the algorithm’s efficiency, the follower ant only tracks the 
path of the optimal path leader ant for each iteration and feeds back its distance length and number of 
turns to affect the pheromone update of the ant colony algorithm path of the leader. 

3.2.1. Initialization 

Several parameters are initialized, and each of them is explained in Table 1. The value of these 
weights needs to be attributed to experiments. In addition, start 𝑆 and goal 𝐸 are decided, and all 
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ants are situated on the starting grid. 

Table 1. Parameters of the improved ant colony algorithm. 

Variable Description 
m Number of ants
Nmax Maximum number of iterations 
  Weight of pheromone
  Weight of heuristic information 
  Pheromone evaporation ratio
Q  Pheromone intensity 

ij  Pheromone on the path between i and j 

ij
  Heuristic information on j 

  distance factor coefficient 
  distance correction parameter
U the importance of ants going straight 
  the parameter of the pheromone update 

3.2.2. Selection 

In the next step, each ant uses the roulette wheel to choose the grid to move forward. For ant k, the 

probability 𝑝௜௝
௞ ሺ𝑡ሻ of moving from the current grid i to that grid j is expressed as: 

𝑝௜௝
௞ ሺ𝑡ሻ ൌ

⎩
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ఉ
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௝⊂ ௔௟௟௢௪ௗ௜

ൣ𝜏௜௝
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௔
ൣ𝜂௜௝

௞ ሺ𝑡ሻ൧
ఉ

, 𝑗 ∈ 𝑎𝑙𝑙𝑜𝑤𝑑𝑖

0, 𝑗 ∉ 𝑎𝑙𝑙𝑜𝑤𝑑𝑖

 
(4)

where 𝑘 is the number of ants, allowdi  denotes the set of transferable grids when the ant is in grid 𝑖. 

3.2.3. Heuristic information 

The traditional heuristic function is shown in Eq (5), which indicates the distance between grid j 
and target grid 𝐸. To deal with the complex and changing environment of the robot, we improve the 
heuristic information by using the smoothness and length of the path as optimization objectives, as 
in Eq (6). 

𝜂௜௝
௞ ሺ𝑡ሻ ൌ

1
𝑑ሺ𝑗, 𝐸ሻ

 (5)

𝜂௜௝
௞ ሺ𝑡ሻ ൌ 𝜑௜௝

௞ ሺ𝑡ሻ ൅ 𝑟௜௝
௞ሺ𝑡ሻ (6)

In the early stage of the traditional ant colony algorithm, the difference in pheromone 
concentration on the path is slight, and the difference of distance between the next set of to-be-selected 
locations at the current position and the target point is also tiny, which causes the confusion of the ant 
colony pre-search. To solve this problem, the heuristic function is designed to increase the influence of 
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the distance between the node to be selected and the endpoint grid, which makes the pathfinding 
strategy approximate to the greedy algorithm, and the improved distance heuristic function is as 
follows: 

𝜑௜௝
௞ ሺ𝑡ሻ ൌ ቐቆ

|𝑀𝐴𝑋 െ 𝑑ሺ𝑗, 𝐸ሻ|

𝑀𝐴𝑋 െ 𝑀𝐼𝑁 ൅ 𝐿𝑔𝑟𝑖𝑑
ቇ 𝜉 ൅ 𝜓

0, others
 (7)

where 𝜑௜௝
௞ ሺ𝑡ሻ indicates the corrected distance between grid j and target grid 𝐸, 𝑑ሺ𝑗, 𝐸ሻ denotes the 

euclidean distance between two points, 𝑀𝐴𝑋  and 𝑀𝐼𝑁  denote the maximum and minimum 
distances to be transferred, respectively; Lgrid is the size of the grid edge length. 

The traditional ant colony algorithm tends to plan a path with more turns in the grid environment. 
If applied to the real-world scenario, the path obtained by the mobile robot has a shorter overall length, 
but there are individual unnecessary turn angles, and the robot needs to adjust its state to accommodate 
the change in angle when passing through the corners, leading to more complex driving. To solve these 
problems, the smoothing factor heuristic function is designed to reduce the turning points of the path 
by increasing the chance of the ants going straight while moving, as follows: 

𝑟௜௝
௞ሺ𝑡ሻ ൌ ቐ

𝑈, 𝑡ሺ𝐽ሻ ൌ 𝑡ሺ𝐽 െ 1ሻ
𝑈

√2𝐿𝑔𝑟𝑖𝑑
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (8)

When the direction of the grid to be selected is the same as the direction of the previous grid, 𝑟௜௝
௞ሺ𝑡ሻ 

prompts the ants to continue in that direction. 

