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Abstract: In the case of an epidemic, the government (or population itself) can use protection for
reducing the epidemic. This research investigates the global dynamics of a delayed epidemic model
with partial susceptible protection. A threshold dynamics is obtained in terms of the basic reproduction
number, where for R0 < 1 the infection will extinct from the population. But, for R0 > 1 it has been
shown that the disease will persist, and the unique positive equilibrium is globally asymptotically
stable. The principal purpose of this research is to determine a relation between the isolation rate
and the basic reproduction number in such a way we can eliminate the infection from the population.
Moreover, we will determine the minimal protection force to eliminate the infection for the population.
A comparative analysis with the classical SIR model is provided. The results are supported by some
numerical illustrations with their epidemiological relevance.
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1. Introduction

Predicting the outbreak of contagious diseases becomes one of the attractive topics in modern math-
ematical biology due to its importance and its huge influence. Our world witness a huge and rapid de-
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velopment that leads to the appearance of numerous new infectious diseases as Ebola, HIV, COVID-19,
which makes it a necessity of applying different and new ways of public health interventions.

In the case of the appearance of a new disease in a specific region, one of the first measures is to
reduce the transmission by applying a restriction/confinement (full or partial), which helps sometimes
in eliminating the infection. This method is effective in the case of the small region of the spread of the
disease. This tool proved its effectiveness in reducing the spread of Ebola in Congo [1], and reducing
the increase of the newly discovered COVID-19 disease, where it gave the researchers sufficient time
to seek a new vaccine/treatment and saving millions of lives. The isolation of the susceptible persons
(or those who have a high risk for mortality due to this infection) can reduce the transmission of
the infection, even can lead to eliminating the infection. This measure can be applied directly by
the government through measures of restriction (partial or full), where for the partial restriction, the
government can allow for example the workers to move to the city or can do a restriction for a specific
category of population limited by age. Also, the isolation can be performed by the population itself
motivated by the fear of being infected. This case can happen for the case of infectious diseases with a
high risk of mortality as Ebola.
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Figure 1. Flux of system (1.1).

The isolation is only one side of numerous sides of the protection strategy. There are numerous
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methods for protecting the susceptible ones as vaccination which is more used. Vaccination is one of
the best lines to defend against some infectious diseases. As researchers gain a better understanding
of the causes of infection, the number of contagious diseases that can be prevented using vaccination
continues growing. Many vaccines are provided in childhood. But adults still need routine vaccina-
tions to avoid certain infections, such as flu Medicines and tetanus. Some drugs provide short-term
protection against certain germs. For example, taking an antiparasitic medicine can prevent you from
getting infected with malaria in the case of traveling or living in a high-risk area. Also, using protection
materials that stand against being infected, for example using masks, washing hands which proved its
usefulness in our recent fight against the pandemic of COVID-19 disease [2, 3, 4, 5] beside these see
[6, 7, 8].

In the scientific field, numerous scholars used mathematical models for protecting the susceptible
populations, where the main interest was on analyzing the effect of vaccination (mostly imperfect
vaccination) we cite for instance the papers [9, 10, 11, 12]. The basic reproduction number (which is
denoted by R0) is the principal tool that has been used by scientists to predict the speed of the spread of
disease in the population sample. Generally, for R0 < 1 the infection will extinct from the population,
and for R0 > 1, the epidemic will persist in the population. In the case of the outbreak of an epidemic
(R0 > 1), the protection can help in reducing the infection. The main question is to determine the
minimal protection force in such a way as to reduce R0 below 1. Therefore, our present research is set
to try to respond to the following questions:

• Can the susceptible partial to reduce the epidemic until extinction?. If yes, what it the minimal
force required?
• What it the importance of the duration of this protection?

