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Abstract: This paper proposed an end-to-end road crack segmentation model based on attention 

mechanism and deep FCN with generative adversarial learning. We create a segmentation network by 

introducing a visual attention mechanism and residual module to a fully convolutional network(FCN) 

to capture richer local features and more global semantic features and get a better segment result. 

Besides, we use an adversarial network consisting of convolutional layers as a discrimination network. 

The main contributions of this work are as follows: 1) We introduce a CNN model as a discriminate 

network to realize adversarial learning to guide the training of the segmentation network, which is 

trained in a min-max way: the discrimination network is trained by maximizing the loss function, while 

the segmentation network is trained with the only gradient passed by the discrimination network and 

aim at minimizing the loss function, and finally an optimal segmentation network is obtained; 2) We 

add the residual modular and the visual attention mechanism to U-Net, which makes the segmentation 

results more robust, refined and smooth; 3) Extensive experiments are conducted on three public road 

crack datasets to evaluate the performance of our proposed model. Qualitative and quantitative 

comparisons between the proposed method and the state-of-the-art methods show that the proposed 

method outperforms or is comparable to the state-of-the-art methods in both F1 score and precision. 

In particular, compared with U-Net, the mIoU of our proposed method is increased about 3%~17% 

compared with the three public datasets.  
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1. Introduction  

It is well known that the improvement of road facilities can help the economic growth and provide 

convenience for people's travel. However, the service life of the road is limited, and various road 

diseases will appear as time goes by due to the causes of nature and vehicle crushing. If the road 

diseases cannot be repaired in time, the degree of damage and the potential risk of traffic accidents 

will inevitably increase. 

 As one of the most common road diseases, road crack detection is essential for road maintenance. 

Figure 1 shows some examples of road crack. In the past, the task is mainly relied on maintenance 

workers to inspect the road surface. However, the manual detection is low efficiency, has a high labor 

cost, and tends to miss some non-obvious road cracks. With the rapid development of computer vision 

and artificial intelligence, the traditional manual way has been gradually alternated by automatic road 

crack detection. Compared with the rough location detection of road crack, pixel-level road crack 

segmentation can further evaluate the degree of road damage and help formulate an accurate 

maintenance plan. 

 

Figure 1. Examples of road crack. 

 Compared with the crack detection at the region level, segmenting road crack at the pixel level is 

more valuable to analyze the damage degree of road surface and help to make a more reasonable 

maintenance scheme. However, accurately segmenting the road crack at the pixel level is not trivial 

due to the complexity and diversity of road cracks, such as slender shapes, heavy noises, discontinuous 

edges, complex backgrounds, and various scales. This paper proposes a road crack segmentation 

method based on attention-based deep FCN with adversarial training. First, we use FCN as a 

segmentation network and add visual attention mechanism and residual structure to the segmentation 

network. Then we introduce a CNN as the discrimination network to guide the training of the 

segmentation network. The discrimination network is trained with two inputs: the original image 

masked by the predicted image generated from the segmentation network and the original image 

masked by the groundtruth. The segmentation network and the discrimination network are trained 

alternatively. The discrimination network is trained to maximize the loss resulting from the CNN 

feature differences between the segmented image and the groundtruth, while the segmentation network 
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is trained with gradients passed by the discrimination network to minimize the loss function. The 

capability of both the segmentation network and discrimination network has improved alternatively 

after the adversarial training process. When the discrimination network fails to identify the inputted 

original image is masked by the predicted mask or groundtruth, i.e., the Nash equilibrium is achieved, 

the optimal segmentation network is obtained. The overall network structure of this article is shown in 

Figure 2. 

 

Figure 2. Overall network structure. 