3.2.4. Pheromone update 

This step is to perform pheromone enhancement and decay after each round of iteration is 
completed, and the rules are as follows: 

 ( 1) ( ) ( )1- ( )ij ij ijt t t q t          (9)

and 

𝛥𝜏௜௝ሺ𝑡ሻ ൌ ∑
௞ୀଵ

೘

𝛥𝜏௜௝
௞ ሺ𝑡ሻ (10)

where 𝛥𝜏௜௝
௞ ሺ𝑡ሻ is the quantity of pheromone deposited by ant k on the path between i and j at time t. 

The traditional pheromone update method is the ant-perimeter model, as shown in Eq (11). In 
practice, the optimal path not only needs to be shorter path but also smoother. Therefore, we make the 
following changes to the pheromone increment of the ant colony formation. 

𝛥𝜏௜௝
௞ ሺ𝑡ሻ ൌ ቐ

𝑄
𝐿௞ሺ𝑡ሻ

, 𝑗 ∈ 𝑎𝑙𝑙𝑜𝑤𝑑௜

 0, others  

(11)

𝛥𝜏௜௝
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𝑆௞

൅
𝑄
𝐹௞

, 𝑗 ∈ 𝑎𝑙𝑙𝑜𝑤𝑑௜

 0, others
 (12)
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𝑠௞ ൌ 𝑎𝐿௞ ൅ 𝑏𝑇௞ 
(13)
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1

n
z z

k k k
z

F L T


   (14)

where 𝑠௞ is the integrated index of the path taken by the leader ant k, and the pheromone is assigned 
according to the integrated index, the smaller the index the better the path; 𝐹௞ is the integrated index 
of the path taken by the follower ant; 𝐿௞ is the path length of the leader; 𝑇௞ is the number of path 
turns of the leader; 𝑎 and 𝑏 are moderators of the distance factor, which can be taken according to 
the path demand. z

kL  is the path length of the follower ants in this iteration; z
kT  is the number of path 

turns of the follower ants in this iteration; n is the number of follower ants. The expressions for the total 
length and turns of the path are as followers: 

𝐿௞, 𝐿௞
௭ ൌ ෍ ඥሺ𝑥௜ାଵ െ 𝑥௜ሻଶ ൅ ሺ𝑦௜ାଵ െ 𝑦௜ሻଶ

௡ିଵ

௜ୀଵ

 (15)

𝑇௞, 𝑇௞
௭ ൌ 𝑐𝑎𝑟𝑑ሺ𝑆, … , 𝑖, 𝑗, … , 𝐸ሻ (16)

where ,x y  are the coordinate; 𝑇 is the number of turning points. 
In order to improve the global search ability of the algorithm and avoid the ants converging to the 

locally optimal path too quickly, the total number of pheromones on the path is controlled within a 
specific range min max[ ],    , and the pheromone update strategy is as follows: 

max max

min max

min min

, ( )

( ) ( ), ( )

, ( )

ij

ij ij ij
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t t t
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  
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 


  
 

 (17)

4. Multi-robot formation control 

In the previous section, we improved the ant colony algorithm for planning paths for the leader 
ant, and this section describes how the follower layer ant work. Assuming that the global information 
in the environment is known, the leader layer ants can achieve path search and obstacle avoidance 
based on the ant colony algorithm, and the follower layer ant needs to consider both formation control 
problems and obstacle avoidance. Based on this, the research in this section is as follows. 

4.1. Determination of formation 

The leader-follower method is a typical chain topology. The whole formation consists of a leader 
robot and follower robots, which only needs to make the follower obtain information about the leader’s 
motion state and track the leader’s motion trajectory in the implementation process to achieve the 
formation control. 

Firstly, in this paper, the target formation is formed at the initial moment of planning, and the 
formation structure takes the form of the leader-follower method, and the formation is constructed by 
setting the desired angle 𝜑ௗ and desired distance 𝑙ௗ of the leader and the followers. 

Next, we present the path planning method with three robots to maintain a triangular formation in 
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a common planar environment. In planning, the direction of the robot formation is dynamically 
adjusted, and the leader’s direction from the current node to the next node is usually defined as the 
formation direction. Taking as an example Figure 3, when the leader moves from the path point 
𝑃଴ሺ𝑥଴, 𝑦଴ሻ to the current position 𝑃ଵሺ𝑥ଵ, 𝑦ଵሻ, 𝑙 and 𝜑 denote the actual distance and the actual angle 
difference (relative direction) between the leader robotics and the follower robotics1, respectively, and 
𝜃 is the angle between the robot’s forward direction and the horizontal direction. Then the ideal team 
position 𝑃௙ሺ𝑥௙, 𝑦௙ሻ of the follower robotics1 at the current moment is： 

𝜃 ൌ ቐ
90°, 𝑥଴ ൌ 𝑥ଵ

𝑎𝑟𝑐𝑡𝑎𝑛 ൬
𝑦ଵ െ 𝑦଴

𝑥ଵ െ 𝑥଴
൰ , 𝑥଴ ് 𝑥ଵ

 (18)

ቂ
𝑥௙
𝑦௙

ቃ ൌ ቂ
𝑥ଵ
𝑦ଵ

ቃ െ ൤
𝑐𝑜𝑠ሺ 𝜑ௗ ൅ 𝜃ሻ
𝑠𝑖𝑛ሺ 𝜑ௗ ൅ 𝜃ሻ൨ 𝑙ௗ 

(19)

 

Figure 3. Schematic diagram of the relative positions of robot leader and follower. 