For responding to these questions we formulate a mathematical model. Based on some assumptions
on the protected category. We assume that the protection is not permanent, it will last for a duration
of σ. In this duration, the protected person is not able to get infected (due to getting vaccinated or this
person wears a mask or simply has been isolated). After finishing the protection duration (σ) there
is a proportion 1 − ε of persons in a protected zone that renew the protection (uses a second vaccine
or continue using masks and protection materials), and the proportion ε of the protected category will
become susceptible again and has a possibility for being infected. Based on these assumptions we
formulate our mathematical model as:

dS
dt = Λ − βS (t)I(t) − (µ + α)S (t) + εα exp−µσ S (t − σ),
dP
dt = αS (t) + (1 − ε)αe−µσS (t − σ) − αe−µσS (t − σ) − µP(t),
dI
dt = βS (t)I(t) − (δ + µ + η)I(t),
dR
dt = δI(t) − µR(t),

(1.1)

where S (t), P(t), I(t), R(t) are respectively the densities of the susceptible individuals, protected in-
dividuals, infected persons, and recovered persons at time t. Λ is entering flux into S-class per unit of
time, µ is the natural death coefficient. The rate β is the probability (per unit time) for transmission of
the infection. δ is recovering coefficient. η is infection related death rate. α is the susceptible protection
rate per unit of time. ε is the probability of quitting the isolation. The term εαe−µσS (t − σ) stands for
the density of individuals that entered into the protected class and finished its protection duration at
time t and leaves the isolation and becomes a susceptible again. The probability of surviving until t
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is e−µσ. The term (1 − ε)αe−µσS (t − σ) highlights the density of the protected persons that renew the
protection as second vaccination after finishing the first vaccination. The dynamical flux of the model
(1.1) is highlighted in Figure 1. After some simplification we get the system

dS
dt = Λ − βS (t)I(t) − (µ + α)S (t) + εαe−µσS (t − σ),
dP
dt = αS (t) − εαe−µσS (t − σ) − µP(t),
dI
dt = βS (t)I(t) − (δ + µ + η)I(t),
dR
dt = δI(t) − µR(t).

(1.2)

The initial conditions are written in the form

S (σ) = φ1(σ), P(σ) = φ2, I(σ) = φ3, R(σ) = φ4, σ ∈ [−σ, 0], (1.3)

with φ = (φ1, φ2, φ3, φ4) ∈ C([−σ, 0],R+) × R+ × R+ × R+, we also suppose that φ1 . 0.
To mention that the delay term εαe−µσS (t−σ) can be replaced by a a constant term εαP(t). This last

cannot provide any information about the duration of protection, which is highly important mostly in
the case of vaccination, also the isolation, where many countries get some serious economic losses due
to the lock down and isolation, which proves the importance of the delay term instead of the constant
term.

Our main interest is to determine the global proprieties of (1.2), where we will show that the be-
havior of this system is completely deduced by comparing R0 with 1, where for R0 < 1 the infection
will extinct from the population, and for R0 > 1 the infection will persist. Moreover, and motivated
by the epidemiological background, we will suppose that the infection will spread in the absence of
the public health intervention (protection), which can be indicated in our model by replacing α with
0, wherein this case our model will provide the results of the classical SIR model. Indeed, we will
suppose that RS IR

0 > 1, where RS IR
0 is the corresponding SIR model basic reproduction number. In this

case, our role is to provide the minimal protection force denoted αmin that will lead to the extinction
of the infection for our system (2.1). Moreover, in [13] it is obtained that the protection can generate
a Hopf bifurcation, wherein in our case we will show that even in the presence of time delay we will
have a threshold dynamics. For more reading concerning the threshold dynamics for delayed systems
we refer as example [14, 15, 16, 17]. Based on the above-mentioned perspectives, we organize our
research in the following structure:

In section 2, we provide some preliminary results regarding the well-posedness of the system (2.1)
and providing the equilibrium points of (1.2), and R0. Next, we will prove the global stability of
the disease-free equilibrium for R0 < 1. Section 4 is set to show the global stability of the endemic
equilibrium for R0 > 1. In section 5, we will determine the required public health intervention for
reducing the value of R0 below one, and studying the influence of the protection-related coefficient on
the behavior of the solution. The discussion section is set to explain the required possible measures for
reducing the infection and which public health intervention measure is more proper.