The main contributions of this paper are summarized as follows: 

 1) Inspired by adversarial training, we use six layers of CNN as a discriminate network and use 

the same loss function to ensure that a discriminate network only passes the segmentation network's 

gradient. And finally, the model of segmentation can be most optimal and accurately segment the road 

crack in different scales and shapes and complex road conditions; 

 2) We add more convolutional layers to extract more features based on a fully convolutional 

neural network. Meanwhile, with the help of an attention mechanism, our model can capture richer 

features and get more refined, smooth, and accurate pixel-level segmentation results; 

 3) Our proposed model is trained on whole images with 128 × 128 image resolution and gets a 

satisfactory result in a relatively short training time. We analyze the experimental results on three public 

datasets qualitatively and quantitatively to demonstrate the effectiveness of the proposed method. 

The rest of this paper is organized as follows: In the second section, we briefly review the related 

work of crack detection; In the third section, we provide the details of the proposed model; In the 

fourth section, we present and discuss the experimental result on three public datasets; In the last 
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section, we conclude this paper. 

2. Related work 

The crack segmentation methods can be categorized as the traditional method and the deep-

learning-based method. In recent years, deep learning technology has been applied in image 

segmentation. Since it can automatically extract useful features at multiple scales and significantly 

improve performance, deep learning-based methods have become the mainstream for crack 

segmentation. 

2.1. Traditional crack detection method 

The early crack method mainly relied on thresholding [1,2] that has low robustness. To overcome 

this problem, some research combined gray values [3], the standard deviation of neighboring pixels [4] 

to avoid the influence of noise. Besides, some researchers proposed Minimal Path Selection (MPS) [5,6], 

Minimum Spanning Tree (MST) [7,8], Crack Fundamental Element (CFE) [9,10] to enhance the 

continuity of crack. The minimum path-based method is to find the shortest path length between two 

specific nodes and to extract the structure similar to the curve in the image. Chen et al. [11] used the 

shortest path for crack detection but a high error detection rate. Although considerable efforts had been 

made, the pixel threshold-based methods are still difficult to get satisfied segmentation results of 

complex cracks with bad road conditions. The texture analysis-based method [12,13] firstly captures 

the gray-scale spatial distributions to characterize the texture pattern in the image and then uses texture 

patterns to predict if the pixel belongs to a crack or normal road surface. However, this method cannot 

capture local information and cannot well segment the irregular cracks. The wavelet transform 

method [14,15] assumed that a crack in structure would change the structure's natural frequencies and 

vibration, so it can be used for detecting the crack location and depth. Although the wavelet-based 

method can avoid the influence of noise in the image, it cannot work well for discontinuous cracks. 

Another traditional method is saliency detection [16], which aims to identify image salient areas by 

fusing multi-scale image features. Wei et al. [17] used saliency detection to detect road cracks, but it 

was difficult to obtain a complete and continuous crack.  

2.2. Deep learning-based crack detection methods 

In recent years, the deep learning method has been applied in road image segmentation and has 

become mainstream image processing. The deep learning method can automatically extract target 

features at multiple scales and significantly improve performance compared to the traditional image 

process methods. Dan et al. [18] firstly proposed a Convolutional Neural Network (CNN)-based 

method for semantic segmentation, which uses the sliding window to identify each crack pixel 

concerning its neighboring pixels around them. However, if there are errors in initial labels, it may 

have poor predictions and high computation costs. Cha et al. [19] proposed a crack segmentation 

method that used a deep CNN combined with sliding windows for the cracks with different scales. The 

method is robust to noise and can work well for complex road conditions. Then Cha et al. [20] proposed 

a crack segmentation method by combining Regional Proposal Network (RPN) and Faster Regional 