The path planning research based on the ant colony algorithm generally uses a grid environment 
modeling, and for making the traditional formation control method better applicable to this 
environment, we make some adjustments: 1) the directional angle 𝜃 of the ant colony formation is not 
considered during the planning process; 2) we generate the formation at the initial moment of planning; 
3) the desired angle 𝜑ௗ and desired distance 𝑙ௗ of the initial leader and follower are the subsequent 
leader ants and following ants need to keep the formation. In the following parts, we demonstrate the 
effect of the improvement. 

4.2. Avoiding obstacles 

In the path planning process of the grid environment, path points that satisfy both leader and 
follower obstacle avoidance conditions should be searched. When an obstacle is encountered, the 
multi-robot planning process can be made to avoid the obstacle by team switching for a multi-robot 
system with a prime number model. 

First, the leader ant uses an improved ant colony algorithm to plan its optimal path based on the 
map information. 
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Secondly, the leader ant runs along the optimal path toward the target point and uses the designed 
algorithm for obstacle avoidance. In contrast, the leader ant detects its position information in 
real-time and uses the -l   control method to generate the trajectory of follower ants according to the 

set formation. 
Finally, the leader ant in real-time and adjusts its speed and movement direction to follow the 

trajectory. Meanwhile, the follower ant detects the obstacle information around itself in real-time. 
When the follower ant encounters an obstacle, it waits in place for a certain time, and when the leader 
ant passes, the follower ants move to the position of the leader ant at the last moment, and as soon as 
passing the obstacle, the follower ants will return to the trajectory of the virtual ant and resume the set 
formation. At the end of each iteration, the follower ants feedback their path information for the leader 
ant’s pheromone update. 

Based on the above description of multi-robot formation keeping and formation direction, the 
purpose of this paper is to solve the path planning problem of multi-robot in formation operation and 
plan an obstacle avoidance path that satisfies the multi-robot formation constraints. Figure 4(a) shows 
the path planning of multi-robot formation control implemented by the ant colony algorithm combined 
with the unimproved leader-follower method, and Figure 4(b) shows the path planning implemented 
by our improved ant colony formation algorithm. The comparison shows that our improved algorithm 
is more consistent with the formation characteristics in the grid environment. 

 

Figure 4. Multi-robot formation path planning under two strategies. (a) L-F combined 
with ant colony algorithm. (b) Improved ant colony formation algorithm. 

5. Track optimization 

5.1. Triangular pruning optimization algorithm (TPOA) 

Most of the current path planning research are based on the ideal environment model established 
by the grid method, which does not consider the actual working conditions of mobile robots. Moreover, 
the grid modeling setting directly limits the accuracy of path planning, and the planned paths have 
redundant inflection points, which do not match the actual working characteristics of the robot. We 
smooth the optimal path planned by the improved ACO, which adjusts the route direction and 
improves the traditional fixed straight line direction or turn, making the mobile robot more flexible in 
the working environment, reducing the loss of running time and energy consumption of the mobile 
robot, and improving the working efficiency. 
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First, we connect two nodes in the path, not in the same line, and determine whether the current 
line passes through the obstacle area. If not, the current route is considered as a new path, and the 
intermediate nodes are removed. Otherwise, no path modification is performed. According to this 
method, all nodes of the path are traversed to generate a new path. The smoothed path is shown in 
Figure 5. The blue line is the smoothed path. Furthermore, the black dashed line is the preceding path. 
It is easy to see that removing these unnecessary transitions can effectively improve the length and 
smoothness of the robot. 

 

Figure 5. The original path and the path with unnecessary turn points removed. 

When our TPOA smoothes the path, all the turning points need to be previously recorded to 
shorten the path length and reduce the number of turning points { , 1, 2... . }T S T T Tn E . 

Let us introduce the P  function at the same time. Tx  and Ty  are two nodes on the path. 