2. Preliminaries and existence and uniqueness of positive equilibrium

In this section, we show some results regarding the well-posedness of the solution of (1.2). We start
with the following theorem:
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Theorem 2.1. Assume that (S (t), P(t), I(t),R(t)) is the solution of (1.2), hence, S (t) > 0, P(t) >

0, I(t) > 0, R(t) > 0 for all finite t ≥ 0. Moreover, we consider the following set

Ω =

{
(S , P, I,R), S ≥ 0, P ≥ 0, I ≥ 0, R ≥ 0, S + P + I + R ≤

Λ

µ

}
,

positively invariant set.

Proof. We proceed a similar procedure as in [18]. We assume that S (t) = 0, then S ′(t) = Λ +

εαe−µσS (t − σ) > 0, which means that S (t) > 0 for all t ≥ 0. the second equation of (1.2) yields
I(t) = I(0)e

∫ t
0 S (κ)−(µ+η+δ)dκ > 0. The positivity of I implies the positivity of R. Now focusing on the

second part of the proof. We suppose that N(t) = S (t) + P(t) + I(t) + R(t), hence the sum of the three
equation of (1.2) yields N′(t) = Λ − µN(t) − ηI(t), then N(t) ≤

(
N(0) − Λ

S 0

)
e−µt + Λ

S 0
≤ max{Λ

µ
}, which

means that S (t), P(t), I(t), R(t) remain bounded, then the solution always exist for all t ≥ 0 and remain
in Ω.

�

Clearly, the first and the third equations are independent of P and R, and these last are respectively
determined by S , and I. Hence, we can omit the P and R equations from the model (1.2). Hence, the
dynamics of (1.2) can be deduced by analyzing the system:

dS
dt = Λ − βS (t)I(t) − (µ + α)S (t) + εαe−µσS (t − σ),
dI
dt = βS (t)I(t) − (δ + µ + η)I(t).

(2.1)

The corresponding basic reproduction number is:

R0 =
βΛ

(α + µ − αεe−µσ)(µ + δ + η)
.

It is not hard to show that (2.1) has the disease free equilibrium (DFE) E0 = (S 0, 0) which always
exists, and for R0 > 1 there exist a unique endemic equilibrium (EE) E∗ = (S ∗, I∗), where

S 0 =
Λ

α + µ − αεe−µσ
, S ∗ =

µ + δ + η

β
, I∗ =

(α + µ − αεe−µσ)(R0 − 1)
β

.

remark This value is obtained using next generation matrix. Further, it can be obtained by using
local stability of the DFE or the existence condition of EE.

3. Global stability of the disease free equilibrium

In this section, we employ a Lyapunov function to obtain the global stability of the DFE E0 for
R0 < 1. The obtained results are resumed in the following theorem:

Theorem 3.1. E0 is globally asymptotically stable for R0 < 1 and unstable for R0 > 1.

Proof. At first, we show the local stability of the DFE for R0 > 1. The local stability can be deduce by
analyzing the roots of the following characteristic equation

(λ − β(S 0 − S ∗))(λ + (µ + α) − εαe−µσe−λσ) = 0, (3.1)
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Obviously, if S 0 > S ∗ (which equivalent to R0 > 1) then E0 is unstable. Now, we suppose that R0 < 1,
hence, the first root of (3.1) is λ = β(S 0 − S ∗) < 0. The others are the root of

f (λ) = λ + µ + α − εαe−µσe−λσ,

we seek for roots of the form λ = x + iy with x, y ∈ R and x > 0. Hence:

|εαe−µσe−λσ| = εαe−µσe−x,

< εαe−µσ,
< µ + α,

< |λ + µ + α|,

which is impossible. Thus, for R0 < 1, E0 is locally asymptotically stable. To complete the proof of
Theorem 3.1, we need to prove the global attraction for R0 < 1 using Lyapunov function. We consider
the Lyapunov function V(I(t)) = 1

