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Abstract: Honeybees have an irreplaceable position in agricultural production and the stabilization
of natural ecosystems. Unfortunately, honeybee populations have been declining globally. Parasites,
diseases, poor nutrition, pesticides, and climate changes contribute greatly to the global crisis of honey-
bee colony losses. Mathematical models have been used to provide useful insights on potential factors
and important processes for improving the survival rate of colonies. In this review, we present various
mathematical tractable models from different aspects: 1) simple bee-only models with features such as
age segmentation, food collection, and nutrient absorption; 2) models of bees with other species such
as parasites and/or pathogens; and 3) models of bees affected by pesticide exposure. We aim to review
those mathematical models to emphasize the power of mathematical modeling in helping us under-
stand honeybee population dynamics and its related ecological communities. We also provide a review
of computational models such as VARROAPOP and BEEHAVE that describe the bee population dy-
namics in environments that include factors such as temperature, rainfall, light, distance and quality
of food, and their effects on colony growth and survival. In addition, we propose a future outlook on
important directions regarding mathematical modeling of honeybees. We particularly encourage col-
laborations between mathematicians and biologists so that mathematical models could be more useful
through validation with experimental data.
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1. Introduction

Honeybees, Apis mellifera, are essential for maintaining biodiversity in undisturbed ecosystems,
and for the production of economically valuable agricultural crops worldwide [1]. One third of the
food that we consume relies on pollination by bees for its production. Pollination by honeybees is
valued between $15 and $20 billion annually in the US [2]. If higher-order industrial sectors that rely
on the production of honey bee pollinated crops are included, the value of honey bees is an additional
US$10.3 to $21.1 billion [3]. The work of Dr. vanEngelsdorp and Dr. Meixner [4] suggests that 1) al-
though the global number of bees has been increased in the past 50 years, the geographical differences
are huge even within the same region. And 2) the number of colonies in Europe and North America
are both decreased. For the past 10 years, beekeepers have lost between 30–45% of their colonies
annually with the most recent losses in 2019–2020 exceeding 40% (https://beeinformed.org/
wp-content/uploads/2020/06/BIP_2019_2020_Losses_Abstract.pdf). Although there are
more and more lost colonies, the reason why the number has not actually been decreased is that the
beekeepers rapidly replace the lost colonies [4]. And beekeepers may adopt cold storage to help the
colony survive over the winter smoothly [5]. These treatment methods are accompanied by relatively
large costs in the context of apiculture. Therefore, the loss of the colony is a global economic, agricul-
tural, and ecological crisis.

There is no single factor responsible for colony losses. Colonies die at different times of year due to
a combination of stressors such as pesticides, lack of food sources and malnutrition, parasites such as
Varroa destructor, Nosema ceranae, and viruses/pathogens including bacterial diseases. Varroa mites
are considered to be one of the primary causes of colony losses worldwide [6–8]. Varroa can cause
colonies to perish because parasitism compromises the bee’s immune system and reduces the longevity
of adult bees parasitized during development. Varroa also transmits and activates several viruses dur-
ing feeding including Acute Bee Paralysis Virus (ABPV), Deformed Wing Virus (DWV) and Israeli
Acute Paralysis Virus (IAPV). These viruses differ in their symptoms and virulence, but all reduce
brood and adult bee survival and suppress colony growth. Colonies that are heavily infested eventually
collapse from the combination of parasitism and disease especially overwintering in the U. S., Canada
and Europe [4, 7, 9]. To prevent colony losses, beekeepers currently are applying miticides 5–7 times
each year. Even with these measures, overwintering colony losses can exceed 30% [10]. Colonies also
can be lost from Nosema infections. Nosema is a microsporidium and because of reduced metabolic
capacities, relies heavily on its host to furnish energy for growth and reproduction [11, 12]. Nosema
infects adult bees and damages the midgut causing reduced nutrient absorption. Infected adult bees
show symptoms of nutritional stress such as reduced larval feeding, earlier on set of foraging and re-
duced longevity of adult bees [13, 14].

In addition to stress from pathogens and poor nutrition, colonies also can be lost from the impacts of
pesticides. Pesticides can be toxic to honey bees due to their effects on the nervous system. However,
pesticides also can have sublethal effects that exert stress that eventually lead to colony losses. For
example, ingredients in pesticides can suppress the immune system, thus opening the way for parasitic
infections and viral diseases [15–18].

The first mathematical model that incorporated colony population dynamics driven by biological
and environmental factors was the BEEPOP model developed by DeGrandi-Hoffman et al. (1989) [19].
Other honeybee models followed (see review paper [20]) and can be classified as colony ‘models’ ad-
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dressing within-hive colony dynamics (e.g., see [19, 21–24] ), ‘Varroa models’ exploring interaction
between honeybees and Varroa mites (e.g., see [25–29]), also were developed as were ‘foraging mod-
els’ simulating the dynamics of honeybees collecting nectar and pollen to sustain colony growth (e.g.,
see [30–34]).

There is an increasing recognition of the importance of developing mathematically tractable models
to obtain useful insights on ecological processes and factors that lead to colony losses. In this paper,
we provide a review of recent progress in mathematical modeling of honeybee colony population dy-
namics since the review by [20]. We summarize existing models, and discuss their potential to identify
combinations of factors leading to colony losses. Our review will focus on 1) honeybee only models
(Section 2) with age and/or food/nutrient components; 2) honeybee-parasites and/or virus interactions
models (Section 3); 3) models with effects from pesticides (Section 4); and 4) computational models
(Section 5). We end by suggesting future directions for mathematical model development and appli-
cations. For convenience, in the Appendix, we also provide the equations of all models and tables that
provide features of mathematical models that we review.

2. Honeybee population systems

Honeybees are social insects that live in colonies consisting of a single egg laying queen, zero to
several thousand reproductive males, and tens of thousands of reproductively sterile female workers,
and 10,000–30,000 eggs, larvae and pupae (brood) [35–37]. Figure 1 provides a typical life cycle of a
worker honeybee. Colonies rear brood and expand their populations in the spring and summer. Brood
rearing declines in the fall and colony populations decrease in preparation for overwintering [38]. The
population of workers in a colony is divided into two major temporal/behavioral subcastes: hive bees
that remain in the colony and foragers that collect resources such as nectar and pollen from flowering
plants, water to cool the hive, and plant resins (propolis) that has antibiotic properties and serves as part
of the colony-level immune system) [39]. In general, tasks that worker bees perform are based on their
age. The youngest adult workers (0–3 days old) clean cells in the brood nest, and usually by day-three
begin feeding larvae. When workers are 10–14 days old, they participate in nest construction, food
processing, and guarding the entrance of the nest. In the third or fourth week of life, workers transition
to foraging outside the nest.

Though the dynamics of a colony population are complex, models that incorporate simple rules
can reveal biologically relevant mechanics that drive population growth. For example, Dennis and
Kemp (2016) [23] proposed and studied a deterministic, one-state-variable model that formulates the
recruitment and loss rates of colony members in terms of density dependent social components as
follows:

dA
dt

=
λA
θ + A︸︷︷︸

new workers with cooperative efforts

− (
αβ

β + A
+ µ)A︸          ︷︷          ︸

mortality with cooperative efforts

, (2.1)

where A is the number of adult bees, λ is the upper maximum as adult population grows, and θ is the
number of bees at which new worker population is half of maximum. The mortality function ( αβ

β+A + µ)
sets a minimum of per-individual mortality rate (µ) and a maximum of per-individual mortality rate
(µ + α) for small adult population values; and β represents social effects on bees mortality. The model
(2.1) incorporates cooperative effects in both birth and mortality terms that lead to strong Allee effects
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Figure 1. The life cycle of an worker bee.

where there exists a critical size in adult bee numbers, below which mortality is greater than recruit-
ment, with ensuing colony loss. The model suggests that the strong Allee effect may be the ultimate
cause of colony death.

Kang et al. (2016) [40] developed a simple model that includes the cooperative effects in the hon-
eybee colony as follows:

dH
dt

=
rH2

K + H2︸   ︷︷   ︸
new bees with cooperative efforts in colony

− dH︸︷︷︸
mortality

, (2.2)

where H is the honeybee population, r indicates daily egg-laying rate of queen,
√

K indicates colony
size where brood survival rate is half maximum, d indicates mortality rate of bees. The model (2.2)
used a Holling-Type III functional response ( H2

K+H2 ) to model collaborative efforts of hive and foraging
bees to guarantee the survival of newborns. This approach is motivated by the work of Kang et al.
(2011) [41] and Real (1977) [42]. We would like to point out that Dr. Eberl in his 2010 work [43]
introduced a sigmoidal Hill function ( Hn

Kn+Hn ) to model eclosion. Both work of Kang et al. (2016) [40]
and Eberl et al. (2010) [43] have been applied in new research on honeybee population dynamics (e.g,
see [22,29,44–48,50]). The nonlinear term H2

K+H2 in model (2.2) can generate a saddle-node bifurcation
in the system such that it induces an Allee threshold above which the colony can survive and below
which the colony collapses. The model (2.2) has been extended to include age-structure [22], and the
interactions with mites [29, 48, 49] and viruses [40].

The models (2.1) and (2.2) focus on colony populations without age-structure [23, 40]. Honeybees
go through different stages, thus it seems to be more realistic to propose and study population models
with age-structure. In the next subsection, we will review honeybee models with age-structure, and the
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related models with the food resources and/or nutrition factors.

2.1. Models with age/stage structures

In this subsection, we will review two types of compartmental models with age structure: the models
with delay terms that include varied brood stages and the compartment models without delay.

Motivated by biological stages of honeybee illustrated in Figure 1 and the honeybee-only model
(2.2) from Kang et al. (2016) [40], Sweeney et al. (2019) [49] proposed the model (2.3) that includes
brood larvae Bl, brood pupae Bp, and hive bees H as below:

dBl

dt
=

rH2

K + H2 + αBl︸            ︷︷            ︸
new larvae

− dlBl︸︷︷︸
natural death

−
e−dlτl rH(t − τl)2

K + H(t − τl)2 + αBl(t − τl)︸                               ︷︷                               ︸
maturation into pupae stage

,

dBp

dt
=

e−dlτl rH(t − τl)2

K + H(t − τl)2 + αBl(t − τl)︸                               ︷︷                               ︸
maturation from larvae stage

− dpBp︸︷︷︸
natural death

−
e−dpτp rH(t − τl − τp)2

K + H(t − τl − τp)2 + αBl(t − τl − τp)︸                                             ︷︷                                             ︸
maturation to adult

,

dH
dt

=
e−dpτp rH(t − τl − τp)2

K + H(t − τl − τp)2 + αBl(t − τl − τp)︸                                             ︷︷                                             ︸
maturation to adult

− dhH︸︷︷︸
natural death

,

(2.3)

whose dynamics are similar to the model (2.4) by Chen et al. (2020) [22]:

dB
dt =

rH2

K + H2 + αB︸           ︷︷           ︸
new brood production

− e−dbτ
rH(t − τ)2

K + H(t − τ)2 + αB(t − τ)︸                                   ︷︷                                   ︸
maturation from brood to adult

−dbB,

dH
dt = − e−dbτ

rH(t − τ)2

K + H(t − τ)2 + αB(t − τ)︸                                   ︷︷                                   ︸
maturation from brood to adult

− dhH︸︷︷︸
mortality

,

(2.4)

where B indicates brood stages, H indicates adult stage, r indicates daily egg-laying rate of queen,
√

K
indicates colony size at which brood survival rate is half maximum, α is the regulation effects of brood,
and db and dh indicate mortality rate of brood and adults, respectively. Both models assume that the
new brood rH2

K+H2+αB or rH2

K+H2+αBl
is positively regulated by adults and negatively regulated by brood B or

Bl.
Both the three component model (2.3) and the two component model (2.4) exhibit strong Allee

effects generated from collaborative effects of colony members, and colony survival when the egg-
laying rate is above certain threshold. The dynamics comparison suggests that the additional age
structure may not affect dynamics much. To further explore the effects of age structure, both age
structure models are compared to the adult bee only model (2.2). It seems that the model with or
without age structure has equilibrium dynamics, and additional age structure components in models
may not contribute much in population dynamics. However, age structure may play an important role
when additional mortality factors such as parasitism are included in the model. We will come back to
this topic in Section 3.