CNN (R-CNN), in which the RPN network is used for target extraction, and the Faster R-CNN is used 

to locate the extracted target. Liu et al. [21] proposed an end-to-end deep hierarchical CNN to segment 
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the road crack, consisting of a fully connected neural network and a deep supervision network. Long 

et al. [22] proposed the Fully Connected Network (FCN) by replacing the full connection layer in CNN 

with a convolutional layer. As a result, both efficiency and accuracy of pixel-level segmentation are 

simultaneously improved a lot. Islam et al. [23] proposed an FCN-based crack detection method that 

used an encoder for feature extraction and a decoder for pixel-level classification. FCN showed that 

different stages of convolutional layers, but the coarse feature maps of the top layer are not enough to 

obtain the refined segmentation result. Based on the FCN model, many types of segmentation networks 

were proposed for medical image segmentation. In recent years, the U-Net network has been widely 

used in the field of medical image segmentation. Ronneberger et al. [24] firstly proposed U-Net and 

applied it to medical image segmentation. With data augmentation and appropriate loss function, the 

U-Net can realize end-to-end training and get a good prediction with fewer train images. Oktay et al. [25] 

proposed a model for medical image segmentation based on U-Net by combining with an attention 

mechanism, significantly improving segmentation accuracy. Inspired by the successful application of 

U-Net in medical image segmentation, Liu et al. [26] firstly used the U-Net to detect concrete cracks. 

The trained model can accurately identify the cracks in images. Compared with FCNs, it can obtain 

better results but with fewer training sets. Badrinarayanan et al. [27] proposed SegNet consisted of an 

encoding network and a decoding network. The multi-scale deep architecture was developed by using 

pooling indices for up-sampling and finally realized pixel-level classification. Zou et al.[28] proposed 

DeepCrack model based on SegNet can capture the line structures through an end-to-end trainable 

deep convolutional neural network. With larger-scale feature maps and more holistic representations, 

the model can detect more detail of crack. Liu et al.[29] proposed DeepCrack based on FCN and used 

DSN to supervise features of each convolution layer. And it also refines the prediction results by using 

guided filtering and Conditional Random Fields(CRFs). The residual network [30,31] can help solve 

gradient disappearance and gradient explosion in deep neural networks. Huyan et al.[32] proposed 

CrackU-Net, which achieved pixel-level crack detection through convolution, pooling, transpose 

convolution, and concatenation operations. This model was based on U-Net and did not change the 

structure too much. What the difference is that a transposed convolution layer was introduced into 

CrackU-Net. Fan et al.[33] proposed an ensemble of convolutional neural networks based on 

probability fusion for automated pavement crack detection and measurement. The network can identify 

the structure of small cracks with raw images. Song et al.[34] established a multi-scale dilated 

convolution module and introduced an attention module to refine the features further. These researches 

demonstrate that the attention mechanism is useful for extracting image features. But there is still 

plenty of room for improvement of precision and F1-score. The Generative Adversarial Network 

(GAN) was first proposed by Goodfellow et al. [35], and it has been applied for medical image 

segmentation [36–39]. Gao et al.[40] proposed a GAN-based method for segmenting crack of concrete 

pavement, which combines segmentation network CU-Net and FU-Net with GAN. Many types of 

research of GAN indicate that combining the segmentation network with the GAN principle can 

improve the accuracy and robustness of the segmentation network.  

3. Methodology 

3.1. Segmentation network of the model 

3.1.1. Structure of segmentation network 
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The segmentation network structure is illustrated in Figure 3. The segmentation network is a fully 

convolutional encoder-decoder structure that uses 6-layer convolution to extract image features. A 

multi-scale skip-connection structure is used in up-sampling. The input image size is adjusted to 

128 × 128 × 3, and the encoder uses convolutional layers with a convolution kernel size of 7, 5, 4, 

respectively, and stride 2 to perform down-sampling to extract image features. The decoder uses global 

convolution with a convolution kernel size of 3, 7, 9, 11, respectively, and stride 1. At the same time, 

a residual convolution module is added after each convolution layer with kernel sizes 1, 3, 1, 

respectively. The channels of each convolutional layer in the encoder are 64, 128, 256, 512, 1024, and 

2048, respectively. Based on FCN, a visual attention mechanism is added in the segmentation 

network's upsampling to preserve more image details, while the residual structure is added after each 

convolution layer to make the network deeper to get more features.  

 

Figure 3. Structure of Segmentation network. 