2 I2(t). Hence, for values of t ≥ σ such that V(I(t + s)) = V(I(t)) with
s ∈ [−σ, 0], we calculate V ′(t) along (2.1) in the following manner

V ′(t) = βS (t)I2(t) − (µ + η + δ)I2(t),
≤ βS 0I2(t) − (µ + η + δ)I2(t),
≤ βI2(t)S ∗(R0 − 1),
≤ 0.

For R0 < 1 and Lyapunov-Razumikhin type theorem (see as example [19]), we deduce that I(t) tends
to 0 as t tends to ∞. Using system (2.1), we deduce that S (t) goes to S 0 as t tends to ∞. The proof is
achieved. �

4. Global stability of the endemic equilibrium

In this section, we employ a Lyapunov function to obtain the global stability of E∗ whenever exists.
The obtained results are resumed in the following theorem:

Theorem 4.1. E∗ is always globally asymptotically stable whenever exists for any value of time delay
σ.

Proof. At first, we study the local stability of E∗ for R0 > 1. The local stability can be deduce by
analyzing the roots of the characteristic equation∣∣∣∣∣∣ λ + βI∗ + (µ + α) − εαe−µσe−λσ βS ∗

−βI∗ λ

∣∣∣∣∣∣ = 0,

which equivalent to:
Φσ(λ) = 0, (4.1)

with
Φσ(λ) = λ2 + λ

[
βI∗ + µ + α − εαe−µσe−λσ

]
+ β2S ∗I∗.

Clearly, Φσ(0) = β2S ∗I∗ > 0, thus λ = 0 is not a solution of Φσ(λ) = 0. For σ = 0, Φ0(λ) is expressed
as:

Φ0(λ) = λ2 + λ (βI∗ + µ + α − εα) + β2S ∗I∗.
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Obviously, Φ0(λ) = 0 has two roots with negative real part. It is well known that delay can generate
instability of a stable equilibrium, hence, we seek for the roots of the form iy, y > 0. Thus, Φσ(λ) = 0
can be expressed as:

0 = −y2 + iy
[
βI∗ + µ + α − εαe−µσ(cos(yσ) − i sin(yσ))

]
+ β2S ∗I∗.

Which equivalent to {
εαe−µσy sin(yσ) = −y2 + β2S ∗I∗,
εαe−µσy cos(yσ) = (βI∗ + µ + α) y.

(4.2)

By squaring the two sides of the equations of the system (4.2), then we add them, to obtain

ε2α2e−2µσy2 = (−y2 + β2S ∗I∗)2 + (βI∗ + µ + α)2y2, (4.3)

can be written as

(y2)2 + A0y2 + (β2S ∗I∗)2 = 0, (4.4)

with
A0 = −2β2S ∗I∗ + (βI∗ + µ + α)2 − ε2α2e−2µσ,

= −2β2S ∗I∗ +
(

Λ
S ∗

+ εαe−µσ
)2
− ε2α2e−2µσ,

= −2β2S ∗I∗ + 2 Λ
S ∗
εαe−µσ +

(
Λ
S ∗

)2
.

For having positive roots of (4.4) in y2, we must guarantees the positivity of the following quantity:

A1 = A2
0 − 4(β2S ∗I∗)2,

=

[
−2β2S ∗I∗ + 2 Λ

S ∗
εαe−µσ +

(
Λ
S ∗

)2
]2
− 4(β2S ∗I∗)2,

=
(
−2β2S ∗I∗ + A0

) [
2 Λ

S ∗
εαe−µσ +

(
Λ
S ∗

)2
]
.