Egg laying by the queen varies with season and colony conditions [29]. Chen et al. (2020) [22]
included a variable egg laying to Messan’s data-based model [29, 50], and used the following periodic
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function (r(t)) (2.5) for queen’s egg-laying rate:

r(t) = r0 ∗ (1 + cos(
2π(t − ψ)

γ
)), (2.5)

where τ indicates the time in the juvenile period; ψ is the time of the maximum laying rate; and r0 is
the baseline egg-laying rate. The study in Chen et al. (2020) [22] shows that seasonality may inhibit
the survival of bee colonies, and at times prevent it from collapse.

Khoury et al. (2011) [21] developed a compartmental ordinary differential equation (ODE) model
to determine the impact of forager death rates on colony growth and survival. The model includes age
polyethism and division of labor where the adult worker population is divided into hive bees H and
foragers F:

dH
dt = L ∗

H + F
H + F + ω︸             ︷︷             ︸
eclosion

−H ∗
[
α − σ

( F
F + H

)]
︸                     ︷︷                     ︸

recruitment to foraging

,

dF
dt = H ∗

[
α − σ

( F
F + H

)]
︸                     ︷︷                     ︸

foraging recruitment

− d f F︸︷︷︸
mortality

.
(2.6)

This model assumes that the eclosion term L ∗ H+F
H+F+ω

(i.e., adult emergence from pupal state [51])
approaches the maximum egg laying rate L as colony size gets large; and α−σ

(
F

F+H

)
is the recruitment

function, α indicates the maximum rate that hive bees will become foragers when there are no foragers
existent in the colony. Foragers can revert back to workers through social inhibition which is modelled
by σ

(
F

F+H

)
indicating that too many foragers can reduce the rate of hive bees becoming foragers.

There is a critical threshold forager death rate beneath which colonies regulate a stable population size,
and above which population decline and colony failure is predicted. The model includes recruitment
of hive bees into the forager population when forager death rates are high. The recruitment of hive
bees simulates precocious foraging that ultimately shortens the lifespan of adult bees, and if sustained
for a long enough period, causes the colony to die. Their model provides more detailed observation of
honeybee population dynamics, that the model shows that the adults switch between hives and foragers
due to supply and demand, and provides a theoretical framework for experimental investigation of the
colony failure. Therefore, much of the studies after this are based on the theories of Khoury et al.
(2011) [21] and expanding their models to further study the reasons for the failure of honeybee colony
caused by more factors [30, 32, 52, 88, 89, 98, 107, 108, 110].

Based on the model above (2.6), Booton et al. (2017) [52] proposed a hive-forager model with
external stress to investigate the impact on the regulatory processes of recruitment to the forager class,
social inhibition and the laying rate of the queen.

dH
dt = L ∗

H + F
H + F + ω︸             ︷︷             ︸
eclosion

−H ∗
[
α − σ

( F
F + H

)]
︸                     ︷︷                     ︸

recruitment

−H ∗
µ

H + F + φ︸             ︷︷             ︸
stress

−H ∗ γ(H + F)︸           ︷︷           ︸
limiting function
at high densities

,

dF
dt = H ∗

[
α − σ

( F
F + H

)]
︸                     ︷︷                     ︸

recruitment

− d f F︸︷︷︸
mortality

− F ∗
µ

H + F + φ︸             ︷︷             ︸
stress

,
(2.7)

where H is the in-hive worker population and F is forager population. The model (2.7) predicts
that constant density-dependent stress acting through an Allee effect on the hive can result in sudden
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catastrophic switches in dynamical behaviour and the eventual collapse of the hive. In addition, the
model suggests that increased stress levels can be counteracted by a higher egg laying rate, lower levels
of forager recruitment or lower levels of natural mortality of foragers. Increasing social inhibition
cannot maintain the colony under high levels of stress.

2.2. Honeybee population dynamics with food/nutrition effects

The interactions between food and population dynamics in honeybee colonies are very complex.
Food collection is affected by the forager population size and food availability in the colony and the
environment outside the hive. If food resources are limited in the colony, hive bees (H) will be re-
cruited to become foragers (F) (precocious foragers). Precocious foraging shortens the lifespan of
adult workers and affects the age structure of the colony and the amount of brood it can rear. These
dynamics were captured in a model by Khoury et al. (2013) [30] when they extended their model (2.6)
in Khoury et al. (2011) [21] by including food availability ( f ) and brood population (B) to explore
how food availability interacts with the intrinsic demographic processes, and used time delay (τ) in
maturation term to present the days of adult bees emerging from pupation:

dB
dt = L

f 2

f 2 + b2

H
H + v︸             ︷︷             ︸

new brood

− φB(t)︸︷︷︸
maturation from brood to hives

,

dH
dt = φB(t − τ)︸    ︷︷    ︸

maturation from brood to hives

−H(αmin + αmax
b2

b2 + f 2 − σ
F

F + H
)︸                                       ︷︷                                       ︸

recruitment

,

dF
dt = H(αmin + αmax

b2

b2 + f 2 − σ
F

F + H
)︸                                       ︷︷                                       ︸

recruitment

− d f F︸︷︷︸
death

,

d f
dt = cF︸︷︷︸

food collected

− γbB︸︷︷︸
brood consumption

− γhH︸︷︷︸
hives consumption

− γ f F︸︷︷︸
foragers consumption

.

(2.8)

The study of the model (2.8) above suggests that both food availability and forager death rate have
very strong influences on colony growth and development. It predicts that colony population eventu-
ally stabilizes at an equilibrium size determined by the forager death rate, and is no longer affected
by increasing food availability, whereas food stores continued to increase. The dynamics of the model
suggest that different forager death rates result in qualitatively and quantitatively different colony out-
comes, which range from a stable population with an excess of food stores, to a stable population with
limited food stores, to zero population with residual food stores. Their new model adds the influence
of food to the original recruitment term, it is used to explore the dynamic of colony by interaction be-
tween the food storage and foragers mortality, and also provides a mathematical foundation for more
complex performance of the honeybee colony [32, 89].

Precocious foraging occurs under chronic stress from lack of food, disease, or loss of foragers. Pre-
cocious foraging reduces effective foraging and forager longevity thus leading to low food reserves
and high mortality rates. In order to identify the most effective strategies to improve colony resilience,
Perry et al. (2015) [32] extended the model in Khoury et al. (2013) [30] to the following one, the
population of uncapped brood is denoted by B, hive bees by H, foragers by F, and the weight of stored
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food by f :

dB
dt = L

f 2

f 2 + b2

H
H + v︸             ︷︷             ︸

new brood

− φB(t)︸︷︷︸
maturation from brood to hives

,

dH
dt = φB(t − τ)︸    ︷︷    ︸

maturation from brood to hives

−H(αmin + αmax
b2

b2 + f 2 − σ
F

F + H
)︸                                       ︷︷                                       ︸

recruitment

,

dF
dt = T (a)H(αmin + αmax

b2

b2 + f 2 − σ
F

F + H
)︸                                             ︷︷                                             ︸

Recruitment with survival rate

− d f M(a)F︸    ︷︷    ︸
death

,

d f
dt = cT N(a)F︸    ︷︷    ︸

food collected

− γbB︸︷︷︸
brood consumption

− γa(H + F)︸      ︷︷      ︸
adults consumption

,

(2.9)

which assumes that the amount of trips taken and transitional survival (T (a)) are a function of the
age at onset of foraging. The death rate of foragers is a function of the age at onset of foraging. The
model (2.9) by Perry et al. (2015) [32] assumes that food storage depends on foraging trips which in
turn depends on the age of onset of foraging. This assumption resulted in a breakdown in the division
of labor and loss of the adult population, leaving only brood, food, and few adults in the hive. This
work explains social processes that may drive rapid depopulation of a colony, and explores possible
strategies to prevent colony failure.

In addition to the above-discussed food and the dynamics system of honeybee population, there
are also regulatory mechanisms for task allocation via the “common stomach” (sometimes called
“social crop”). The concept of a “common stomach”, where all bees in a colony have similar amounts
of food in their crops, has been incorporated in varied models for honeybees [53–56]. Honeybees
communicate substance/information through a common stomach to store or retrieve pollen or nec-
tar [53]. To study the economic benefits of pollen and nectar foraging strategies to both plants and
honeybees under different weather conditions, Schmickl and Karsai (2016) [55] proposed and studied
a detailed model that includes the nectar flows and nectar qualities offered by plants under distinct
raining conditions. This model [55] simulates three strategies (adaptive, fixed and proactive) under
different rains periods that affect protein stores and consumption rates in the colony. The adaptive
strategy is similar to the principles that honeybees follow in that there is relatively a low-level of pollen
foraging in good weather. During periods of rain when foraging activity stops, there is decreased
pollen consumption and brood cannibalism. Vigorous pollen foraging occurs after the rainy period.
Fixed strategy is that bees forage on pollen at a fixed recruitment rate and will not conserve protein
when pollen is scarce. The proactive strategy is based on the fixed strategy, except that foraging rates
enable an excess of pollen to be stored for periods of inclement weather. The model indicates that the
adaptive strategy benefits bees and plants in that increased pollen foraging can compensate for lost
pollen collection during the rain, while increasing pollination rates. Brood survival also was greater in
colonies employing the adaptive strategy, but this depended upon the rain pattern with tropical patterns
having less impact than continental. The model also indicates that the proactive strategy may cause
colonies to optimize growth, but because it is at the expense of nectar collection the colony will be low
on nectar stores causing starvation over the winter.

Schmickl and Karsai (2017) [56] extended the model of Schmickl and Karsai (2016) [55] to study
the resilience and homeostatic regulation of honeybee colonies by including two “common stomachs”
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and the related foraging behavior. The first common stomach is the saturation of workers and brood
with proteins that affect both the influx and the consumption of pollen. The second common stomach
is the saturation of nectar stores, which affects the ratio of loaded to unloaded foraging bees returning
to the hive, which in turn regulates the recruitment of nectar foraging bees. This model has a longer
time scale than the previous study [55]. The study of Schmickl and Karsai (2017) [56] combined the
simulation results with actual experimental data to explore the dynamics of adult forager populations,
brood population, and protein and sugar stocks in the hive under varied environmental conditions.

The growth, development, productivity, and health of a honeybee colony is dependent upon
fulfilling the nutritional demands of larvae and adult workers [57]. Vitellogenin (VG) is an egg yolk
protein which is the primary source of amino acids [58], and it appears to be one of the most important
regulators of immunity and longevity of honeybees [59–61]. The recent modeling work on the effect
of honeybee nutrition on colony survival by Messan et al. (2018) [50] investigated how VG may
affect colony dynamics (please see the detailed model in Appendix B model (B.1)).The non-linear
differential equation system describes how population dynamics of colonies are influenced pollen
stores and VG. Their study [50] focused on the effects of VG content per nurse bee and how it interacts
with the essential demographic and allocation processes within the colony to influence colony growth.
They showed that the size of both the brood and worker populations are directly dependent upon the
increase of levels of VG titers in nurse bees; and the coexistence of both brood and worker populations
is also dependent upon the quantity of food fed to the brood’ (e.g., pollen collected and converted to
VG and available foragers). In addition, the study in Messan et al. (2018) [50] explored how seasonal
changes in pollen collection improves the prediction of long term colony dynamics.

The model proposed and studied in Messan et al. (2018) [50] is unique and different than most
models in the literature that study the population dynamics of honeybees and nutrient stores. For
example, Schmickl and Crailsheim (2007) [62] created a simulation model to study the population
and resource dynamics of a honeybee colony and included the effect of division of labor in the hive.
Their modeling approach is too complicated to be mathematical trackable. The model presented in
Khoury et al. (2013) [30] has similar assumptions in the model of Messan et al. (2018) [50] with
one of the main differences being that the assumption of the transition from nurse bee to forager. The
model of Messan et al. (2018) [50] assumes that the transition from nurse bee to foragers increases
by a transition rate that depends on the levels of VG in the nurse bee and not only by the absence of
stored food and reduced social inhibition. In BEEHAVE by Becher et al. (2014) [33], they assume
that the level of pollen and nectar stores in the colony affects the age at which workers initiate foraging
activities while they do not take into account mechanisms changing at the molecular [60, 63–65] and
physiological level [60, 66] as the model of Messan et al. (2018) [50].