3.1.2. Attention mechanism 

Attention mechanism was firstly proposed by Bahdanau et al. [41] for machine translation. In 

recent years, it has been applied in computer vision and Natural Language Processing (NLP), similar 

to the visual attention that humans only pay attention to the part they are interested in of the image. 

Adding the attention mechanism into the deep neural network can make the network pay more attention 

to the current target information, and the influence of irrelevant information appears insignificant. 

The attention mechanism can be expressed in the following form: 

 
𝑨 = 𝑁(𝑿) (1) 

 
𝑭𝐴 = 𝑨⨂𝑭 (2) 

where 𝑿 refers to the input, 𝑵(𝑿) refers to the output of attention network denoted as 𝑨; 𝑭 refers 

to the feature matrix obtained by the input 𝑿 through the convolutional neural network; ⨂ denotes 

matrix concatenation operation on 𝑨  and 𝑭 ; 𝑭𝑨  is the feature matrix result from 𝑨⨂𝑭 . The 

diagram of the attention mechanism is illustrated in Figure 4. 
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Figure 4. Diagram of attention mechanism. 

3.1.3. Residual module 

The residual module can deepen the network to capture richer feature information and avoid the 

network's degradation problem as the layers increase. The residual structure is shown in Figure 5, 

which consists of three layers of convolution with convolution kernel sizes of 1, 3, and 1, respectively, 

using the Leaky Relu activation function after each layer of convolution. 

 

Figure 5. Diagram of residual structure. 

Our proposed method can capture richer local features and more global semantic features by 

adding the above modules. 

3.2. Discrimination network of the model 

3.2.1. Classic GAN 

The Generative Adversarial Network (GAN) is composed of a generator and a discrimination 

network. The principle of GAN is that: the generator generates an image as close as possible to the 

real image, while the discrimination network discriminates whether the input is real or fake. The 

adversarial training between the generator and discrimination network can continuously enhance their 

abilities until Nash equilibrium. The GANs' objective loss function is defined as follows: 

 min
𝜃𝐺

max
𝜃𝐷

ℒ(𝜃𝐺 , 𝜃𝐷) = 𝔼𝑥∼𝑃𝑑𝑎𝑡𝑎
[log 𝐷(𝑥)] + 𝔼𝑧∼𝑃𝑧

[log (1 − 𝐷(𝐺(𝑧)))]   (3) 

where, 𝜃𝐺  and 𝜃𝐷  represent the parameters for the generator and discrimination network, 

respectively. 𝑥 is a real image from an unknown distribution 𝑃𝑑𝑎𝑡𝑎, and 𝑧 is a random input for the 

generator G, drawn from a probability distribution 𝑃𝑧 . The objective of GANs is to minimize the 

generator's loss function and maximize the discrimination network's loss function. The former makes 

the generator generate the predicted label as close as the groundtruth and later makes the discrimination 
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network cannot accurately distinguish the input is predicted label or groundtruth. 

3.2.2. Adversarial training 

Adversarial training is proposed by Goodfellow et al.[42]. By using adversarial training not only 

can it improve the robustness of the model but also can improve the ability of generalization capability. 

In a word, adversarial training is used adversarial samples, which is produced by adding a noise 𝑟𝑎𝑑𝑣 

to the original input to the trained model compared with the original input. The model can be expressed 

as follows: 

 𝑚𝑖𝑛
𝜃

− log 𝑃(𝑦 ∣ 𝑥 + 𝑟𝑎𝑑𝑣; 𝜃) (4) 

where, y is the label, 𝜃  is the model parameters. The theory of adversarial training is further 

elaborated by Madry et al. [43]. To optimize the adversarial training theory, Madry proposed a new 

formula which is called Min-Max. The Min-Max is defined as follows: 

 𝑚𝑖𝑛
𝜃

𝔼(𝑥, 𝑦) ∼ 𝒟[ 𝑚𝑎𝑥
𝑟𝑎𝑑𝑣∈𝒮

𝐿(𝜃, 𝑥 + 𝑟𝑎𝑑𝑣, 𝑦)] (5) 

where L is the loss function, 𝒮 is the range of values of 𝑟𝑎𝑑𝑣.  