 
1,  if  can go straight to 

,
0,  otherwise 

Tx Ty
G Tx Ty 





 (20)

Algorithm 2 Triangular Pruning Optimization Algorithm 
1: Procedure TPOA 
2: input the mobile robot path obtained by the ACO
3: input the coordinates of nodes T 
4: n ← number of nodes on the path
5: while a < n – 1 do 
6: for b = n - a to 2 do  
7: calculate G(Ta, Tb) by (20)
8； if G(Ta, Tb) == 0 then  
9: remove the middle nodes
10: end if  
11: end for  
12: end while 
13: output the newRoute  
14: end procedure 

5.2. Dynamic cut point method 

A smooth path is more conducive to the robot’s work. If the smoothing optimization of the 
inflection point is performed with a fixed tangent angle or a fixed tangent point, the robot may fall into 
a dead zone with obstacles. To better optimize the path, this paper uses the dynamic tangent point 
adjustment method [32] to smooth the planned path, as shown in the smoothing schematic in Figure 6. 
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The robot starts from the initial position 𝐴ଵሺ𝑥ଵ, 𝑦ଵሻ and smoothes the corner sections sequentially 
along the direction of travel until the endpoint 𝐴௡ሺ𝑥௡, 𝑦௡ሻ, as follows： 

 

Figure 6. Path smoothing diagram. 

Step 1: Choose the shorter sides of 𝐴௜ିଵ𝐴௜ and 𝐴௜𝐴௜ାଵ. Using the endpoint of the shorter side as 
the initial point 𝑃൫𝑥௣, 𝑦௣൯, make a vertical line intersecting the angle bisector 𝐴௜𝑄௜ିଵሺ𝑖 ൌ 2, 3, ⋯ ,
𝑛 െ 1ሻ of  ∠𝐴௜ିଵ𝐴௜𝐴௜ାଵ at the point 𝑂௜ିଵሺ𝑥଴, 𝑦଴ሻ ሺ𝑖 ൌ 2, 3, ⋯ , 𝑛 െ 1ሻ, where： 

𝑥଴ ൌ
ቀ𝑥௣ ൅ 𝑘଴ଵ𝑦௣ ൅ 𝑘଴ଵሺ𝑘଴𝑥ଶ െ 𝑦ଶሻቁ

ሺ1 ൅ 𝑘଴𝑘଴ଵሻ
 (21)

𝑦଴ ൌ 𝑘଴ሺ𝑥଴ െ 𝑥ଶሻ ൅ 𝑦ଶ (22)

The radius R of the tangent circle can be expressed as： 

𝑅 ൌ ට𝑥଴
ଶ െ 2𝑥଴𝑥௣ ൅ 𝑦଴

ଶ െ 2𝑦଴𝑦௣ ൅ 𝑥௣
ଶ ൅ 𝑦௣

ଶ (23)

The equation of the tangent circle is： 

ሺ𝑥 െ 𝑥଴ሻଶ ൅ ሺ𝑦 െ 𝑦଴ሻଶ ൌ 𝑅ଶ (24)

where 𝑘01 is the slope of the short side; 𝑘଴ the slope of the angle bisector. 
Step 2: Determine whether there is an intersection S between the tangent circle and the long edge; 

if so, execute Step 3; otherwise, execute Step 4. 
Step 3: Determine whether there is an obstacle on the arc 𝑃𝑆; if there is, then execute Step 4; 

otherwise, use the arc 𝑃𝑆 instead of the corner and execute Step 5. 

Step 4: The movement of tangent point 𝑃ሺ𝑥௉, 𝑦௉ሻ along the line segment where it is located to 
ሺ𝑥௉ଶ, 𝑦௉ଶሻ,  𝑥௉ଶ can be expressed as： 

𝑥௣ଶ ൌ 𝑥௣ ൅ 𝜆ห𝑥ଶ െ 𝑥௣ห 𝜆 ∈ ሺ0,1ሻ (25)

where 𝜆 is set according to the actual situation. Also set 𝑃ଶ as the initial cut point and return to Step 1. 
Step 5: If all path nodes have been traversed, the algorithm is finished, otherwise return to Step 1 

to continue the execution. 
As can be seen from Figure 7, the blue line is a specific initial path, and the purple line is the path 

after smoothing and optimization by the algorithm in this paper. The optimized path reduces the 
number of turns and the accumulated turning angle, which improves the quality of the planned route. 
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6. Experiment 

In this section, we conducted five experiments to illustrate the feasibility and superiority of the 
algorithm. In the first experiment, we performed path planning simulations for a single robot in 
different environments and compared them with other path planning algorithms. In the second 
experiment, we performed conducted path planning experiments on multi-robot formations. In the 
third experiment, we tested the role played by the smoothing parameter. In the fourth experiment, we 
conducted a raster map modeling study to extend the application scenario of LF-ACO. In the fifth 
experiment, We simulated a natural ROS-based environment and conducted path planning 
experiments for multi-robot formations. All simulations are performed on a computer with Intel Core 
i5 CPU @ 2.3 GHz and 8 GB of RAM under Windows 10. 

Table 2. Main parameters of the simulation experiment. 