The study by Messan et al. (2018) [50] presented basic but important assumptions that can help us
understand and have greater insights in the complexity of honeybee population dynamics given their
nutritional status. Their model can be extended by limiting the influx of pollen in the late summer
to determine the effects on adult lifespan and colony survival. The effects that brood cannibalism or
breaks in brood rearing at different times of year can have on colony survival also can be studied
through simulations. Other mechanism to be considered is the transition back from forager to nurse
bee under certain environmental conditions [67], and the interplay of diseases or infections, such as
Nosema ceranae which is known to alter VG levels, and therefore alter normal age polyethism causing
colony imbalance [68, 69].
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Social insect groups have evolved a collective immune defense against parasites. These “social
immune systems” are built on the cooperation of individual members in the colony to fight the spread
of disease. Collective defense can prevent the entry and spread of parasites. In the study of the social
immune system, it is necessary to carry out a complex integration of information about the parasites
and the internal state of the colony [70]. Laomettachit et al. (2021) [71] proposed a system (please
see the detailed model in Appendix B model (B.2)) that describes the spread of infection within the
colony when honeybee members engage in the trophallactic activity to distribute nectar to study the
social immunity in honeybee society. Their model considered the social segregation of worker bees
and a hygienic response. The segregation limits the forgers that exposed to pathogens interacting with
bees in the colony, and hygienic response is the healthy nurses exterminate infected bees to control the
infections spreading. Their study suggested that the segregation is the first line of defense in pathogens
into the colony, and the hygienic response is the second line of defense. Their study also found the
egg-laying rate is a critical factor in maintain healthy colonies against infection. In summary, they
suggested the egg-laying rate, that is decreasing or pause combining the infections in the early spring,
can damage the social immunity, and even cause colony collapse.

3. Honeybee and parasites/virus population systems

Honeybee colonies provide a favorable environment for parasites and pathogens because of the
warm temperature and the high concentration of hosts, which may contribute to honeybees disappear-
ing in large numbers across the globe [72]. Studies showed that most of the losses could be generally
attributed to Varroa mites who have been implicated as the main culprit in dying colonies [73–75]. In
the following subsections, we will provide review of mathematical modeling that includes Varroa alone
and with virus transmission. We also discuss a model of the effects of Nosema on colony dynamics.

3.1. Honeybee-mite systems

Varroa mites are a parasite of both adult bees and the developing brood and can shorten the life
span of their hosts [79]. Adult female mites undergo two phases in their life cycle, the phoretic and
reproductive phases. During the phoretic phase, female Varroa feed on adult bees and move from bee
to bee as they pass one another in the colony. Mite reproduction can occur only if honeybee brood
is available [24]. The reproductive phase begins when a mature female leaves her adult host, enters
a brood cell containing a larva shortly before it is capped, and sequesters herself in the bottom of the
cell. Egg-laying commences about 60 hours after a cell is capped, and both mother and offspring feed
on the host’s fat body [80]. Mature offspring mate within the cell, but only mature females survive
outside the cell. In the average temperate climate, mite populations can increase 12-fold in colonies
which have brood half of the year and 800-fold in colonies which have brood year-round. The period
of mite population increase continues through the spring and summer and peaks in the fall when brood
rearing is nearly done. This makes the mites very difficult to control, especially in warmer climates
where colonies maintain brood year-round [28].

Sweeney et al. (2019) in his undergraduate honor thesis [49] developed a realistic five-dimensional
honeybee-mite interaction model with age structure in both honeybee and mite (see Figure 2, and
the detailed math model in Appendix B model (2.3)). This model includes three delay terms:
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one delay term e−dlτl rH(t−τl)2

K+H(t−τl)2 describes the transition from larvae to pupae, and the second one

e
−

∫ t
t−τp

[
dp+

αp Mp(s)
a+Bp(s)

]
ds

rH(t−τp−τl)2

K+H(t−τp−τl)2 describes the transition from pupae to adult; and the third delay term

cαp
Bp(t−τp)

a+Bp(t−τp) Mp(t − τp) describes the newborn mites coming from the parasitism of honeybee brood
B. The modeling approach of those delay terms is adapted from Chen et al. (2020) [22].

The advantages of the honeybee-mite interaction model proposed and studied by Sweeney et al.
(2019) [49] are that it includes 1) three stages in honeybees: larvae, pupae, and adult bees; 2) two
stages in mites: phoretic stage and reproductive stage; 3) mites at the phoretic stage are parasitizing
adult bees H which contributes to the additional mortality rate; and 4) mites at the reproductive stage
are parasitizing pupae Bp to reproduce. The simple analysis and the simulations suggest that parasitism
combined with the stage structures can destabilize the system causing fluctuating dynamics.

The disadvantage of the proposed model by Sweeney et al. (2019) [49] is the difficulty of rigorous
mathematical analysis. To explore the mechanisms that generate instability of the honeybee-mite in-
teraction dynamics, Messan et al. (2021) [29] simplified the model of Sweeney et al. (2019) [49] to
the following three-dimensional honeybee-mite interaction model:

dB
dt

=
rH2

K + H2︸   ︷︷   ︸
egg production

− αb

probability of M
attaching to B︷︸︸︷

B
a + B

M︸               ︷︷               ︸
parasitism on brood

− dbB︸︷︷︸
natural death

−
e−

∫ t
t−τ

[
db+

αb M(s)
a+B(s)

]
dsrH(t − τ)2

K + H(t − τ)2︸                           ︷︷                           ︸
maturation from egg to adult

,

dH
dt

=
e−

∫ t
t−τ

[
db+

αb M(s)
a+B(s)

]
dsrH(t − τ)2

K + H(t − τ)2︸                           ︷︷                           ︸
transition from brood

− αh

probability of M
attaching to H︷ ︸︸ ︷

H
a + H

M︸               ︷︷               ︸
parasitism on adult bee

− dhH︸︷︷︸
natural death

,

dM
dt

= cαb
B

a + B
M︸        ︷︷        ︸

newborns from brood parasitism

− dmM︸︷︷︸
natural death

,

(3.1)

where the brood B consists of both larvae Bl and pupa Bp in model (B.4), and no stage structure for
the mites. When there is no mite in the system, i.e., M = 0, the model (3.1) reduces to the two-stage
honeybee model (2.4) studied by Chen et al. (2020) [22]. Both the work by Chen et al. (2020) [22] and
the model (B.4) without mites by Sweeney et al. (2019) [49] suggest that time delay does not affect
dynamics, while the study of models (3.1) and (B.4) shows that the large time delay in the presence of
parasite mites (i.e., M > 0) could destabilize population dynamics and drive the colony to collapse. In
addition, both models [22, 29] use real data to show the effects of seasonality Eq (2.5), and their study
suggested seasonality is a key factor for colony’s collapse or survival.

Both age-structured honeybee models without mites in models (3.1) and (B.4) suggest that the delay
or age-structure terms may not play significant roles in population dynamics. Kang et al. (2016) [40]
proposed a simple honeybee only model (2.2) that has been extend to the honeybee-mite interaction
model without age-structure.
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Figure 2. A schematic diagram for the honeybee-mite parasitic interaction.

dS h

dt
=

rS 2
h

K + S 2
h︸  ︷︷  ︸

newborns

− dhS h︸︷︷︸
death

− αS hS m︸ ︷︷ ︸
negative effects of parasitism

,

dS m

dt
= cαS hS m︸   ︷︷   ︸

newborns of mites

− dmS m︸︷︷︸
death

,

(3.2)

where S h indicates the population of honeybees (includes all brood and adults) and S m indicates the
population of mites. Their model can have bistability and go through the subcritical Hopf-bifurcation
that leads to the extinction of colony. The study shows that parasitism could destabilize population
dynamics of honeybees.

Messan et al. (2017) [48] extends the model (3.2) to the following simple two-patch honeybee-mite
interaction model (B.5), the detailed math model in Appendix B (B.5), to explore the mite migration
effects on the population dynamics of honeybees and mites. This study suggests that migration between
two patches can generate extremely complicated dynamics including multiple attractors, and plays the
key role in determining whether honeybee colony survives or collapses. For example, the study shows
that the median migration rate can potentially enable mites and honeybees to coexist, while a high
migration rate can rescue one colony in two patches where both were going to collapse.

3.2. Honeybee-virus systems

Viruses are one of the main threats to the health and survival of honeybees. More than 20 viruses
have been identified to infect honey bees worldwide [33]. The viruses most commonly detected are:
Acute Bee Paralysis Virus (ABPV), Black Queen Cell Virus (BQCV), Deformed Wing Virus (DWV),
Israel Acute Paralysis Virus (IAPV), Kashmir Bee Virus (KBV), Sacbrood Virus (SBV) and Chronic
Bee Paralysis Virus (CBPV) [81]. For a complete discussion of symptoms associated with each virus
and the mode of transmission see [82]. Though several different viruses can infect worker bees through-
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out the year [83, 84], by the fall, DWV often is the predominant virus detected [85]. This is because
of differences in the quantitative dynamics among the viruses transmitted by Varroa. Those dynamics
can generate a shifting succession of virus infections that ultimately leaves DWV as the predominant
infection [86]. High levels of DWV in the fall are a harbinger of colony loss over the winter [87].

Kang et al. (2016) [40] extended their honeybee only model (Eq (2.2)) to the honeybee-virus model
(3.2) shown below:

dS h
dt =

r(S h + ρIh)2

K + (S h + ρIh)2︸              ︷︷              ︸
Newborns

− dhS h︸︷︷︸
natural mortality

−
βhS hIh

S h + Ih︸  ︷︷  ︸
infectious effect

,

dIh
dt =

βhS hIh

S h + Ih︸  ︷︷  ︸
infectious effect

− (dh + µh)Ih︸      ︷︷      ︸
death

,
(3.3)

which assumes that infections only spread horizontally with additional mortality µh in infected hon-
eybees, new adults bees are all healthy, and the virus-infected bees have reduced performance that is
denoted by ρ. The dynamics of model (3.3) seem to be relatively simple: i.e., no limit cycle. The study
of Kang et al. (2016) [40] shows that 1) honeybees can persist with proper initial conditions when the
virus transmission rate among honeybees βh is not large, 2) both honeybees and the virus can coexist if
βh is in the medium range, and 3) the large virus transmission rate βh among honeybees can drive the
colony to extinction.

Kribs and Mitchell (2014) [31] investigated the scenario that CCD is provoked by a transmissible
pathogen or contaminant introduced by foraging activities to understand how colony collapse might
occur as a perturbation of normal hive dynamics. In the model, H indicates hive bees, F indicates
forager bees, and I indicates infected bees.

dH
dt = L

H
H + Ω︸   ︷︷   ︸
eclosion

− (γH + αH
Φ

F + I + Φ
)︸                      ︷︷                      ︸

recruitment

,

dF
dt = (γH + αH

Φ

F + I + Φ
)︸                      ︷︷                      ︸

recruitment

− µ1F︸︷︷︸
natural death

− βF
I

I + K︸    ︷︷    ︸
infectious effect

,

dI
dt = βF

I
I + K︸    ︷︷    ︸

infectious effect

− µ2I︸︷︷︸
death due to disease

,

(3.4)

where virus infection brought into the colony is by the foragers and spreads in the hive via both

direct bee-to-bee transmission and indirect (via contaminated plant vectors) transmission. The disease
dynamics assumed in this paper are very general, and is not particularly discussed in relation to any
vector or virus. But this model still helps us to understand the dynamics of healthy colonies and
colonies collapsing because of CCD, especially the impact of accelerated forager recruitment on the
collapse of the colony, and the balance between recruitment rate and laying egg rate.

Betti et al. (2016) [88] proposed a PDE model that takes into account age structure and seasonal
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effects on the dynamics of a colony infected with a pathogen.

∂HS
∂t + ∂HS

∂a = −u(a)HS︸    ︷︷    ︸
recruitment

− βN̄HS︸︷︷︸
infectious effect

,

∂HI
∂t + ∂HI

∂a = βN̄HS︸︷︷︸
infectious effect

− u(a)HI︸ ︷︷ ︸
recruitment

− dH(a)HI︸   ︷︷   ︸
death due to disease

,

∂FS
∂t + ∂FS

∂a = u(a)HS︸  ︷︷  ︸
recruitment

− µ(a)FS︸ ︷︷ ︸
natural death

− βN̄FS︸︷︷︸
infectious effect

,

∂FI
∂t + ∂FI

∂a = u(a)HI︸ ︷︷ ︸
recruitment

+ βN̄FS︸︷︷︸
infectious effect

− (µ(a) + dF(a))FI︸              ︷︷              ︸
death

,

(3.5)

where a is age and t is time, for example, HS (a, t) means susceptible hive bees of age a at time t and
µ(a) is natural death rate. The model assumes that the hive bees and foragers spread the infection at a
rate (β) between or within classes. Figure 1 shows the processes between hive bees and foragers are
social inhibition and transition. The term u(a) represents similarly in the recruitment of Khoury et al.
(2011) [21]: u(a) = α( a

a+k )2(1 − σ
N

∫
(Fs + FI)da)HV(a − aR) with N being the total number of bees,

α being the maximum rate of recruitment, k being that recruitment will be half the maximum rate of
recruitment and 1

σ
being the maximum proportion of bees that are foraging at any given time. The

term HV(a− aR) is the Heaviside function to reflect that recruitment cannot begin before age aR. When
determining the initial value, the food factor is introduced, HS (0, t) = LS , where L indicates the daily
egg-laying rate of the queen, and S is the survivability function that includes food to determine how
many eggs can survive.