As the formula shows, the Min-Max has two parts: the max is called 'attack', which is to find 

disturbance 𝑟𝑎𝑑𝑣 and maximize the loss, and the min is called 'defense' which minimizes the outer 

loss and gets model parameters with the highest robustness. 

3.2.3. Discrimination network 

To guide the training of the segmentation network, we formulate an adversarial network Inspired 

by Min-Max. The network includes six convolutional layers with a kernel size of 3, 7, 9, 11, 

respectively. The inputs of the discrimination network are the label image and the predicted image 

segmented by the segmentation network. The discrimination network is trained to maximize the loss 

and pass gradients to the segmentation network when the segmentation network is trained to minimize 

the loss. The structure of the discrimination network is illustrated in Figure 6.  

 

Figure 6. Structure of discrimination network. 

The discrimination network has two inputs: the original image masked by the predicted image 
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generated from the segmentation network and the original image masked by the groundtruth. The loss 

function of the discrimination network is defined as follows: 

 min
𝜃𝑆

max
𝜃𝐷

ℒ(𝜃𝑆, 𝜃𝐷) =
1

𝑁
∑ ℓ𝑚𝑎𝑒 (𝑓𝐷(𝑥𝑛 ∘ 𝑆(𝑥𝑛)), 𝑓𝐷(𝑥𝑛 ∘ 𝑦𝑛))

𝑁

𝑛=1

 (6) 

where, ℓ𝑚𝑎𝑒  refers to Mean Absolute Error (MAE), 𝑥𝑛  denotes the input image, 𝑦𝑛  denotes 

groundtruth, and 𝑆(𝑥𝑛) denotes the output prediction map of the input image from the segmentation 

network, 𝑥𝑛 ∘ 𝑆(𝑥𝑛) refers to pixel-level multiplication of origin image and predicted image, and 𝑥𝑛 ∘

𝑦𝑛 refers to pixel-level multiplication of origin image and groundtruth. What's more, The ℓ𝑚𝑎𝑒 is 

formulated as: 

 ℓ𝑚𝑎𝑒(𝑓𝐷(𝑥), 𝑓𝐷(𝑥′)) =
1

𝐿
∑|𝑓𝐷

𝑖 (𝑥) − 𝑓𝐷
𝑖 (𝑥′)|

𝐿

𝑖=1

 (7) 

where, 𝐿 denotes the number of discrimination network layers, and 𝑓𝐷
𝑖 (𝑥) denotes the feature map of 

image 𝑥 at layer 𝑖 of the discrimination network. The pseudo algorithm of the proposed model for 

crack segmentation is provided as follows: 

Algorithm: Road crack segmentation with generative adversarial learning. 

1: Input: Original image 

2: Output: Predicted image 

3: for the number of iterations do 

4:   for k steps do 

5:     Predicted image 𝑆(𝑥𝑛) from Segmentation network 

6:     Original image 𝑥𝑛 from training dataset 

7:     Label image 𝑦𝑛 from training dataset 

8:     Compute the Mean Absolute Error ℓ𝑚𝑎𝑒 

9:     Update the discrimination network by ascending its stochastic gradient 

10:   end for 

11:   Update the Segmentation network by ascending its stochastic gradient 

12: end for// Training of Segmentation network aim at getting the smallest value of the loss, 

training of discrimination network aim at getting the biggest value of the loss 

4. Experimental results and analysis 

4.1. Datasets 

We evaluate the performance of our method on three public datasets: Crack Forest Dataset(CFD) 

[44], GAPs384, and CRACK500, respectively. CFD includes 118 road crack images with 480×320 

resolution; The GAPs384 includes 509 different resolutions road crack images. The CRACK500 

dataset includes 1896 road crack images with 648×484 resolution. All datasets provide the groundtruth 

for each image. Some examples of these three datasets are illustrated in Figure 7. All images for 

training, evaluation, and testing are uniformly resized to the size of 128 × 128. The proposed model is 

trained and evaluated on the above three separate datasets. All three data sets are divided into training 
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and validation sets in a 7:3 ratio.  