Algorithm m  maxN      
 Q   u    a  b 

ACA 50 50 1 7 0.3 10 - - - - - - -
DLACA 50 50 1 3 0.3 100 - 1 - - - - -
RMACA 50 50 1 5 0.5 10 - - - - - - -
EACA 50 50 1 2 0.2 1 - - - - - - -
This paper 50 50 1 3 0.3 100 10 1 5 20 1 1 0.95

6.1. Single robot path planning experiment 

To verify the effectiveness of our improved algorithm for single-robot path planning, we selected 
a 20 × 20 and 40×40 map environment from the literature [35] for comparison experiments. We chose 
four other algorithms for comparison: the traditional Ant Colony Algorithm (ACA), the Double Layer 
Ant Colony Algorithm (DLACA) [35], the Evolutionary Ant Colony Algorithm (EACA) [17], and the 
Retraction Mechanism Ant Colony Algorithm (RMACA) [18]. The convergence speed, shortest 
path and bending suppression effects of these algorithms are compared. Since the algorithms of 
literature [35], literature [17], and literature [18] differ from the algorithm of this paper in the 
values of various parameters, the simulated parameters from the original paper are used, as shown 
in Table 2. 

1) Example 1. In this example, the robot’s environment is modeled as a 20×20 grid and 
compared in a regular map environment. The coordinates of the robot’s grid starting point and target 
are (0.5, 19.5) and (19.5, 0.5), respectively. (shown in Figures 7 and 9(a)) 

2) Example 2. In this example, the robot’s environment is built in a 40×40 grid model and 
compared in a giant slot map environment. The coordinates of the robot’s grid starting point and target 
are (5.5, 34.5) and (29.5, 5.5), respectively. (shown in Figures 8 and 9(b)) 

As shown in Figure 7, some ants die in the U-shaped deadlock region during the pathfinding 
process of traditional ACA, and the obtained paths fall into the optimum local situation, so it is the 
worst path. DLACA and RMACA solve the deadlock problem in the algorithm improvement, so the 
paths planned are better than EACA and traditional ACA. The strategy of RMACA will leave a large 
number of invalid pheromones in the deadlock edge region, which affects the path search of 
subsequent ants, and thus the algorithm converges poorly. Our improved algorithm mainly prevents 
ants from getting into the deadlock region through the smoothing heuristic function, and the global 
pheromone enhancement factor improves the algorithm’s convergence. The original path length of 
our improved ACA is 28.6274, and the number of turns is 4. After optimization, it is 27.5622 and 3. 
Our algorithm is the most efficient among the five algorithms in path length and number of turns. 
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Figure 9(a) shows that our algorithm has the best iterative results among all the algorithms. Due to 
our late optimization, the algorithm runs longer but still outperforms ACA. 

As shown in Figure 8, the worst path is still the traditional ACA trapped in a local optimum. Since 
experiment 2 is more complex than that of experiment 1, the EACA algorithm becomes worse in this 
environment and does not converge until the 44th iteration. The deadlock handling strategy of 
RMACA is somewhat adaptive to this environment and finds a path close to the optimal solution at 
some cost in the 31st generation. In terms of length and number of turns, RMACA and DLACA 
slightly outperformed the original paths of our algorithm. After post-optimization, our algorithm is the 
most effective among all algorithms, with 5.2% and 46.2% optimization in path length and turn count 
compared with RMACA, and 2.8 and 41.7% compared with DLACA. Figure 9(b) shows that our 
algorithm is also more effective among all algorithms in terms of iterations. From the experimental 
results, our algorithm effectively solves the path planning of a single human in a complex 
environment. 

 

Figure 7. Comparison of path planning results under environment 1. (a) Path planning 
diagram of other algorithms. (b) Path planning diagram of the algorithm in this paper. 

 

Figure 8. Comparison of path planning results under environment 2. (a) Path planning 
diagram of other algorithms. (b) Path planning diagram of the algorithm in this paper. 
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Figure 9. Iterative diagram of the optimal path in maps 1 and 2. (a) Comparison of 
algorithm convergence in map 1. (b) Comparison of algorithm convergence in map 2. 

Table3. Algorithm comparison test results under different maps. 