The PDE model (3.5) shows that the age-dependent recruitment rate affects the dynamic of disease
within the colony. The natural age-structure has a certain control effect on disease transmission. In
other words, if there is an interference with the age-structure, it may also increase the extent of infec-
tion. The modeling work by Chen et al. (2020) [22] and Messan et al. (2021) [29] show that time
delay alone may not have huge impacts on the dynamic of bee-only model, while delay combined with
mites may lead to colony collapsing. The model by Betti et al. (2016) [88] showed that the maturation
time from hive bees to foragers affects both colony dynamics and infection dynamics if a pathogen is
present in the colony. The age dependent model in Betti et al. (2016) [88] captures the dynamics of
‘spring dwindling’ which occurs due to the fact that worker bees emerged from the previous fall are
dying faster than the emergence of new workers in the spring. In addition, the model of Betti et al.
(2016) [88] also includes seasonality by adding a transition model after end-of-winter to expose the
process of colony aging from winter months to active young bees. The work of Betti et al. (2016) [88]
indicates that colonies are particularly vulnerable to collapse during spring dwindling especially if dis-
ease or other stress factors are present; and the declining population of bee colony in the early spring
is the natural consequence due to seasonal vulnerability.

3.3. Honeybee-mite-virus systems

The host-parasite relationship between honeybees and Varroa mites has been complicated by the
mite’s close association with a wide range of honeybee viral pathogens. While Varroa parasitism can
weaken honey bee immunity and deplete nutrient reserves in their host, the most serious threat is trans-
mission of viruses [82, 90, 91]. Varroa transmit numerous viruses during feeding on developing and
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adult bees. Mathematical models are powerful tools that could help us obtain insights on how mites
and/or viruses contribute to the collapse of honeybee colonies.

Several models have captured the mechanics of virus infections in colonies in the presence of
mites [40, 92]. Kang et al. (2016) [40] proposed and studied a honeybee-mite-virus model (B.6)
shown in Appendix B model (B.6)) that incorporates parasitic interactions between honeybees and
Varroa mites with terms describing virus transmission between bees and mites at different lifestages.
The honeybee-mite-virus model (B.6) incorporated colony’s internal organization (i.e., division of la-
bor) that can generate Allee effects, and five virus transmission terms between honeybees and mites
at different stages of Varroa mites. The routes of transmission include from: honeybees to honeybees,
adult honeybees to phoretic mites, honeybee brood to reproductive mites, reproductive mites to honey-
bee brood, and honeybees to phoretic mites.

The model (B.6) captures the synergistic effects of parasitism and virus infections on honeybee pop-
ulation dynamics and persistence of virus in the colony. The components included in the honeybee-
mite-virus model (B.6) allow us to explore the dynamics of the: honeybee only model (2.1), honeybee-
mite model (3.2), honeybee-virus model (3.3), and honeybee population with both mites and viruses.
The model revealed that colony survival is strongly affected by initial conditions (i.e., colony size) due
to Allee effects experienced by the honeybee population. High adult to brood ratios enable coexistence
of Varroa and virus in the population. However, low adult to brood ratios have destabilizing effects on
the system which generate fluctuating dynamics that lead to a catastrophic event where both honey-
bees and mites become extinct. This model outcome is similar to colony losses over the winter that are
commonly seen under conditions of high Varroa and virus (particularly DWV) titers in the fall [87].
Additionally, persistent viral infection in late winter and early spring can lead to high mortality of
worker bees, and an inability to rear sufficient amounts of brood (Allee effects) to enable the colony to
build in the spring.

The model (B.6) by Kang et al. (2016) [40] applies to disease/virus in the general fashion. Dénes
and A. Ibrahim (2019) [93] studied a honeybee-mites-virus system with susceptible bees, bees infected
with mites and bees infected with viruses (please see the detailed math model in Appendix B model
(B.7)). Their results suggest that in order to eradicate disease/mites, the related transmission rates
needs to be decreased. In the following subsections, we will provide reviews on literature work that
have been applied to specific viruses such as ABPV and DWV.

3.3.1. Honeybee-mite-ABPV/DWV/AFB systems

Acute Bee Paralysis Virus (ABPV) and Deformed Wing Virus (DWV) are transmitted by Var-
roa [82, 94]. ABPV is deadly in the sense that brood infected with it do not metamorphose to the
adult stage. DWV causes death of the pupae and reduced longevity of adult bees [90, 91]. And Amer-
ican Foulbrood (AFB) is a fatal bacterial disease of honey bee brood, and AFB is considered a very
destructive and lethal brood disease [95].

Sumpter et al. (2004) [92] proposed a model that used SIR-like framework to study the effect of
a honeybee colony dynamics with Varroa mites and virus. They studied ABPV and DWV separately.
The model assumed the total number of mites is constant, therefore the death and birth rates of mites
are not important in their model. Since viruses can exist in different stages of the life cycle of bees,
seasonal effects are included and reflected in the values of different parameters for each season. A
critical mite load that a colony can tolerate was estimated, and it was determined that as the number
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of mites exceeds the critical mite load, the disease free equilibrium becomes unstable, which means
an epidemic occurs. Recommendations for reducing colony losses generated from the model were that
mite and virus levels need to be controlled in the summer, and delaying control until fall increases the
likelihood of colony loss.

The process of bee eclosion depends on how well the brood is cared for during development. For
that purpose, a sufficient number of healthy adult worker bees are required. The relationship between
healthy adult workers and eclosion was modeled by Eberl et al. (2010) [43] by extending the ABPV
model by Sumpter and Martin (2004) [92]. They formulated brood maintenance as a Sigmoidal Hill
function which introduced Allee effects and led to the collapse equilibrium being locally stable which
was not present in Sumpter and Martin (2004) [92]. The model predicted colony death at points where
the uninfected population drops below a certain threshold that is dependent on the brood maintenance
terms. We would like to point out that Eberl et al. (2010) [43] also includes the seasonality through
simulating different parameters values in four seasons. Their simulations suggested that an infected
colony may collapse after several years in the spring. This result is in line with the work by Betti et al.
(2016) [88].

Since the transmission of ABPV depends on the Varroa mites, it is important to track the mite pop-
ulation. Therefore, Ratti et al. (2012) [44] (see also Devillers (2014) [97]) adopted the framework
of Eberl et al. (2010) [43] and introduced logistic growth for mites (please see the detailed model in
Appendix B model (B.8)). As a result, mite-induced death rates have also been considered. Ratti et al.
(2012) [44] assumed that the carrying capacity (α(HS + HI)) is dependent on the total bee population
which is a proxy for the brood size. For a model with logistic growth of mites, infestations may lead
to a die-off of the colony or to bee-mite coexistence. The bee colony that otherwise coexists with
mites might start dying when the virus is introduced. This die-off may take several years. Whether or
not the bee population can fight off a virus epidemic depends on model parameters describing disease
transmission and how fast infected bees die, as well as on the size of the mite population in the sta-
ble bee-mite coexistence equilibrium. They studied the model in constant-coefficients analytically and
then investigated in computer simulations whether or not these findings carry over to the more general
transient case in which the parameters are taken as seasonal averages. The model did not take into
account seasonal or yearly fluctuations in conditions.

Research has shown that seasonality has the potential to change the dynamics of infectious dis-
eases since it creates complex fluctuations in the host and vector populations. Most infectious diseases
change with temperature, rainfall or other seasonal effects most of which are periodic and predictable.
The effects of seasonality on honeybee and thus mite populations have been reported in the literature.
Ratti et al. (2015) [45] adopted the framework of Ratti et al. (2012) [44] to study the seasonal effects
on the mite and virus-infested colony by considering the coefficients to be periodic functions of time
with a period of 1 year. They used Floquet theory to analyze the stability of virus-free periodic solu-
tions. For controlling vector-borne disease, it is required to control the vector. Therefore, Ratti et al.
(2015) [45] studied the effect of varroacide application by introducing additional death rates (δi) in the
bees and mite equations. In addition to the existence of periodic endemic solution in the absence of
virus, it was found that the success of varroacide treatment depends on the cumulative efficacy over the
year, rather than a specific time course. They also found that in order to keep disease under control, it
is not necessary to eradicate mites completely.

Forager bees from diseased colonies experience reduced homing and flight capabilities which makes
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it important to track forager populations in models as in Khoury et al. (2011) [21]. Ratti et al.
(2017) [47] constructed a model combining their ABPV model (from Ratti et al. (2015) [45]) with a
division of labor component from Khoury et al. (2011) [21] to study forager loss. In their model (B.9)
(please see the detailed model in Appendix B model (B.9)), they assumed that the total bee population
was divided into hive bees and foragers, all newly emerged bees are uninfected , and only horizontal
virus transmission occurs vectored by Varroa. Ratti et al. (2017) [47] categorized the population into
uninfected hive bees (H), uninfected forager bees (F), infected hive bees (HI), virus-free mites (MS )
and virus-carrying mites (MI) (see Eq (B.9)). Ratti et al. (2017) [47] The model predicted that mite and
bees can co-exist without treatment in virus-free conditions. If virus exists and a varroacide is applied
causing a decline in virus-carrying mites that exceeds the mite birth rate, the disease-free equilibrium
can be stable. Simulation indicates that infected colonies eventually collapse in the absence of Varroa
treatment.

By following the work of Henry et al. (2012) [98], Ratti et al. (2017) [47] incorporated the in-
creased forager mortality due to exposure to pesticides as a result of which the bees fail to return to
the hive. The idea was to study the dynamics of the colony under multiple stressors (mites, virus, and
pesticides). Though they investigated the effect of increased forager loss particularly due to pesticides,
the framework can be easily adapted to forager loss due to other factors. They also suggested that a
honeybee colony that experiences periods of increased forager loss early in the season can withstand
these losses and recover to (almost) normal strength, if the losses remain below a defined threshold. If
the losses exceed this threshold the colony fails rapidly. The level of external forager loss that can be
tolerated is only slightly higher for healthy colonies compared to colonies with Varroa and ABPV.

Britton et al. (2021) [99] proposed the first model to study the dynamics of DWV that classified
bees as covertly infected (HX), chronically overtly infected (HY), and acutely overtly infected (HZ),
and mites as covert infected (MU) and overt infected (MV) based on the infection levels. The model
equations for spring, summer, and fall are given by

dHX

dt
= αe−cMV h(HX + κHY) − µHX − γM

HX

N
− ρHX − τHX

HY

N

− τ′HX
HZ

N
− φ

HX

N
MV ,

dHY

dt
= ρHX + τHX

HY

N
+ τ′HX

HZ

N
− νHY − γM

HY

N
+ φ

HX

N
MV ,

dHZ

dt
= αp(1 − e−cMV )h(HX + κHY) − ηHZ − γM

HZ

N
,

dMU

dt
= rMU + r(1 − θ)MV − rMU

M
kN
− σMU − ψMU

HY

N
− ψ′MU

HZ

N
,

dMV

dt
= rθMV − rMV

M
kN

+ σMU + ψMU
HY

N
+ ψ′MU

HZ

N
.

(3.6)

The mite model for winter is given by
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dMU

dt
= −sMU ,

dMV

dt
= −sMV .

(3.7)

Moreover, they modeled the spontaneous transition from one infected class to the other, and included
logistic growth for mites for all seasons except winter [44, 45, 47]. Since there is no brood in winter,
the mite population dynamics is much simpler and hence the mite equations are reduced to having only
negative linear terms (see Eq (3.7)). Mites are no longer considered to be a mechanical vector; the virus
actually replicates in the body of the mites. For the bee dynamics, they factored in the vertical as well
as horizontal transmission. When possible, they calculated the R0 using next generation matrix. The
model did not incorporate seasonal variations analytically or computationally. The focus of this paper
was on gaining the insight into the disease dynamics by computing the reproduction number using
weighted directed graphs with the next generation method. They found that in the absence of mites,
the condition for overt infection leads to unrealistic results. They also found that the overt infection can
be maintained either by the transmission of overt virus between adult bees (for unrealistic parameters)
or by vertical transmission in mites coupled with their interactions with acutely overtly infected bees.
This demonstrates the importance of considering transmission involving mites and chronically overtly
infected bees.