For having real roots of (4.4) in y2 we must have A0 > 2β2S ∗I∗ > 0. This means A0 > 0 hence all the
coefficient of eq. (4.4), which leads to deduce that (4.4) has no positive roots in y2. Thus, EE is locally
asymptotically stable. Next, we show the global attraction using Lyapunov function. We consider the
following function:

V(t) = V1(t) + V2(t), (4.5)

with

V1(t) = S ∗g
(

S (t)
S ∗

)
+ I∗g

(
I(t)
I∗

)
, V2(t) = εαS ∗e−µσ

∫ σ

0
g
(

S (t−θ)
S ∗

)
dθ,

where g is Volterra function g(w) = w − 1 − ln w, w ∈ R+. Note that V(t) is nonnegative defined and
has a global minimum at the positive equilibrium (S ∗, I∗). The time derivative of V(t) is:

dV1
dt =

(
1 − S ∗

S (t)

)
dS
dt +

(
1 − I∗

I(t)

)
dI
dt ,

=
(
1 − S ∗

S (t)

)
(Λ − βS (t)I(t) − (µ + α)S (t) + εαe−µσS (t − σ)) +

(
1 − I∗

I(t)

)
(βS (t)I(t) − (µ + δ + η)I(t)) .

Mathematical Biosciences and Engineering Volume 19, Issue 1, 209–224.



216

Using the equilibrium propriety Λ = βS ∗I∗ + (µ + α − εαe−µσ)S ∗ we get

dV1
dt =

(
1 − S ∗

S (t)

)
(βS ∗I∗ + (µ + α − εαe−µσ)S ∗ − βS (t)I(t) − (µ + α)S (t) + εαe−µσS (t − σ))

+
(
1 − I∗

I(t)

)
(βS (t)I(t) − (µ + η + δ)I(t)) ,

= −
µ

S (t) (S (t) − S ∗)2 + βS ∗I∗ + αS ∗ − εe−µσαS ∗ − αS (t) − βS (t)I(t) + βS ∗I(t)
+εαe−µσS (t − σ) − βS ∗I∗ S ∗

S (t) − αS ∗ S ∗
S (t) + εe−µσαS ∗ S ∗

S (t)
+αS ∗ − εα S ∗

S (t)e
−µσS (t − σ) + βS (t)I(t) − βS ∗I(t) − βS (t)I∗ + βS ∗I∗,

= −
µ

S (t) (S (t) − S ∗)2 + βS ∗I∗
(
2 − S (t)

S ∗
−

S ∗
S (t)

)
+ αS ∗

(
2 − S (t)

S ∗
−

S ∗
S (t)

)
+εαS ∗e−µσ

(
−

S (t−σ)
S (t) − 1 + S ∗

S (t) +
S (t−σ)

S ∗

)
.

Now we compute dV2
dt

dV2
dt = d

dtαe−µσS ∗

∫ σ

0
g
(
S (t − θ)

S ∗

)
dθdσ,

= S ∗αe−µσ d
dt

∫ σ

0
g
(
S (t − θ)

S ∗

)
dθ.

Note that
d
dt

∫ σ

0
g
(
S (t − θ)

S ∗

)
dθ =

∫ σ

0

d
dt

g
(
S (t − θ)

S ∗

)
dθ,

= −

∫ σ

0

d
dθ

g
(
S (t − θ)

S ∗

)
dθ,

= − g
(

S (t−θ)
S ∗

)∣∣∣∣σ
0
,

= −
S (t−σ)

S ∗
+

S (t)
S ∗

+ ln
(

S (t−σ)
S (t)

)
,

thus, we get
dV2
dt = S ∗εαe−µσ

(
−

S (t−σ)
S ∗

+
S (t)
S ∗

+ ln
(

S (t−σ)
S (t)

))
,

= −αεe−µσS (t − σ) + αεe−µσS (t) + S ∗αεe−µσ ln
(

S (t−σ)
S (t)

)
.