Map Algorithm 
Optimal solution 
of the algorithm

iteration times 
Time 
consuming(sec) 

Number of 
turns 

1 

ACA 32.6240 16 6.86 11 
DLACA 28.6274 5 1.89 4 
EACA 28.6557 11 1.5 7 
RMACA 29.2100 23 1.299 5 

This paper 27.5622 6 2.63 3 

2 

ACA 60.5269 29 75.64 21 
DLACA 50.5269 9 5.5 12 
EACA 57.1261 44 5.27 33 
RMACA 51.8471 31 58.83 13 

 This paper 49.1306 10 4.89 7 

6.2. Multi-robot formation path planning experiment 

In previous experiments, we verified the application of the improved ant colony algorithm to 
single-robot path planning and validated the experimental property of the algorithm of complex 
environments. In this section, we conducted four formation path planning experiments on a triangular 
formation of three robots. In four experiments, we used a 20 × 20 grid environment as the working 
environment for multiple robots. The starting coordinates of the lead robot were set to (1.5, 1.5) and the 
coordinates of the target point were (19.5, 19.5), and the starting coordinates of the following two robots 
were (0.5, 1.5) and (1.5, 0.5), respectively, and the coordinates of the target point were (18.5, 19.5) 
and (19.5, 18.5). 
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Figure 10. The optimal formation path diagram under environment 1. (a) Path planning 
figure in map 1. (b) Convergence curve of the optimal path in map 1. 

 

Figure 11. The optimal formation path diagram under environment 2. (a) Path planning 
figure in map 2. (b) Convergence curve of the optimal path in map 2. 

 

Figure 12. The optimal formation path diagram under environment 3. (a) Path planning 
figure in map 3. (b) Convergence curve of the optimal path in map 3. 
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Figure 13. The optimal formation path diagram under environment 4. (a) Path planning 
figure in map 4. (b) Convergence curve of the optimal path in map 4. 

Table 4. Formation path results for multiple robots in different maps. 

Map Multi-Robot 
Initial path 
length 

Optimized path 
length 

Number of 
turns in 
formation

iteration times 
Algorithm 
runtime 

1 
leader ant 25.4558 25.4558

0 1 11.6934 follower ant1 25.4558 25.4558
follower ant2 25.4558 25.4558 

2 
leader ant 26.0416 25.9341

2 4 15.6042 follower ant1 26.0416 25.9341
follower ant2 26.0416 25.9341

3 
leader ant 28.9690 28.4417

7 6 18.032 follower ant1 28.9706 28.4443
follower ant2 28.9706 28.4443

4 
leader ant 27.7960 27.4256

4 10 14.9257 follower ant1 27.7990 27.5393
follower ant2 27.7990 27.4286

As shown in Figure 10, neither the leader ant nor the follower ants encountered any obstacles, and 
the ants moved directly from the starting point to the endpoint along a straight line. The formation 
maintains a triangular formation from beginning to the end, and the length of all paths is 25.4558, and 
the number of turns is 0. The trajectory diagram is shown in Figure 9(a), and the iterations forming the 
ant colony algorithm are shown in Figure 10(b). 

As shown in Figure 11, based on the first experiment, an obstacle is placed on the line between the 
starting and ending point of the leader ant. In the initial stage of the colony iteration, many leader ants 
move to the formation coordination grid around this obstacle before avoiding the obstacle, which 
generates more formation redundant nodes. To coordinate the formation, we consider both path length 
and the number of turns of the leader ant and the follower ants in the pheromone update of LF-ACO. 
Therefore, after several rounds of iterative optimization, to ensure the smoothness of the path, the 
leader ant finds a path that can maintain the formation as much as possible. So what we get is the 
formation path where the follower ant followed the leader ant to bypass the obstacle in advance. Due to 
the interference of the obstacles, the path length and the number of turns increased compared with the 
first experiment, and the optimal path was found only in the 4th iteration, as shown in Figure 11(b). 

As shown in Figure 12, based on the second experiment, several obstacles were placed in the path 
of the follower robot. The formation changes briefly, and the follower ants will wait for a while in front 
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of the obstacle to avoid collision problems. When the leader ant passes, the follower ants will move to 
the position of the leader ant at the last moment. After the followers bypassed the obstacle, the ants 
returned to their original formation and continued. Compared to the experiment 2, the environment 
complexity of this experiment increased, so the path length and number of turns for a single ant 
increased, and the algorithm converged only in the 7th iteration. 

As shown in Figure 13, narrow terrain was designed based on the third experiment. When only 
one robot can pass through the narrow environment, two follower robots will wait in front of the 
obstacle. After the leader robot passes the narrow passage, the follower robots will move to the 
position of the leader robot and pass the narrow passage one by one in a “one” shape, and then return to 
the set formation after all robots pass the narrow area. The iteration diagram of the algorithm is shown 
in Figure 13(b). 

The results of the ant colony formation algorithm in four scenarios are shown in Table 4. The 
experiments show that the leader-follower method designed in this paper enables all robots to maintain 
their formation and run safely and reach the target position without collision. When the robots 
encounter an obstacle, they can change their formation to avoid the obstacle and resume the formation 
after completing the obstacle avoidance task. 