 

Figure 7. Example of datasets. 

4.2. Experimental setting 

The experimental environment is Intel(R) Core(TM) i5-9400F CPU, 6GB memory, Geforce 

GTX1660S GPU, Windows 10 operating system, program based on Pytorch. During the experiment, 

the epoch is set to 300; batch size is set to 8; shuffle is set to True; the initial learning rate is set to 

0.0002 reduced by the decay rate 0.5 after every 50 epochs until the learning rate is 0.00000001; Adam 

optimization algorithm betas is set as (0.5, 0.999). 

4.3. Evaluation criteria 

The commonly used criteria, i.e., Precision, Recall, F1 Score, mIoU (Mean Intersection over 

Union), are used for evaluation and comparison. The Precision and Recall are computed as follows: 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (8) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (9) 

where TP, FN, and FP refer to True Positive, False Negative, and False Positive, respectively. 

F1-Score is a criterion used in statistics to measure the accuracy of the binary classification model, 

which is calculated as a weighted average of precision and recall and is defined as: 

 𝐹1 =
2 × 𝑃 × 𝑅

𝑃 + 𝑅
=

2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 (10) 
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where P and R refer to Precision and Recall, respectively.  

mIoU is a common criterion for semantic segmentation evaluation, aiming to calculate the 

intersection ratio between true and predicted labels. mIoU is computed as follows: 

 𝑚𝐼𝑜𝑈 =
1

𝑘 + 1
∑

𝑇𝑃

𝐹𝑁 + 𝐹𝑃 + 𝑇𝑃

𝑘

𝑖=0

 (11) 

where k refers to the number of samples. 

4.4. Experimental results comparison 

4.4.1. Qualitative results 

The experimental results of our proposed network on the CFD, GAPs384, and CRACK500 public 

datasets are shown in Figure 8. 

 

Figure 8. Experimental results of our method. 

As is shown in the above images, the predicted results on CFD have smooth and consistent cracks. 
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But when the crack is too complex, like the last image that has too many horizontal and vertical 

interlaced shapes, the model can detect the main crack, but the prediction is not as detailed enough as 

the label image. When the model is tested on GAPs384, it can segment the insignificant crack which 

is not labeled in the groundtruth, as is shown in the first image. The predicted images on CRACK500 

also show that the model can produce the segmentation results which look better than the groundtruth. 

The above experience results demonstrate that the model has a good ability to segment road crack images. 

4.4.2. Quantitative comparisons 

To demonstrate the effectiveness of our method for pixel-level crack segmentation, we compare 

the experimental results with other state-of-the-art methods under the criterion of Precision, Recall, 

and F1 Score, and the quantitative results are listed in Table 1. 

Table 1. Quantitative comparison on different datasets. 

Model 
CFD GAPs384 CRACK500 

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score 

Nguyen et al. [45] 0.8567 0.9132 0.8745 - - - 0.6954 0.6744 0.6895 

David et al. [46] 0.8517 0.9155 0.8727 - - - 0.6811 0.6629 0.6788 

Weng et al. [47] 0.8682 0.8873 0.8776 0.6980 0.7055 0.7022 0.7565 0.7871 0.7715 

Proposed-method 0.8746 0.8955 0.8849 0.7720 0.7542 0.7630 0.9653 0.8197 0.8865 

The quantitative comparisons demonstrate that the accuracy of our method outperforms or is 

comparable to the state-of-the-art methods. For example, the performance of our method on the 

CRACK500 dataset got the best result than other methods. 

4.5. Effect of attention mechanism 

To demonstrate the effect of the attention mechanism, we compare the performance of the 

proposed network with and without the attention module in Table 2. 