Datta et al. (2013) [100] studied the spreading of American foulbrood (AFB) by using an SIR model
and estimated parameter values by using Markov chain Monte Carlo (MCMC) scheme based on data
of AFB epidemic in the island of Jersey bee colony during the summer of 2010. They found that both
distance-based and owner-based transmissions contribute to the spread of AFB. And the simulations
of the stochastic SIR model, they showed that the earlier inspection, the better control of the epidemic,
and the higher possibility of AFB extinction.

Jatulan et al. (2015) [101] build a compartmental ordinary differential equations system (please
see the detailed model in Appendix B model (B.10)) to study American Foulbrood (AFB) infection
within a honeybee colony. Their model is different from others in the sense that it includes how inside
environment such as contaminated cells and outside environment infect bees. Their study suggested
that AFB infection eventually leads to colony collapse; and infection thresholds were predicted based
on the stability of the equilibrium states.

3.4. Honeybee-Nosema systems

Nosema ceranae is an intracellular parasite of honeybees. However, its effects on colony mortality
remains poorly understood. However, Nosema will cause precocious foraging and learning and mem-
ory deficits [105]. Infected bees defecate and deposit spores in the hive on the wax comb and hive bees
can ingest them while cleaning comb cells. During colony confinement in the winter, bees will not
defecate and can have millions of spores their digestive tract. There is also evidence that Nosema can
be spread via oral-oral transmission, through trophallaxis [106]. Hive bees mouth parts get infected
with Nosema while cleaning the hive and it gets transmitted to the uninfected hive bees during trophal-
laxis.

Betti et al. (2014) [89] presented a generic model with a working example of Nosema to study the
dynamics of the spread of disease within a bee colony and the effects on colony demographics. The
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model for active season (spring, summer and fall) is following:

dHS

dt
= LS︸︷︷︸

new hive bees

− HS R︸︷︷︸
recruitment

− (βHHHI + βHF FI)HS︸                    ︷︷                    ︸
susceptible hive bees become infected

,

dFS

dt
= HS R︸︷︷︸

recruitment

− mFS︸︷︷︸
natural death

− (βHF HI + βFF FI)FS︸                   ︷︷                   ︸
susceptible foragers become infected

,

dHI

dt
= (βHHHI + βHF FI)HS︸                    ︷︷                    ︸

infected hive bees

− HIR︸︷︷︸
recruitment

− dHHI︸︷︷︸
death due to disease

,

dFI

dt
= HIR︸︷︷︸

recruitment

+ (βHF HI + βFF FI)FS︸                   ︷︷                   ︸
infected foragers

− (m + dF)FI︸       ︷︷       ︸
death

,

d f
dt

= c(FS + FI)︸       ︷︷       ︸
collected food

− γAN︸︷︷︸
consumed by foragers and hive bees

− γLLS︸︷︷︸
consumed by the larvae

,

(3.8)

where HS and FS indicate the susceptible hive bees and foragers respectively, HI and FI are the in-
fected hive bees and foragers respectively, and f is food. Parameter L is the egg-laying rate, S is the
proportion of eggs that survive to adult bees, R is the proportion of recruitment from maturing hive
bees to foraging duties. And all βi, j is the contact between stage i bees and stage j bees. Parameter m
indicates natural death rate, c os the food collecting rate, γA and γL are the food consumption by adults
and larvae, and N = FI + HI + FS + HS . The age structure part of this model is based on Khoury et al.
(2011 & 2013) [21, 30]. The study considered a direct transmission from bee to bee (e.g., by feeding).
Adult bees will contract Nosema either from eating food contaminated by infected bees, or while re-
moving fecal matter from the colony. The model also considers seasonality; winter is one season and
the remaining (spring, summer and fall) are combined as another season, that is the model we showed
above. The parameters are taken to be constant in the two seasons. And in the winter season, they
proposed a corresponding model which is no newborn term (L = 0) because Queen stop laying egg in
the winter, no recruitment term (R = 0) because all bees stay at the colony, and no new food (c = 0)
because no foragers go outside to collect food. The model indicated that transmission rate and death
rate due to disease are the key factors that determine colony survival. In comparison, the transmission
rate has a greater impact on survival than the mortality. The model also predicted that a time interval
of approximately 20 days before the onset of winter is when the colony is most affected by the onset of
infection. From this point of view, the transition between winter and non-winter seems to be an impor-
tant aspect of seasonality and colony survival. Therefore, the transition model between the winter and
non-winter is also worth learning, that Betti et al. (2016) [88] proposed 21-day transition equations we
discussed before.

Petric et al. (2016) [107] specifically developed a model for Nosema ceranae (please see the de-
tailed model in Appendix B model (B.11)) based on the assumption that infected bees deposit spores
to an environmental reservoir in the hive created by defecation and hive bees ingest those spores while
cleaning comb cells. The model incorporate two stressors: 1) infection of a honeybee colony with
Nosema ceranae following Khoury et al. (2011) [21] and 2) increased forager loss. Seasonality was
incorporated in the same way as in Ratti et al. (2015 & 2017) [45,47]. Due to lack of data at that time,
they performed sensitivity analysis of the model instead of the complete parameterization. The model
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indicates that the colony can survive if each stressor alone is applied but the combination of infection
and increased forager loss causes the colony to fail.

Muhammad and Eberl (2020) [108] extended the model of Petric et al. (2016) [107] by including
direct transmission (e.g., by oral-oral route) following Betti et al. (2014) [89] (please see the detailed
model in Appendix B model (B.12)). The model indicated that including direct transmission of a
disease in a time-periodic model of a discrete structured population can induce what appears to be a
chaotic transition from an endemic state to colony failure in a small range of the transmission rate.
They also concluded that the observed chaotic transition is heavily influenced by the Holling-Type III
functional form of the eclosion terms.

Not only Nosema can spread within a colony, but also between colonies, therefore there is a com-
petitive relationship between different species of Nosema. Natsopoulou et al. (2015) [109] presented
an ODE model that focused on Nosema by investigating the within-host competition between two
different Nosema species (Nosema apis and Nosema ceranae) as below:

dA
dt

= (1 − A)(1 −C)AOA︸                  ︷︷                  ︸
N. Apis transmission

+ (1 − A)ACmA︸          ︷︷          ︸
Mixed transmission

− νA︸︷︷︸
Natural death

,

dC
dt

= (1 −C)(1 − A)COC︸                   ︷︷                   ︸
N. ceranae transmission

+ (1 −C)CAmC︸           ︷︷           ︸
Mixed transmission

− νC︸︷︷︸
Natural death

,

(3.9)

where A indicates Nosema apis and C indicates Nosema ceranae. They found that the competition is
asymmetric, and the order of infection determines the outcome of the interspecific competition. It was
also found that the prevalence of Nosema ceranae was higher causing the growth of Nosema apis to be
inhibited.

Since Nosema has adverse affects on the food consumption and foraging ability, Comper and Eberl
(2020) [110] constructed a model (B.13) (please see the detailed model in Appendix B) to study the
effect of food in a colony infested with Nosema. They categorized food as harvested food i.e., honey
and externally supplied food i.e., sugar syrup. They considered sugar syrup to be given to bees before
winter as a way to make up for the honey that was harvested. They used the framework for division of
labor from Khoury et al. (2011) [21] and indirect Nosema transmission from Petric et al. (2016) [107].
Seasonality was taken into consideration and was adapted in the same manner as in Petric et al. (2016)
[107], Ratti et al. (2015) [45], and Ratti et al. (2017) [47]. Comper and Eberl (2020) [110] found
the same three possible outcomes as in Petric et al. (2016) [107]. The honey yield was found to be
directly proportional to the Nosema strength in the colony. One of the main parameters was found to
be the supplementary sugar syrup. They noticed that if the supply of sugar syrup falls below a certain
level, the colony does not survive. Honey loss cannot be made up by using supplementary sugar syrup.
Honey loss due to disease can be repaired by applying a Nosema treatment if the level of infection in
the colony is moderate. However, treatment does not have any effect if the infection levels are high.

4. Pesticide effects on honeybee population

Pesticides are an environmental stressor causing population reduction. Honeybees are exposed to
pesticides while foraging pesticide-treated crops. Foragers bring back the pesticides to the hive which
stays in the wax comb and in the pollen and nectar stores. Thus, honeybees do not get exposed only
during the flowering period but much longer [111]. The effects of pesticide exposure include signifi-
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cant decrease in survival of foragers, reduced flight performance, compromised immunity, difficulty in
protein digestion, and bee feeding [18].

Pesticides also have adverse effects on the memory, learning ability and navigational skills of the
foragers. Henry et al. (2012) [98] study the foragers homing failure due to pesticides exposure. In
addition to real experiments, they also combined model simulations by Khoury et al. (2011) [21] with
their experimental data to predict the dynamics of colonies. They assumed the forager mortality rate
includes daily natural mortality and additional death rate because of post-exposure homing failure.
Henry et al. (2012) [98] found regardless of the queen’s egg-laying rate, the population exposed to
the treated nectar will decline during pollination, and will hardly recover afterwards. This paper is an
excellent application of mathematical models and helps to give parameter values closer to reality for
the mathematical model.

As mentioned in Section 3.3.1, Ratti et al. (2017) [47] following the work of Henry et al. (2012)
[98] studied the effect of pesticides via loss of foragers in a colony infested with mites and ABPV.
The objective was to investigate how the colony dynamics would change if a colony, that is already
under stress (due to mites and ABPV), experiences increased forager loss (e.g., due to pesticides).
They studied the first 3 months of a beekeeping season (i.e., the spring season) encompassing the
blooming period of crops that are treated with pesticides and visited by bees. Increased forager loss
was formulated in the model by using a linear death term (see model (B.9)). The study concluded that
a honeybee colony that experiences periods of increased forager loss early in the season can withstand
these losses and recover to (almost) normal strength, if the losses remain below a threshold. If the
losses exceed this threshold the colony fails.

Magal et al. (2019) [112] developed a honeybee difference equation model that tracks the foragers
leaving and entering the hive each day to study the effect of pesticides leading to homing failure. The
number of uncontaminated (U) and contaminated (C) forager bees each day is given by

U(n + 1) = F(U(n),C(n)),
C(n + 1) = G(U(n),C(n)),

(4.1)

where F(U,C) and G(U,C) represents the daily change in uncontaminated (U) and contaminated (C)
foragers respectively and are given by

F(U,C) =
βV(U,C)2

K2 + V(U,C)2︸            ︷︷            ︸
daily production of new
uncontaminated foragers

+ e−µe−αU︸   ︷︷   ︸
daily uncontaminated foragers
that survive and return home

,

G(U,C) = pe−µC︸︷︷︸
daily contaminated foragers

that survive and return home

+ pe−µ(1 − e−α)U︸             ︷︷             ︸
daily new contaminated foragers

from contamination of
uncontaminated foragers that

survive and return home

.
(4.2)

The function V(U,C) indicates daily total uncontaminated and contaminated foragers returning home
and is given by

V(U,C) = pe−µC︸︷︷︸
daily existing contaminated

foragers that survive
and return home

+ pe−µ(1 − e−α)U︸             ︷︷             ︸
daily new contaminated

foragers that survive
and return home

+ e−µe−αU︸   ︷︷   ︸
daily uncontaminated foragers

that survive and
return home

,
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where p is the fraction of contaminated forager bees that succeeded in returning to the hive at the end
the day, β is the rate of new foragers per day, µ is the natural morality rate of forager bees and α is
the rate of contamination. One of the key factors of colony survive is the critical forager population
viability threshold. If the population is below the threshold, the colony dies off rapidly, otherwise the
population stabilizes. This dynamic of their model is incorporated as an Allee effect, that a sufficient
number of young hive bees is necessary to offset the forager loss. Magal et al. (2019) [112] discussed
three equilibria (one trivial and two interior) by varying the parameter p. By varying this parameter,
the model captured sublethal effects of pesticides leading to colony loss due to the reduction of homing
ability by foragers.