Now, we sum dV1
dt and dV2

dt , we get:

dV
dt = dV1

dt + dV2
dt ,

= −
µ

S (t) (S (t) − S ∗)2 + βS ∗I∗
(
2 − S (t)

S ∗
−

S ∗
S (t)

)
+ αS ∗

(
2 − S (t)

S ∗
−

S ∗
S (t)

)
+εαS ∗αe−µσ

(
−

S (t−σ)
S (t) − 1 + S ∗

S (t) +
S (t−σ)

S ∗

)
− εαe−µσS (t − σ) + αεe−µσS (t)

+S ∗αεe−µσ ln
(

S (t−σ)
S (t)

)
,

= −
µ

S (t) (S (t) − S ∗)2 + (βS ∗I∗ + αS ∗)
(
2 − S (t)

S ∗
−

S ∗
S (t)

)
+ εαS ∗e−µσ

(
−

S (t−σ)
S (t) − 1 + S ∗

S (t) +
S (t−σ)

S ∗

)
Then we get

dV
dt = −

µ

S (t) (S (t) − S ∗)2 + βS ∗I∗
(
2 − S (t)

S ∗
−

S ∗
S (t)

)
+ αS ∗

(
2 − S (t)

S ∗
−

S ∗
S (t)

)
+εαS ∗e−µσ

(
−2 +

S (t)
S ∗

+ S ∗
S (t)

)
+εαS ∗e−µσ

(
1 + ln S (t−σ)

S (t) −
S (t−σ)

S (t)

)
,

= −
µ

S (t) (S (t) − S ∗)2 − (βS ∗I∗ + αS ∗ − εαS ∗e−µσ)
(
2 − S (t)

S ∗
−

S ∗
S (t)

)
− εαS ∗e−µσg

(
S (t−σ)

S (t)

)
.
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Note that

βS ∗I∗ + αS ∗ − εαS ∗e−µσ = βS ∗I∗ + αS ∗ (1 − εe−µσ) ,
> 0.

Thus dV
dt ≤ 0.

We let Γ be the largest invariant subset of {(S (t), I(t))| dV(t)
dt = 0}. Now, let us determine the set Γ.

Note that dV(t)
dt = 0, leads to S (t) = S ∗, by replacing this result into 1st eq. of (2.1) we get I(t) = I∗ for

all t. Hence, Γ = {E∗}. By the help of Theorem 1.2 and the LaSalle invariance principle [10], every
solution of (2.1) goes to E∗. The proof is achieved. �

Figure 2. The global dynamics of the system (1.2) in two cases R0 < 1 and R0 > 1 for the
values:
λ = 2, µ = 0.1, β = 0.08, η = 0.7, δ = 0.1, α = 0.05, ε = 0.1, and the initial conditions
S (θ) = 1 + 0.2 cos(θ), θ ∈ [−σ, 0], I(0) = 3, P(0) = 2, where for the left hand figure we use
β = 0.08 and the right hand figure β = 0.04
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Figure 3. The impact of α on the final size of the populations for the values:
λ = 2, µ = 0.1, β = 0.08, η = 0.7, δ = 0.1, ε = 0.1, and the initial conditions S (θ) =

1 + 0.2 cos(θ), θ ∈ [−σ, 0], I(0) = 3, P(0) = 2, and multi values of α. Note that the minimal
protection force is αmin = 0.0840.

Figure 4. The impact of σ on the final size of the populations for the values:
λ = 15, µ = 0.1, β = 0.08, η = 0.7, δ = 0.1, ε = 0.1, α = 0.5, and the initial conditions
S (θ) = 1 + 0.2 cos(θ), θ ∈ [−σ, 0], I(0) = 3, P(0) = 2, and multi values of σ.
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Figure 5. The impact of ε on the final size of the populations for the values:
λ = 15, µ = 0.1, β = 0.08, η = 0.7, δ = 0.1, σ = 10, α = 0.5, and the initial conditions
S (θ) = 1 + 0.2 cos(θ), θ ∈ [−σ, 0], I(0) = 3, P(0) = 2, and multi values of σ.