6.3. Multi-robot formation experiments in special map environments 

The algorithm in this paper allows the formation path to perform exceptionally well in terms of 
smoothing performance, for example, by simply increasing the parameters associated with the number 
of turns or reducing weights of other factors, so that the number of route turns continues to decrease 
to achieve the desired effect. To verify the path advantage of LF-ACO in terms of formation 
smoothing characteristics, we conducted a particular 10 × 10 scale terrain for the experiment, and 
the results are shown in Figure 14 where Figure 14(a) is the formation path achieved based on the 
parameters in Table 2, and Figure 14(b) is the formation path obtained after adjusting the 
parameters 𝑢 in the table to 15 and 𝑏 to 5. The comparison results show that the former only 
pursues the shortest distance and chooses a highly tortuous path, while the latter avoids narrow and 
tortuous areas to achieve the best overall smoothness of the formation. However, the running time of 
the latter is three times longer than that of the former. The results of the ant colony formation algorithm 
in this scenario are shown in Table 5.  

 

Figure 14. Diagram of experimental results of special barrier map. (a) Formation path 
diagram without changing parameters. (b) Formation path diagram after changing 
parameters. 
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Table 5. Characteristic formation path results for multiple robots. 

Map Multi-Robot 
Initial path 
length 

Optimized path 
length 

Number of 
turns in 
formation

iteration times 
Algorithm 
runtime 

1 
Leader ant 11.8980 11.7663

3 —— 7.0497 Follower ant1 11.7214 11.6450
Follower ant2 11.8995 11.7678 

2 
Leader ant 16.0000 15.7961

1 —— 24.5374 Follower ant1 16.0000 15.7961
Follower ant2 16.0000 15.7961

6.4. Multi-robot formation path planning experiments with real cases 

 

Figure 15. Navigational map of a watershed of the Yangtze River in China. (a) E-map. 
(b) Binarization diagram. 

In the above experiments, we have only considered some limited map environments. To further 
extend the practical application value of our proposed LF-ACO, this experiment will investigate the 
path planning of USVs in conjunction with the Yangtze River basin of China in Figure 15(a). The 
green area in the figure represents land (impassable), and the blue and white areas represent feasible 
passable waters. Figure 15(a) is binarized to produce Figure 15(b) for the grid method modeling 
research that followed. 

Most of the current scholarly studies on path planning [14–20,35] have ignored the impact of 
map modeling accuracy on path planning. In this experiment, a class of map modeling methods 
based on grid granularity and obstacle expansion rates, and the formation path study is conducted. 
The path results and modeling parameters are shown in Table 6 and Figure 16. Figure 16(a),(b) show the 
multi-robot path simulation maps with the leader’s start point at (10.5, 3.5) and endpoint at (47.5, 46.5), 
with a grid granularity of 10 and an obstacle expansion rate of 20% and 5%, respectively. From the figure, 
we can see that the number of obstacles in Map 2 has become more than in Map 1, and the path space 
of LF-ACO search become smaller, making the formation path changed. Taking the leader as an 
example, the path length in the Map 2 scenarios increased by 4.73% compared with Map 1, but the 
number of turns decreased by 33.3%, and the algorithm search time was optimized. Figure 16(a),(b) 
show maps modeled with low accuracy, with significant differences from the original scene in 
Figure 15, keeping the expansion rate of obstacles constant and choosing a grid granularity of 5 and 3 to 
build Maps 3 and 4 of Figure 16(c),(d), respectively. The modeling accuracy of Map 3 is nearly twice that 
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of Map 2, and the preset locations of the start and endpoint of leader in Map 3 are nearly twice that 
of Map 2. Figure 16(c) shows that the paths have deviated, but all data are almost twice as large as 
Map 2. The grid size of Map 4 is further reduced compared with Map 3, the modeling accuracy is 
further improved, and the difficulty of the path search process is further increased, and the path 
length and the number of turns of the leader are increased by 61.9% and reduced by 118.2%, 
respectively. Although the higher precision modeling increases the search difficulty of our 
algorithm, a formation path that matches the natural environment can be obtained. 

Table 6. Formation path results for multiple robots with different accuracy maps. 

Map Multi-Robot path length 
Number of 
turns in 
formation

The starting 
and ending 
point of leader

Algorithm 
runtime 

Grid edge 
length 

Obstacle 
expansion 
rate

1 
Leader ant 63.8894 

18 
(10.5, 3.5) 
(47.5, 46.5) 

6.1803 10 20% Follower ant1 63.8595 
Follower ant2 63.8268 

2 
Leader ant 66.9142 

12 
(10.5, 3.5) 
(47.5, 46.5) 

5.7537 10 5% Follower ant1 66.8997 
Follower ant2 66.3180 

3 
Leader ant 136.3940 

24 
(20.5, 5.5) 
(95.5, 95.5) 

14.7877 5 5% Follower ant1 135.8450 
Follower ant2 135.4780 

4 
Leader ant 225.1826 

19 
(30.5, 6.5) 
(157.5, 159.5) 