Magal et al. (2020) [113] extended their previous model in Magal et al. (2019) [112] (see model
(4.2)) by including spatial components to study colony collapse due to pesticides. The model consists
of differential and difference equations for the spatial distribution of uncontaminated and contaminated
foraging bees. In addition to considering whether contaminated foragers can successfully return to the
colony, they also considered a new condition of whether foragers will return to the previously visited
foraging site. They assumed that foragers revisit the locations based on their memory and not on the
waggle dance. Furthermore, they assumed that a proportion of foragers will return to the hive and start
over the next day without the memory from the previous day. Included was a proportion of foragers
that use their memory from the previous day. Their model focused on the density of uncontaminated
(u(t, x, y)) and contaminated forager bees (c(t, x, y)) at time t and location (x, y) ∈ R2:

∂tu(t, x, y) = ε∆u(t, x, y)︸       ︷︷       ︸
di f f usion

− µ(x, y)u(t, x, y)︸            ︷︷            ︸
mortality

− α(x, y)u(t, x, y)︸            ︷︷            ︸
daily new contaminated foragers

,

∂tc(t, x, y) = ε∆c(t, x, y)︸       ︷︷       ︸
di f f usion

− µ(x, y)c(t, x, y)︸            ︷︷            ︸
mortality

+ α(x, y)c(t, x, y)︸            ︷︷            ︸
daily new contaminated foragers

,
(4.3)

where µ(x, y) indicates the mortality rate of the bees, and α(x, y) indicate the rate of contamination
of the forager bees by pesticides. The parameter ε represents the diffusion rate of uncontaminated
foragers. They found that a high fraction of contaminated foragers that fail to return home brings
the population below the thresh old and leads to colony collapse. Also, if the fraction of all foragers
that return to previous foraging sites is high and spatial variation is present in the contaminated envi-
ronment, foragers who visit contaminated sites multiple times have a higher probability of becoming
contaminated, and colony collapse ensues.

Rumkee et al. (2015) [114] used BEEHAVE model to study the effects of pesticides on different life
stages of honeybees. They explored the dynamics of bees through five stresses: increasing the mortal-
ity of larvae, hive bees and foragers, and reducing the egg laying rate. They set control mortality by
multiplied and daily background mortalities by different percentages. Included was a proposed LIS50
to indicate the level of stress leading to 50% colony mortality. Small LIS50 means this pressure exerts
high . Their results suggested that the mortality of adults has a greater impact on the colony than the
mortality of larvae or the egg-laying rate. Different stresses also have corresponding levels of influence
on the colony dynamics under the seasonality, such as forager mortality in winter and in-hive mortality
in summer.
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5. Computational models

The earliest computational model, DeGrandi-Hoffman et al. (1989) BEEPOP [19], included funda-
mental factors for colony growth including egg laying, brood development, worker aging from house
bees to foragers, and number of foraging days before the worker was removed from the colony. The
BEEPOP model incorporates weather conditions (temperature, photoperiod, wind speed and rainfall)
into colony population size predictions. The model tracks numbers of workers and drones in all life
stages, by treating the number of eggs a queen lays each day as a cohort. The cohort is aged from
egg to adult forager and then removed from the colony population after a defined number of days of
foraging. The daily number of eggs the queen lays is determined by temperature, daylength and colony
size. More eggs are laid in the spring and summer than fall and winter in comparably sized colonies
because temperatures are warmer and daylength is longer. All other conditions being equal, more eggs
are laid by queens in large colonies compared with small colonies. The number of bees in all cohorts
are summed daily and reported as total numbers of eggs, larvae, pupae and adult bees.

Factors affecting the survival of bees in the various lifestages were not included in the original
BEEPOP model, with the exception of forager longevity. The number of days that an adult worker
could forage was initialized at the start of a simulation. If foragers had a short lifespan (e.g., 4–6 days),
this would simulate stress from factors such as poor nutrition, disease, or distant nectar and pollen
sources. Though the BEEPOP model is simple in its structure, it did generate realistic predictions on
colony population dynamics. For example, the incorporation of weather conditions into predictions of
daily egg laying rates enabled the model to capture colony population dynamics in different latitudes
and climates. Sensitivity analysis revealed that the queen’s egg laying potential and worker longevity
exert significant effects on colony population growth, and this has been supported through field studies
by others [115].

The effects of Varroa mite parasitism were included in a later version of the BEEPOP model [28].
VARROAPOP considered the growth of the Varroa population in a colony and its impact on colony dy-
namics due to reduction in worker longevity. The model assumes that adult workers parasitized during
development have reduced longevity as adults [94, 116, 117]. The reduction in longevity is a function
of the number of foundress mites (i.e., reproductive female mites) that enter a worker cell. Workers
that are parasitized by multiple foundresses during development have shorter lifespans than those that
are singly infested. During times of colony growth in the spring and summer, there often are more
brood cells to parasitize than mites to infest them, and so most cells are infested by a single foundress.
However in the fall, brood rearing declines. Multiple infestations of brood cells can occur because the
mite population has increased throughout the spring and summer, and there are fewer brood cells in the
fall to infest. The multiple infestations of brood cells in the fall and the resulting reduction in worker
longevity causes the colony age structure to be skewed to short-lived adult bees. If the population of
short-lived adults is sufficiently large, the model predicts that the colony will perish in the spring when
flight weather resumes. The death of colonies over the winter and in the spring due to mite infestations
in the fall is a common occurrence [87] that is captured in VARROAPOP simulations.

The VARROAPOP model has been useful in the development of control strategies for Varroa. The
model can simulate the application of miticides to reduce the population of phoretic mites. Specifics
of a miticide application such as the date when the application occurs, period of effectiveness, and the
percentage of phoretic mites that will die from exposure (this value if reduced over the period of ef-
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fectiveness for the miticide) can be entered into a simulation. Conducting simulations where miticides
were applied at different times of year under weather conditions occurring in different geographic loca-
tions generated recommendations on the optimum time and number of miticide applications required
to control Varroa populations and limit their impact on colony survival. VARROAPOP predicted that a
single well-timed miticide treatment in mid-August to mid-September could adequately control Varroa
and avoid mite populations that could cause a colony’s demise. The model also was used to develop
a commercial miticide by determining the minimum period when the active ingredient needed to be
effective and the percentage of phoretic mites that had to be removed from the population.

VARROAPOP was constructed to include the migration of mites into colonies on foragers. How-
ever, the impact that mite migration could have on actual Varroa population growth in colonies was
not fully realized until comparisons were made between Varroa population growth occurring from re-
production alone, and actual mite population growth especially in the fall [28, 48, 118]. Actual mite
populations beginning in September were significantly higher than those predicted from reproduction
even though mite numbers were small when the colonies were established and accurately predicted by
VARROAPOP throughout the summer. The disparity between actual mite numbers and those predicted
by the model occurred when the frequency of foragers with mites on their bodies collected at colony
entrances increased.

Most recently, VARROAPOP was modified to track nectar and pollen collection and use by the
colony based on larval and adult populations.Other modifications enable users to assign mortality rates
for any life stage for a defined period. The age of first foraging for worker bees also can be changed for
defined intervals during a simulation. Multiple intervals can be described for a single simulation so that
the effects of increased mortality due to various stress factors can evaluated. The feature enables simu-
lations to include effects of nutritional stress (altered brood mortality and age of first foraging of adult
workers), swarming [119] and pesticide exposure (increased mortality at any lifestage and reduced for-
ager lifespan) at [120]. Conducting simulations using Monte Carlo and sensitivity analysis techniques
to determine the impact of foliar, seed or soil pesticide applications indicated that queen egg laying
potential and forager lifespan determined the survival of colonies exposed to pesticides. The model
also indicated that contact toxicity to foragers that resulted in reduced longevity, pesticides application
method and rate, and nectar contamination (increase mortality of all lifestages) were critical param-
eters for colony growth and survival. The model predicted that foliar applications had the greatest
effect on colony dynamics as they reduced forager lifespan and that of colony members through nectar
contamination. However, simulations also revealed that the relative impact of the parameters fluctu-
ated throughout the simulation period in relation to the status of other inputs. The time-conditional
results from the simulations were expected as colony size, brood production and age structure change
throughout a colony’s yearly cycle.

Building on the VARROAPOP model, Becher et al. (2014) [33] constructed a model that includes
effects of Varroa mites, viruses and related impaired foraging behavior, changes in landscape structure,
and pesticide exposure on colony growth and survival (the BEEHAVE model). Colony structure and
brood production components of BEEHAVE are similar to BEEPOP and VARROAPOP in that they
are generated from difference equations that create cohorts of individuals that are aged from egg to
adult. Varroa populations are initialized as phoretic mites (i.e., mites on adult bees) and reproduce
in brood cells. Mites can infect developing pupae with DWV and ABPV, or be virus-free and not
infect their pupal host. The foraging model is an agent-based system simulating foraging on actual
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and hypothetical landscapes. Cohorts of workers that reach the age of first foraging join the foraging
population. The bees’ foraging decisions are dependent on the energetic efficiency of a food source
(for nectar collection) or by the total trip duration (for pollen collection). Energy gains and losses of
each foraging trip are calculated. Forager mortality occurs after predetermined distances or maximum
age is achieved.

BEEHAVE was used to simulate the effects that combinations of stress factors such as Varroa, low
forage availability, and increased forager mortality, as a proxy for pesticide exposure, might have on
colony survival at different times of year. Using data from large-scale colony feeding studies for model
calibration and validation, Abi-Akar et al. (2020) [121] identified factors that are critical to overwin-
tering success for a range of landscape compositions, weather conditions, and supplemental feeding
schedules. The model predicted that factors affecting over wintering survival were weather conditions,
and the effects that supplemental feeding in the fall have on colony size and food stores.

The BEEHAVE model also was used to simulate the sublethal effects of pesticides, and determine
when those effects would manifest in colony dynamics, and if they could be mitigated [123], when
those effects would manifest in colony dynamics, and if the effects could be mitigated. The sublethal
effects included impaired forager orientation (simulated by doubling the distance to forage during pe-
riod of exposure), impaired floral handling time (doubling handling time during a foraging trip), effects
on brood care (halving the brood to in-hive bee ratio) and increased forager mortality. The greatest
colony-level impact occurred due to sublethal effects of brood care. However, timing of the event was
critical and most pronounced in the spring when colonies were building. Handling time effects were
most pronounced in late summer and had long-lasting colony level impacts. The effects could be re-
lated to the importance of collecting sufficient pollen and nectar to meet seasonal requirements. In
the spring, pollen collection drives brood production and colony size. In late summer, nectar collec-
tion is needed to insure sufficient stores for overwintering. Simulations indicated that increasing the
availability of non-contaminated forage could improve colony recovery following pesticide exposure
by increasing brood production (spring) or nectar stores (late summer). BEEHAVE also was used to
evaluate the effects of the neonicotinoid, clothianidin, on colony growth and survival. Simulations with
mortality due to pollen contamination indicated adverse effects only at high levels of exposure not seen
in field measurements. No colony effects were predicted when clothianidin concentrations similar to
field measurements were used.

Furthering investigations into the relationship between forage availability and colony growth,
Becher et al. (2016) [34] developed a software tool to examine how scout bees explore the floral
landscape. BEESCOUT uses image files imported into the program to serve as a “forage map”. The
location of floral (i.e., food) patches relative to the colony are calculated and used to generate probabili-
ties of scouts finding the food patches. Different scouting strategies can be used for food detection, and
probabilities of scouts finding food sources can compared. Detection probabilities of forage patches
are used as input for the BEEHAVE model, to explore realistic scenarios of colony growth and death in
response to different stressors. The nectar and pollen resources than can be collected are incorporated
into the BEEHAVE model by linking information on patch size, location food availability, and detec-
tion probability (BEESCOUT) with daily amounts of nectar and pollen provided by the patch, sugar
concentration, and handling times to collect full nectar and pollen loads as initialized in BEEHAVE.
The total amount on nectar and pollen provided on each day during the flowering period is then cal-
culated based on the patch size. Predictions from the simulations where the food source was close to
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the colonies fit empirical data with reasonable accuracy. However, no empirical data were available
for food sources further away. Still, predictions from the model show that landscape structure and
connectivity of food sources can have a strong impact on colony growth. The model can be a valu-
able tool for designing landscape configurations that incorporate searching behavior of bees, detection
probabilities, food availability, and foraging decisions that increase patch visitation rates and enhance
colony development and survival.

The BEEHAVE model was designed to simulate honey bee colony dynamics, but Becher et al.
(2018) [124] modified the model to simulate the growth, behavior and survival of six bumblebee species
native to the UK. The model uses an agent-based approach to generate predictions based in a mapped
landscape where nectar and pollen resources can be approximated based on the model of Becher et al.
(2016) [34] and can include the effects of multiple stressors on colony growth and survival. The model
captures colony dynamics using individual behaviors that are driven by spatio-temporal resource avail-
ability in various landscape compositions. The model incorporates energy budgets and depletion of
resources in mapped landscapes so that interspecific and intraspecific competition can emerge. Sim-
ulations on the effects of pesticide exposure indicate the impact on colony survival depends on the
population size at the time of exposure.