Figure 6. The impact of σ and α on the final size of the infected population and R0 for the
values:
λ = 25, µ = 0.8, β = 0.08, η = 0.7, δ = 0.1, ε = 0.1.
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5. Required public health intervention

In this section, we are interested in discussing the effect of protection, and its influence on reducing
the infection in the population. We denote by RS IR

0 is the basic reproduction number for the classical
SIR model, where RS IR

0 =
βΛ

µ(µ+δ+η) . The main goal is to suppose that RS IR
0 > 1 in the case of the absence

of the protection (means α = 0), and determining the sufficient protection force for reaching R0 < 1.
Also, for α > 0 we have:

R0 =
βΛ

(α + µ − αεe−µσ)(µ + η + δ)
,

= RS IR
0

µ

α + µ − αεe−µσ
,

< RS IR
0

Hence, the protection will help in reducing the speed of the outbreak of the disease. Further, we study
the sensitivity of R0 with respect to α, σ, and 1 − ε. By a straightforward computation we get:

∂R0

∂α
= −

(1 − εe−µσ)R0

(α + µ − αεe−µσ)
< 0,

∂R0

∂σ
=

−αεµe−µσ

(α + µ − αεe−µσ)
R0 < 0,

∂R0

∂(1 − ε)
= −

∂R0

∂ε
= −

(αe−µσ)R0

(α + µ − αεe−µσ)
< 0,

hence, we conclude that α, σ, and 1 − ε have a respectively negative impact, positive impact, negative
impact on the value of R0. The negative (resp. positive) impact means that the value of R0 decreases
(resp. increase) when the variable goes larger. For epidemiological perspectives, we presume that
RS IR

0 > 1, this means that the public health interventions are needed, so, we need to determine the min-
imal protection effort for reducing R0 below 1. It has been proved previously that R0 = RS IR

0
µ

α+µ−αεe−µσ ,
which is needed to be reduced below 1. This means that

RS IR
0

µ

α + µ − αεe−µσ
< 1.

Using RS IR
0 > 1, we get

α > αmin :=
µ(RS IR

0 − 1)
1 − εe−µσ

.

Sometimes, it is hard for some governments to achieve the required protection force α = αmin to
reduce the value of R0 below 1. In this case, these countries can reduce R0 until an adequate value
(larger than 1). Note that in this case, we get the global stability of E∗. Our next objective is to
determine the sensitivity of EE with respect to α, σ, and 1 − ε. Note that in this case, we presume that
R0 > 1 (for guaranteeing the existence of the E∗). By a straightforward calculation, we get

∂S ∗
∂α

= 0,
∂S ∗
∂σ

= 0,
∂S ∗

∂(1 − ε)
= 0,

hence α, σ, and 1 − ε have no influence on the final size (in the case of R0 > 1) of the susceptible
population. Similarly, the derivative of I∗ with respect to the previous variable is
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∂I∗
∂α

= 1
β

(
(1 − εe−µσ)(R0 − 1) + (α + µ − αεe−µσ)∂R0

∂α

)
,

= − 1
β

(1 − εe−µσ) < 0.

Next we calculate
∂I∗
∂σ

= 1
β

(
µαεe−µσ(R0 − 1) + (α + µ − αεe−µσ)∂R0

∂σ

)
,

= −µεαe−µσ < 0

Finally, we calculate the last derivative:

∂I∗
∂(1 − ε)

= −
∂I∗
∂ε

= −
1
β
αe−µσ < 0.