34.9412 3 5% Follower ant1 226.9694 
Follower ant2 226.6619 

 

Figure 16. Multi-water robot surface navigation map. (a) 48 × 48 Scale Map. (b) 48 × 
48 Scale Map. (c) 97 × 97 Scale Map. (d) 161 × 161 Scale Map. 
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In the experiments, we found that with the improvement of modeling accuracy, the optimization 
search of the ant colony under large-scale maps became difficult. In Maps 1–3, the algorithm can find 
the optimal solution quickly, and the paths have good metrics. However, a poor path is often obtained 
when run in Map 4 at 161 × 161 scale. The formation path in Figure 16(d) is the optimal path we 
obtained after conducting more than ten experiments. Since we did not improve the ACO for 
large-scale maps, we did not obtain a 483×483 scale map path. In future research, we should further 
study intelligent optimization algorithms, such as the ant colony algorithm [20] and particle swarm 
algorithm [22], combined with accurate map modeling to expand the application of mobile robots 
under large-scale maps. 

6.5. Multi-robot formation path planning experiments in ROS environment 

We proposed an improved ant colony fusion Leader-Follower formation path planning 
algorithm. In this section, we constructed a ROS experimental platform to study the cooperative 
control strategies for multiple mobile robots, where the blue and red lines representing the x and y 
axes of the ROS world coordinate system, the green box is used to fix the ROS world coordinate 
system and ensure that the motion state of the robot is continuous. The platform consisted of three 
four-wheeled robot carts and an indoor environment, each equipped with sensors for path tracking, 
and a hybrid wireless LAN communication structure was used to achieve information interaction 
between multiple robots. In order to verify the effectiveness and rationality of the algorithm, a 
more realistic working environment was constructed, and the three mobile robots were subjected to 
experiment to verify the path tracking, formation keeping, and switching capabilities of the robots. 
The starting point of the leader robot is (-2m, -1.5m) and the ending point is (3m, 4m), and the 𝜑ௗ 
and 𝑙ௗ of the following robot 1 and the leader robot are 5/4 Π and 1, respectively, and the 𝜑ௗ and 
𝑙ௗ of the following robot 2 and the leader robot are -1/4 Π and 1, respectively. The parameters of 
the ant colony algorithm are shown in Table 2. The robot’s maximum speed is 1.2m/s, the 
maximum angular speed is 1.5rad/s, and the sampling period is 0.01s. 

The experiment starts with a global path planning of multiple robots in advance in this 
environment, followed by multiple robots running along the planned path from the starting position. 
When the leading robot encounters an obstacle in the tracking path, the leading robot turns at a 
more uniform speed. The following robots avoid the obstacle by switching their formation by 
tracking the position and angle of the leader and resume the original formation after the obstacle 
avoidance is completed. In this obstacle avoidance approach, we can see that the formation of 
robots changes, and each robot’s linear velocity and angle change significantly. The motion state 
information of the robots at different moments is shown in Figures 17–19. 
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Figure 17. Graph of ROS experimental results in complex environment. (a) t = 0s initial 
position. (b) t = 11s Obstacle avoidance process 1 (c) t = 20s Obstacle avoidance process 2. 
(d) t = 40s Obstacle avoidance process 3. (e) t = 48s Obstacle avoidance process 4. (f) t = 
64s Reach the target location. 

Figure 18. Linear velocity diagram. 
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Figure 19. Angel diagram.

7. Conclusions 

This study aims to find a new formation path planning method. A multi-robot collaborative path 
strategy based on the improved ant colony algorithm fused with the leader-follower method is 
proposed. We improve the distance factor heuristic function by amplifying the attraction of the target 
point to the ants when they transfer based on the greedy algorithm idea. We propose the smoothing 
factor heuristic function to solve the difficulty that most optimization algorithms need to remove the 
redundant turning points later to smooth the path. In addition, we establish a formation model for 
leader ants and follower ants to achieve cooperative obstacle avoidance based on the leader-follower 
formation control method and update the pheromone by the overall characteristics of the formation. 
To prevent the algorithm from falling into local optimal solutions, the maximum-minimum ant 
strategy is used to enhance the global search capability of the algorithm. Moreover, we performed a 
secondary smoothing optimization to improve the path quality, used a turning point optimization 
algorithm to remove the redundant turning points of the path, and performed circular smoothing by a 
dynamic tangent point algorithm. Finally, simulation experiments based on Matlab and ROS verify 
the effectiveness and practicality of the algorithm in this paper. 

In the subsequent research, we can also consider other optimization objective problems (e.g., 
energy consumption, time) for the ant colony algorithm to further investigate the multi-objective 
formation problem for multi-robot systems. In addition, we can use neural network algorithms to 
calculate the parameters and weights of each objective to make the planning more intelligent. 
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