Computational models have been developed to simulate the interactions between Varroa and the
viruses they transmit, and predict the effects on colony survival. The first Varroa-virus model was de-
veloped by Martin (1998) [26] and Martin (2001) [38] and simulated the dynamics of a colony infested
with Varroa that transmitted either DWV or ABPV to the parasitized bees. The model indicated that
DWV would remain at low levels through much of the spring and summer with little effect on colony
growth. However, DWV infections increased in the fall as there were more mites carrying the virus.
This led to high levels of DWV-infected bees in the winter cluster and eventual colony death due to
the reduced lifespan of infected bees and the effects on the colony age structure. In contrast, ABPV
causes rapid death of infected bees, The model predicted that ABPV was difficult to establish in a
colony especially at low mite populations. Colony death occurred only when Varroa populations were
large with high levels of mites carrying the virus. The model accurately predicted that DWV would
become more widely established in bee populations than ABPV and be the predominant cause of death
in Varroa infested colonies.

Wilkinson and Smith (2002) [27] presented a difference equation model (with a time step of one
day) for adult worker bees, worker bee brood, drone bee brood, phoretic mites, and non-phoretic mites.
Unlike Martin (1998) [26], a simple but detailed sensitivity analysis was performed in which input vari-
ables were ranked in terms of relative importance. They found that viable reproduction in worker cells,
percentage of drone brood, mite invasion of drone brood and mite reproduction in drone brood are the
most important factors determining Varroa population growth rate.

Ratti et al. (2016) [46] studied the effect of swarming on a colony infested with mites and ABPV
using discrete-continuous framework based on Ratti et al. (2015) [45]. They studied swarming due
to overcrowding and at fixed time intervals. This study was done mainly computationally. The model
predicted that in a mite-virus infested colony, the proportion of mites leaving the parent colony with
the swarm may determine the fate of the colony. A colony, that otherwise dies off due to virus, can
survive if the percentage of mites leaving the parent colony is above a critical value.

In addition to applying mathematical and computational models for simulation, machine learning
also is being used to predict colony survival. Calovi et al. (2021) [125] used random forest (RF)
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matching learning method to evaluate the importance of weather, topography, land use, and manage-
ment factors on the apiary and colony-level overwintering mortality. Predictions on overwintering
survival from the model were more accurate at the colony than the apiary level. In colonies where Var-
roa was controlled, temperature (expressed in growing degree days) and precipitation the previous year
were the most important predictors of colony survival over the winter. Topographic factors and land-
scape quality were not important predictors of overwintering survival. Beekeepers that provided data
for the model may have fed their colonies protein and carbohydrate supplements during periods when
flowering plants were unavailable making it difficult to quantify landscape effects. Since the important
variables for predicting overwintering success were weather-related, a simpler predictive RF model
was created without landscape or topographic variables. Predictions from the second model were as
accurate as the full model. Because the model requires only weather conditions to generate predictions,
it could be used to predict overwintering survival under projected climate change scenarios, and serve
as a basis for developing decision support tools to effectively manage colonies in a changing climate.

6. Gaps and future directions

Addressing the global crisis of honeybee losses will require an integrated approach to evaluate the
combination of factors that culminate in the collapse of a colony population. Mathematical models
can be powerful tools to provide insights on how various stresses contribute to colony losses. These
theoretical tools are needed to identify mechanisms that can be difficult or costly to quantify in field
and will be an essential component in developing strategies to improve colony health.

The most common cause of colony losses is Varroa mites and the viruses they transmit [7, 87]. An
effective method of control is the selection of Varroa tolerant bee stock. Modelling interactions be-
tween honeybees and Varroa could point to key combinations of traits that could enhance the ability of
selected lines to reduce the growth of Varroa populations and viral transmission among bees. Increases
in Varroa populations and virus levels are connected, and it might be assumed that the virus, especially
DWV, is the cause of colony loss [94,126] due to effects on adult longevity and the age structure of the
colony. Modeling the connection between virus transmission rates and longevity of infected workers
could provide targets for the selection of bee stocks with traits that reduce viral transmission or repli-
cation. Models that incorporate spatial scales can provide landscape level information on the spread
of mite and viruses among colonies in an apiary. This information could be valuable in generating
apiary-level recommendations for the arrangement of hives and application of miticide treatments.

Climate change is an important factor contributing to the ongoing decline of pollinators [130].
Models that describe the effects of environmental factors on plant growth and flowering characteristics
(i.e., phenology, nutrients in pollen and nectar) under current and future weather scenarios could be
instrumental in predicting where crops and pollinator plantings could be established, and the traits they
would require to survive. Climate change also could affect the yearly cycle of honeybee colonies espe-
cially if fall and winter temperatures are conducive for flight. Models that incorporate future weather
conditions generated by climate projection models could determine the effects of late season foraging
activity on the age structure of colonies, and predict the impact on overwinter survival with and without
additional stress factors such as pathogens or poor nutrition.

Pesticides (fungicides and insecticides) are widely considered to be a key factor in the reduction
of insect pollinators. The effects of pesticides vary depending upon modes of action. Responses to
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pesticides that are neurotoxins differ from those that are metabolic inhibitors or that disrupt develop-
ment. As more information becomes available on sublethal effects of pesticides, the impact on colony
survival during and after exposure could be predicted by incorporating the information into colony
population dynamics models. Analyses to determine periods when colonies are most vulnerable to
loss from sublethal effects also could be defined so that beekeepers could avoid areas where pesticides
are applied during those times. Models that include effects of pathogens or poor nutrition that reduce
brood rearing and adult bee longevity also could capture the interactions with pesticide exposure that
culminate in colony loss. Recommendations for rescuing colonies exposed to pesticides by improving
nutrition [134] or controlling pests such as Varroa might also be generated within the framework of
colony dynamics.

Colony losses are economic liabilities to beekeepers that jeopardize the solvency of their businesses.
Economic models are needed to support decision making in implementing management protocols, es-
timating returns on investment at a colony level, setting prices for colony rental for pollination and
assessing the cost of colony losses at different times of year. An economic model of a commercial
beekeeping operation has been reported [5], but others are needed that include different management
strategies and revenue streams that could increase the profitability of beekeeping operations. Economic
models also could be a tool to continually update the value of honey bee pollination in crop production
and the agricultural economy as acreages of bee pollinated crops increase.

One goal of our paper is to review what we have done in mathematical modeling of honeybees and
suggest future studies that could occur. We found that with few exceptions [22, 29, 50, 56, 129], the
validation of theoretical models with field data is lacking. Model validation with experimental data
is needed to provide confidence in model predictions. The complexities of factors that determine the
survivorship of colonies will require the construction of models, but they must be based on field data
that include determinants of colony health (e.g., colony size, mite loads, presence of disease). Collab-
orations between mathematicians and biologist are needed to construct models that put field data into
a broader context and make use of their predictive power. These collaborations could be instrumental
in reducing colony losses because the models would provide a deeper understanding of the shifting
vulnerabilities of colonies throughout their seasonal cycle, and serve as a basis for management tools
to preserve colony health.
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B. Model details

Messan et al. (2018): [50]

dB
dt =

cqαqV
eg︸ ︷︷ ︸

egg production

− βbhB︸︷︷︸
maturation from brood to nurses

,

dN
dt = βbhB︸︷︷︸

maturation from brood to nurses

−N ∗ βh f ((
V
N

)−1)︸            ︷︷            ︸
maturation to foragers

− dhN︸︷︷︸
mortality

,

dF
dt = N ∗ βh f ((

V
N

)−1)︸            ︷︷            ︸
maturation from nurses

− d f F︸︷︷︸
mortality

,

dP
dt = F ∗

S B
1 + aB + bP︸               ︷︷               ︸

regulated pollen collection

− αNP︸︷︷︸
removing rate of pollen by nurse bee for VG production

− dpP︸︷︷︸
deterioration

,

dV
dt = cαNP︸︷︷︸

VG production by nurse bee with available pollen

− αbBV︸︷︷︸
brood consumption

− (1 − cq)αqV︸        ︷︷        ︸
Queen metabolic costs

− αhNV︸︷︷︸
nurses metabolic costs

−V ∗ βh f ((
V
N

)−1)︸            ︷︷            ︸
maturation to forager

− dhV︸︷︷︸
removal rate due to nurses death

,

(B.1)

where B indicates brood, N indicates nurses, F indicates foragers, P indicates pollen storage and V
indicates the rate of change of VG in nurse bees.

Laomettachit et al. (2021): [71] Core model

dBs

dt
= l0 −

Bs

nB
− pt0 · kNB · Ni · Bs,

dBi

dt
= −

Bi

nB
+ pt0 · kNB · Ni · Bs − krem · Bi · Ns − kd · Bi,

dNs

dt
=

Bs

nB
−

Ns

nN
− pt1 · kRN · Ri1 · Ns − pt,rem · krem · Bi · Ns,

dNi

dt
=

Bi

nB
−

Ni

nN
+ pt1 · kRN · Ri1 · Ns − krem · Ni · Ns + pt,rem · krem · Bi · Ns − kd · Ni,

(B.2)

where Bs represents the number of healthy brood, Bi represents the number of infected brood, Ns

represents the number of healthy nurses and Ni represents the number of infected nurses.

Extended model
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dRs0

dt
=

Ns

nN
−

Rs0

nR
− kFR · (Fs1 + Fi1) · Rs0 +

Rs1

ts
,

dRs1

dt
= −

Rs1

nR
+ kFR · (Fs1 + (1 − pt2) · Fi1) · Rs0 −

Rs1

ts
,

dRi0

dt
=

Ni

nN
−

Ri0

nR
− kFR · (Fs1 + Fi1) · Ri0 +

Ri1

ts
,

dRi1

dt
= −

Ri1

nR
+ kFR · (Fs1 + Fi1) · Ri0 + pt2 · kFR · Fi · Rs0 −

Ri1

ts
,

dFs0

dt
=

Rs0

nR
−

Fs0

nF
+ kFR · (Rs0 + Ri0) · Fs1 − kr · Fs0,

dFs1

dt
=

Rs1

nR
−

Fs1

nF
− kFR · (Rs0 + Ri0) · Fs1 + kr · Fs0,

dFi0

dt
=

Ri0

nR
−

Fi0

nF
+ kFR · (Rs0 + Ri0) · Fi1 − kr · Fi0,

dFi1

dt
=

Ri1

nR
−

Fi1

nF
− kFR · (Rs0 + Ri0) · Fi1 + psurv · kr · Fi0,

(B.3)

where Rs, Ri, Fs and Fi represent the number of nectar-receivers, infected nectar-receivers, healthy for-
agers, and infected foragers, respectively. Nectar-receivers and foragers can also change their nectar-
loaded state between unloaded (subscript 0) and loaded (subscript 1).

Sweeney et al. (2019): [49]
dBl

dt
=

rH2

K + H2︸   ︷︷   ︸
egg production

− dlBl︸︷︷︸
natural death

−
e−dlτl rH(t − τl)2

K + H(t − τl)2︸               ︷︷               ︸
maturation from larvae to pupae

,

dBp

dt
=

e−dlτl rH(t − τl)2

K + H(t − τl)2︸               ︷︷               ︸
maturation from larvae to pupae

− αb

probability of Mp
attaching to Bp︷  ︸︸  ︷

Bp

a + Bp
Mp︸                  ︷︷                  ︸

parasitism on brood

− dpBp︸︷︷︸
natural death

−
e
−

∫ t
t−τp

[
dp+

αp Mp(s)
a+Bp (s)

]
ds

rH(t − τp − τl)2

K + H(t − τp − τl)2︸                                       ︷︷                                       ︸
maturation to adult

,

dH
dt

=
e
−

∫ t
t−τp

[
dp+

αp Mp (s)
a+Bp (s)

]
ds

rH(t − τp − τl)2

K + H(t − τp − τl)2︸                                       ︷︷                                       ︸
maturation to adult

− αh

probability of Mh
attaching to H︷ ︸︸ ︷

H
a + H

Mh︸                  ︷︷                  ︸
parasitism on adult bee

− dhH︸︷︷︸
natural death

,

dMh

dt
= cαp

Bp(t − τp)
a + Bp(t − τp)

Mp(t − τp)︸                                ︷︷                                ︸
new mites from brood parasitism

− dmhMh︸ ︷︷ ︸
natural death

− βMh︸︷︷︸
transition to reproductive mites Mp

,

dMp

dt
= βMh︸︷︷︸

transition from phoretic mites

− dmpMp︸ ︷︷ ︸
natural death

.