Table 2. Comparison of the effect of attention mechanism. 

Dataset CFD GAPs384 CRACK500 

Proposed 

method 

With 

attention 

Without 

attention 

With 

attention 

Without 

attention 

With 

attention 

Without 

attention 

Precision 0.8746 0.6849 0.7720 0.7205 0.9653 0.9063 

Recall 0.8955 0.8427 0.7542 0.7399 0.8197 0.8104 

F1-score 0.8849 0.7557 0.7630 0.7300 0.8865 0.8557 

mIoU 0.6754 0.6073 0.6619 0.6395 0.8296 0.7478 

The quantitative comparisons demonstrate that the accuracy of our method outperforms or is 

comparable to the state-of-the-art methods. Compared with the network without the attention module, 

the improvement is noticeable: the mIoU of three datasets is increased by about 7%, 3%, and 17%, 

respectively. 



9681 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 9669–9684. 

4.6. Effect of Generative Adversarial Guided Learning 

To demonstrate the effect of generative adversarial guided training in the proposed method, we 

use our proposed method, U-Net and Attention-based U-Net, to conduct comparative experiments on 

three public datasets CFD, GAPs384, and CRACK500, respectively, under the same experimental 

environment and settings. We use mIoU and F1 scores as experimental evaluation criteria. As is shown 

in Table 3, it is obvious that generative adversarial guided learning can improve the accuracy compared 

with a single segmentation network. The comparative experiments prove that generative adversarial 

learning plays a significant role in improving the accuracy of road crack segmentation. 

Table 3. Local experiments results compared with U-Net and Attention U-Net. 

Method Evaluation Criteria CFD GAPs384 CRACK500 

Proposed method 
mIoU 0.6754 0.6619 0.8296 

F1-scre 0.8849 0.7630 0.8865 

U-Net 
mIoU 0.5253 0.1766 0.7543 

F1-scre 0.6698 0.6789 0.6058 

Attention U-Net 
mIoU 0.4549 0.2519 0.5244 

F1-scre 0.6094 0.3833 0.6527 

4.7. Discussion 

Qualitative and quantitative comparisons of experimental results demonstrated that the proposed 

method achieves good performances on different datasets. The reasons are that: 1) we perform the 

crack segmentation under the guidance of generative adversarial learning framework, the adversarial 

mechanism makes us can obtain an optimal segmentation network even if the number of training 

samples is relatively small; 2) we combine the residual modular and attention mechanism in the 

segmentation network, which can capture richer information, preserve more detail of crack and obtain 

refined segmentation results. Although the groundtruth of the crack is discontinuous and rough, the 

segmentation results are still robust, continuous, and smooth, which is close to the crack in reality. 

Although the experimental results demonstrate that the generative adversarial learning framework and 

the attention mechanism positively affect crack segmentation, the segmentation result may miss some 

crack details if the road crack pattern is highly complicated. 

5. Conclusion 

Road crack detection plays a significant role in road maintenance and is a challenge in computer 

vision due to the complexity and diversity of crack and the condition of the road. This paper tackled 

the challenge problem of pixel-level road crack segmentation by proposing attention residual U-Net 

with generative adversarial guided learning. The segmentation network can capture richer and 

important information by adding the residual modular and attention mechanism. Under the generative 

adversarial learning framework, the optimal segmentation network can be obtained and can achieve 

high performance. We verified the performance of this model on three public road crack data sets, and 

our method outperforms or is comparable to the state-of-the-art methods. Experimental results show 

that the proposed model can effectively and accurately achieve high-quality crack segmentation by 
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improving the segmentation network through adversarial training. 

The network proposed in this paper has achieved idea results for crack detection, but further 

research work is needed in the following aspects: The crack width is not measured in this paper. Future 

research work will focus on measuring and evaluating road damage ratings. This paper only performs 

crack detection on static images, but future research will realize real-time video crack detection. 
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