Now, passing on the epidemiological meaning of the above-mentioned calculations. In fact, for R0 > 1,
we obtained that I∗ is decreasing in α, hence we conclude that augmenting the quantity of the protected
susceptible will lead to a decrease of the final size of the infected population, and α has no impact

on the final size of the susceptible population (due to
∂S ∗
∂α

= 0). Similarly, we get that increasing the
density of re-protected individuals will decrease also the final size of the infected population I∗ and no
impact is noted on S ∗. For the time delay σ, it has also a negative impact on the final size of the infected
population as it is been highlighted in Figure 4. Hence the considered parameters α, σ, (1− ε) reduce
the speed of the spread of the infectious disease, and it can be considered as a control of the outbreak
of the disease, and it can be used as a public health intervention. The principal result of this section
is obtaining the minimal effort for reducing R0 below 1, which is expressed by α = αmin. This result
can be seen clearly through Figure 3, where for α = 0.09 > αmin = 0.084 we get the extinction of the
disease, which is the desired result. For more explanation, we provide the detailed discussion on the
figures:
Figure 2: In this figure we illustrated the principal results of theorems 3.1 and 4.1, where for R0 < 1
the disease free equilibrium is globally stable, and for R0 > 1 the endemic equilibrium is globally
asymptotically stable.
Figure 3: Here, the impact of the protection force on the spread of the disease. More precisely, by
augmenting the value of the protection rate α the infection will reduce remarkably, and can lead to the
extinction of the disease (which has been notice for α = 0.09). This shows the huge importance role of
the susceptible protection in the public health intervention.
Figure 4: In this figure, the impact of the duration of the susceptible protection on the spread of the
infection. More precisely, by augmenting the value of the protection rate σ we can remark that the
infection will vary, and cannot lead to the extinction of the disease as it is been remarked for the rate
α. This shows that the duration of the protection will influence the outbreak of the disease but will not
help in getting rid of it.
Figure 5: In this figure, the impact of ε on the spread of the infection. More precisely, by augmenting
the value of the protection rate ε we can remark that the infection will reduce, and cannot lead to the
extinction. However, the final size of the susceptible population is not concerned by this reduce, where
ε has no influence on the susceptible final size. This shows that the re-protection rate will influence the
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outbreak of the disease but will not help in getting rid of it.
Figure 6: Here, we investigated the influence of some parameters on the basic reproduction number,
where it is remarked that the rate α has the most remarkable influence on the spread of the disease,
which leads us to deduce that the protection force α is the best manner for controlling the epidemic.

6. Concluding and remarks

We dealt in this research with a delayed epidemic model with susceptible protection. Our interest is
to provide a comparative analysis between the classical SIR epidemic model and our model (1.2) for
distinguishing the influence of protection on the outbreak of the disease, and showing if the protection
can be used as public health intervention or not. It has been shown that (2.1) has a threshold dynamics
in terms of R0, where for R0 < 1, DFE is globally stable, and for R0 > 1, E∗ is globally stable (see
Figure 2). These results are proved to be used in the principal part of our research (section 5). We
presumed that in the absence of the protection (α = 0) the infection persists in the population (which
means that RS IR

0 > 1). The main purpose of the government is to use minimal protection effort denoted
αmin in such a way the corresponding basic reproduction number to the model (1.2) becomes less than 1

(R0 < 1). Indeed, the minimal protection force is αmin :=
µ(RS IR

0 − 1)
1 − εe−µσ

which it has a direct relationship

with the RS IR
0 . To mention that increasing the RS IR

0 will lead to an increase in the required force of
protection αmin for guaranteeing the stability of the DFE (means R0 < 1).

Moreover, using Figure 4, and Figure 5 it has been noticed that the reproduction rate 1 − ε and
the duration of the protection has a small impact on the dynamics of the solution comparing with the
protection forceα. This means that the government should focus on augmenting the protection forceα
instead of the reproduction proportion. Furthermore, using Figure 6 we conclude that α and σ have a
huge impact on R0 and final size of the infected persons (I∗), and have a high possibility for reducing
the speed of the epidemic or even stop it.

Also, the recent studies proved that it is probable for a recovered person to become a susceptible
person again (as COVID-19 disease), which can be modeled by a SIRS epidemic model. So, the role of
protection in the case of the SIRS epidemic model is an important subject of interest of the upcoming
works, where we will provide it extensive attention.
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