(B.4)
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Messan et al. (2017): [48]

dH1

dt
=

r1H2
1

K1 + H2
1︸    ︷︷    ︸

successful reproduction at colony 1

− dh1 H1︸︷︷︸
natural death

− α1H1M1︸   ︷︷   ︸
parasitism effects

,

dM1

dt
= c1α1H1M1︸      ︷︷      ︸

newborns

− dm1 M1︸ ︷︷ ︸
natural death

+ ρ21
H2

a2 + H2
M2 − ρ12

H1

a1 + H1
M1︸                                   ︷︷                                   ︸

Net dispersal effects at colony 1

,

dH2

dt
=

r2H2
2

K2 + H2
2︸    ︷︷    ︸

successful reproduction at colony 2

− dh2 H2︸︷︷︸
natural death

− α2H2M2︸   ︷︷   ︸
parasitism effects

,

dM2

dt
= c2α2H2M2︸      ︷︷      ︸

newborns

− dm2 M2︸ ︷︷ ︸
natural death

+ ρ12
H1

a1 + H1
M1 − ρ21

H2

a2 + H2
M2︸                                   ︷︷                                   ︸

Net dispersal effects at colony 2

,

(B.5)

where ρi j represents the migration rate of mites from Patch j to Patch i.

Kang et al. (2016): [40]

dS h
dt =

r(S h + ρIh)2

K + (S h + ρIh)2︸              ︷︷              ︸
newborns

− dhS h︸︷︷︸
natural death

−
βhS hIh

S h + Ih︸  ︷︷  ︸
honeybee infected,

by nestmates

−
βmhS hIm

S h + Ih︸    ︷︷    ︸
adult honeybees
infected by the
phoretic mites

− βmhS hIm︸   ︷︷   ︸
brood infected by

the reproductive mites

−αS h(S m + Im)︸          ︷︷          ︸
parasitism by mites

,

dIh
dt = S h( βhIh

S h+Ih
+

βmhIm
S h+Ih

+ βmhIm) − αIh(S m + Im)︸         ︷︷         ︸
consumed by mites

− (dh + µh)Ih︸      ︷︷      ︸
death

,

dS m
dt = S m(cαS h −

βhmIh

S h + Ih︸  ︷︷  ︸
the phoretic mites
infected by adult

honeybees

−dm),

dIm
dt = cα(Ih(S m + Im) + S hIm)︸                        ︷︷                        ︸

mites born with virus infections

+
βhmIhS m

S h+Ih
− (dm + µm)Im.

(B.6)

Dénes and A. Ibrahim (2019): [93]

dS
dt

= A − β1S Hm − β2S Hi + αHm + αHi − dS ,

dHm

dt
= β1S Hm − β2HmHi − αHm − dHm,

dHi

dt
= β2S Hi + β2HmHi − αHi − dHi − δHi,

(B.7)

where Hs indicates susceptible hive bees, Fs indicates susceptible forager bees, Hm indicates hive
bees infested by non-infectious vectors and Hi indicates hive bees infested by infectious vectors.
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Ratti et al. (2012): [44]

dMI

dt
= β1(MS − MI)

HI

HS + HI︸                       ︷︷                       ︸
uninfected mites to infected mites

− β2MI
HS

HS + HI︸            ︷︷            ︸
infected mites lose virus

to uninfected host

,

dHS

dt
= µ

Hn
S

Kn + Hn
S

e−MI k︸              ︷︷              ︸
new healthy bees

− β3MI
HS

HS + HI︸            ︷︷            ︸
infected bees

− d1HS︸︷︷︸
death

− γ1MS HS︸    ︷︷    ︸
death because of mites

,

dHI

dt
= β3MI

HS

HS + HI︸            ︷︷            ︸
new infected bees

− d2HI︸︷︷︸
death

− γ2MS HI︸   ︷︷   ︸
death due to mites

,

dM
dt

= rM
(
1 −

M
α(HS + HI)

)
︸                      ︷︷                      ︸
logistic growth for total mites

,

(B.8)

where MI indicates the number of mites that carry the virus, HS and HI indicate the number of honey-
bees that are virus free and the number of honeybees that are infected with the virus, respectively.

Ratti et al. (2017): [47]

dH
dt

= µ
(H + F)i

Ki + (H + F)i h(MI)︸                      ︷︷                      ︸
new hive bees

− β1MI
H

H + HI + F︸                ︷︷                ︸
infected hives

− (d1 + δ1)H︸       ︷︷       ︸
death

− γ1(MI + MS )H︸             ︷︷             ︸
death due to mites

−H
(
σ1 − σ2

( F
H + F

))
︸                      ︷︷                      ︸

recruitment

,

dF
dt

= H
(
σ1 − σ2

( F
H + F

))
︸                      ︷︷                      ︸

recruitment

− β1MI
F

H + HI + F︸                ︷︷                ︸
infected foragers

− (p + d2 + δ2)F︸            ︷︷            ︸
death

− γ2(MI + MS )F︸            ︷︷            ︸
death due to mites

,

dHI

dt
= β1MI

H + F
H + HI + F︸                ︷︷                ︸

infected bees

− (d3 + δ3)HI︸        ︷︷        ︸
death

− γ3(MI + MS )HI︸              ︷︷              ︸
death due to mites

,

dMI

dt
= rMI

(
1 −

MI + MS

α(H + HI + F)

)
︸                            ︷︷                            ︸

logistic growth of mites

+ β2MS
HI

H + HI + F︸                 ︷︷                 ︸
virus-free mites to

virus-carrying mites

− β3MI
H + F

H + HI + F︸                ︷︷                ︸
virus-carrying mites lose
virus to uninfected host

− δ4MI︸︷︷︸
death due

to virus

,

dMS

dt
= rMS

(
1 −

MI + MS

α(H + HI + F)

)
︸                            ︷︷                            ︸

logistic growth of mites

− β2MS
HI

H + HI + F︸                 ︷︷                 ︸
virus-free mites to
virus-carrying mites

+ β3MI
H + F

H + HI + F︸                ︷︷                ︸
virus-carrying mites lose
virus to uninfected host

− δ5MS︸︷︷︸
death due
to virus

.

(B.9)
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Jatulan et al. (2015) : [101]

dBs

dt
= M − α1PBs −

C
v

M − β1Bs,

dBo

dt
= β1Bs − β2Bo,

dBi

dt
= α1PBs +

C
v

M − φ1φ2Bi,

dC
dt

= φ1φ2Bi[σ(v −C)],

dAs

dt
= β2(1 − α1P)Bo − α2

C
v

As − α3PAs − α4As − µAs,

dAi

dt
= β2α1PBo + α2

C
v

As + α3PAs + α4As − µAi,

(B.10)

where

P =
Ai

1 + As + Ai
and M = L

As + Ai

ω + As + Ai
.

The parameter Bs indicates the number of healthy brood in the hive before n hours old, Bo indicates
healthy brood in the hive older than n hours old, Bi indicates infected brood in the hive, C indicates
infected cell combs, As indicates adult bees without AFB spores and Ai indicates adult bees with AFB
spores.

Petric et al. (2016): [107]

dH
dt

= β
Zn

k(t)n + Zn︸       ︷︷       ︸
bee eclosion

−σ1H + σ2
F + FI

Z
F︸                  ︷︷                  ︸

recruitment

− η0H︸︷︷︸
Natural death

− αH
E

λ + E︸     ︷︷     ︸
acquisition of disease

,

dHI

dt
= −σ1HI + σ2

F + FI

Z
FI︸                      ︷︷                      ︸

recruitment

− η1HI︸︷︷︸
Natural death

+ αH
E

λ + E︸     ︷︷     ︸
acquisition of disease

,

dF
dt

= σ1H − σ2
F + FI

Z
F︸                  ︷︷                  ︸

recruitment

− φ0F︸︷︷︸
Natural death

,

dFI

dt
= σ1HI − σ2

F + FI

Z
FI︸                    ︷︷                    ︸

recruitment

− φ1FI︸︷︷︸
Natural death

,

dE
dt

= γHI︸︷︷︸
spore deposition

− δE︸︷︷︸
spores lose viability

− α̃H
E

λ + E︸     ︷︷     ︸
spore uptake

,

(B.11)

where H,HI , F, and FI represents the number of uninfected hive bees, infected hive bees, uninfected
foragers, and infected foragers respectively.
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Muhammad and Eberl (2020): [108]

dH
dt

= β
Zn

kn + Zn︸    ︷︷    ︸
bee eclosion

− σ1H︸︷︷︸
recruitment

+σ2
F + FI

Z
F︸        ︷︷        ︸

social inhibition

− η0H︸︷︷︸
Natural death

− αH
E

λ + E︸     ︷︷     ︸
acquisition of disease

− µ(HI + FI)H︸         ︷︷         ︸
direct transmission

,

dHI

dt
= −σ1HI︸ ︷︷ ︸

recruitment

+σ2
F + FI

Z
FI︸         ︷︷         ︸

social inhibition

− η1HI︸︷︷︸
Natural death

+ αH
E

λ + E︸     ︷︷     ︸
acquisition of disease

+ µ(HI + FI)H︸         ︷︷         ︸
direct transmission

,

dF
dt

= σ1H︸︷︷︸
recruitment

−σ2
F + FI

Z
F︸        ︷︷        ︸

social inhibition

− φ0F︸︷︷︸
Natural death

− µ(HI + FI)F︸         ︷︷         ︸
direct transmission

,

dFI

dt
= σ1HI︸︷︷︸

recruitment

−σ2
F + FI

Z
FI︸         ︷︷         ︸

social inhibition

− φ1FI︸︷︷︸
Natural death

+ µ(HI + FI)F︸         ︷︷         ︸
direct transmission

,

dE
dt

= γHI︸︷︷︸
spore deposition

− δE︸︷︷︸
spores lose viability

− α̃H
E

λ + E︸     ︷︷     ︸
spore uptake

.

(B.12)
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Comper and Eberl (2020): [110]

dH
dt

= β
Zn

kn + Zn︸    ︷︷    ︸
bee eclosion

− σ1H︸︷︷︸
recruitment

+σ2
F + FI

Z
F︸        ︷︷        ︸

social inhibition

− η0H︸︷︷︸
Natural death

−

η̃0
a2

a2 +
(

f +s
Z

)2

 H

︸                ︷︷                ︸
starvation induced death

− αH
E

λ + E︸     ︷︷     ︸
acquisition of disease

− µ(HI + FI)H︸         ︷︷         ︸
direct transmission

,

dHI

dt
= −σ1HI︸ ︷︷ ︸

recruitment

+σ2
F + FI

Z
FI︸         ︷︷         ︸

social inhibition

− η1HI︸︷︷︸
Natural death

−

η̃1
b2

b2 +
(

f +s
Z

)2

 HI︸                 ︷︷                 ︸
starvation induced death

+ αH
E

λ + E︸     ︷︷     ︸
acquisition of disease

+ µ(HI + FI)H︸         ︷︷         ︸
direct transmission

,

dF
dt

= σ1H︸︷︷︸
recruitment

−σ2
F + FI

Z
F︸        ︷︷        ︸

social inhibition

− φ0F︸︷︷︸
Natural death

−

φ̃0
a2

a2 +
(

f +s
Z

)2

 F

︸                ︷︷                ︸
starvation induced death

− µ(HI + FI)F︸         ︷︷         ︸
direct transmission

,

dFI

dt
= σ1HI︸︷︷︸

recruitment

−σ2
F + FI

Z
FI︸         ︷︷         ︸

social inhibition

− φ1FI︸︷︷︸
Natural death

−

φ̃1
b2

b2 +
(

f +s
Z

)2

 FI︸                 ︷︷                 ︸
starvation induced death

+ µ(HI + FI)F︸         ︷︷         ︸
direct transmission

,

dE
dt

= γHI︸︷︷︸
spore deposition

− δE︸︷︷︸
spores lose viability

− α̃H
E

λ + E︸     ︷︷     ︸
spore uptake

,

d f
dt

= c0F + c1FI︸       ︷︷       ︸
Food collection

−

(
θ0

f
h + f + νs

)
(H + F) −

(
θ1

f
h + f + νs

)
(HI + FI)︸                                                              ︷︷                                                              ︸

Food consumption (workers)

− θbβ
Z2

k2 + Z2︸       ︷︷       ︸
Food consumption (brood)

−
− ln

(
f (th)
f (t0)

)
th − t0︸      ︷︷      ︸
Harvest

,

ds
dt

= µ︸︷︷︸
Sugar addition

−

(
θ0

s
h + s

)
(H + F) −

(
θ1

s
h + s

)
(HI + FI)︸                                               ︷︷                                               ︸

Sugar consumption

.

(B.13)
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