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Abstract: This paper investigates the problem of rapid exponential stabilization for linear Lotka-
McKendrick’s equation. Based on a new event-triggered impulsive control (ETIC) method, an impul-
sive control is designed to solve the rapid exponential stabilization of the dynamic population Lotka-
McKendrick’s equation. The effectiveness of our control is verified through a numerical example.
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1. Introduction

It is well known that continuous control fails to solve many stabilization tasks for nonlinear control
systems [1]. The first result concerning the use of discontinuous controllers that stabilize any asymp-
totically controllable systems is given in [2], where the author assumes that the system is analytic and
completely controllable. Recently, thanks to the use of new technologies, the powerful event-triggered
impulsive control method (ETIC) has provided impressive results and has successfully controlled many
complex systems. In the last two decades, considerable attention was paid to the use of event-triggered
impulsive control to control ordinary differential equations.

The ETIC method transmits data packages and updates control inputs only when the predefined
criterion is satisfied [3–8]. In [9], the stabilization of nonlinear systems was solved by using the
ETIC method and the hybrid system tools. The ETIC method was also used to stabilize networked
systems [10, 11] and multi-agent systems (MASs) [12, 13]. A Survey of Trends and Techniques is
given [14] as well as in [15], recently.

The success of the ETIC method with ordinary differential equations has encouraged their general-
ization to partial differential equations. In [16], the ETIC method was used for designing a predictive
control for spatially distributed processes with low order dynamics and for a limited number of output
measurements modeled by nonlinear parabolic PDEs. This check is carried out using a state observer
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in order to monitor the estimation error of the model at each sampling instant. In [17], boundary con-
trol for 1-dimensional linear hyperbolic systems of conservation laws was investigated. In [18], the
stabilization problem of boundary controlled hyperbolic partial differential equations was achieved.
Later, an event-triggered boundary control based on the emulation of backstepping boundary control is
given in [19]. More recently, an event-triggered boundary control to stabilize a PDE reaction-diffusion
system with a Dirichlet boundary condition was proposed in [20].

Inspired by the event-triggered impulsive control method developed for finite-dimensional sys-
tems [6, 8] an extension to the linear Lotka Mckendrick’s equation (which is infinite dimensional)
is introduced in this paper. The control problem of Lotka Mckendrick’s equation has been largely
studied in the literature of various kinds. Firstly, in the linear case in which diffusion is neglected,
some null controllability results concerning the age-dependent population dynamics model, were first
obtained by Barbu et al. [21]. The authors proved that the system is controllable, provided that the
control is supported in an age interval not containing zero. Recently, Hegoburu et al. [22] proved that
the restriction of [21] is unnecessary, as long as the individuals do not reproduce at the age close to
zero. More recently, [23] demonstrated that null controllability can be achieved by controls supported
in any sub-interval of the age domain, provided we take control before individuals start reproducing.

Secondly, in the linear case where spatial diffusion is taken into account, Ainseba [24] proved the
null controllability using a control that acts in a spatial sub-domain and for all ages except for a small
age interval near zero. The case where the control operated in a spatial sub-domain and for all ages
and for initial data near the target trajectory was investigated by Ainseba and Anita [24], and Kavian
and Traore [25]. In [26] Traore has demonstrated the null controllability for such model with non-
linear distributions of newborns and where the control is localized in a variable and active space for
all ages (except for small ages). More recently, Maity, Tucsnak and Zuazua, in [27], have shown that
the same result can be obtained by a control localized in the variable space as well as with respect to
age. The controllability of non-linear controlled population dynamics without diffusion was discussed
in [28]. Using a comparison principle for age-structured population dynamics, null controllability was
obtained while preserving the non-negativity of the state trajectory. While in [29], the approximate
controllability was proved via the unique continuation property of the adjoint system for the non-linear
controlled population dynamics case with diffusion.

In this paper, we design an event-triggered impulsive control that rapidly exponentially stabilizes
the system under consideration. The main contribution of our work is three-folds :i) the generalization
of the ETIC method initially adopted for finite dimension systems in order to stabilize systems of
infinite dimensions, ii) the rapid nature of the exponential stabilization, and iii) the removal of the
non-verifiable convergence condition given by [6].

The paper is organized as follows. In the second section, we formulate our problem and we define
the control task to be solved. In the third section, we present our event-triggered control strategy and
we prove the main result. In the third section, we illustrate this result numerically.

2. Problem statement

Let’s consider the Lotka-McKendrick equation:

pt(t, a) + pa(t, a) + µ(a)p(t, a) = 0, t ≥ 0, a ∈ [0, aM], (2.1)
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p(t, 0) =

∫ aM

0
β(a)p(t, a)da, (2.2)

p(0, a) = p0(a), (2.3)

where p(t, a) denotes the distribution of individuals of age a >0 at time t >0, aM designates the life
expectancy of an individual, β(a) >0 represents the natural fertility rate and µ(a) >0 signifies the
natural mortality rate of individuals of age a. Equation (2.2) is viewed as a boundary condition and Eq
(2.3) is some initial condition. In the following, we assume that the following standards conditions are
fulfilled:

H1. β ∈ L∞(0, aM), β ≥ 0 for almost every a ∈ (0, aM).

H2. µ ∈ L1(0, a∗), for every a∗ ∈ (0, aM), µ ≥ 0 for almost every a ∈ (0, aM).

H3.
∫ aM

0
µ(a)da = +∞.

Conditions (H2)–(H3) are considered in the following papers [30, 31] and [27], to cite a few. A
discussion about the meaning of such conditions can be found in [32].

For Eqs (2.1)–(2.3), we assume that we can act on the state p(t, a) only at some sampling sequence
of times 0 = t0 < t1 < · · · < tk < tk+1 < · · · , with tk tends to +∞ as t towards to +∞, where the sequence
(tk)k≥0 is chosen in such a way to achieve our control objective which is the stabilization around a given
referential distribution pr(a).

To the best of our knowledge, this is the first work using the ETIC method to control the Lotka-
McKendrick equation.

In this paper, we will construct a sequence (t+
k , p(t+

k , a)) to control system Eqs (2.1)–(2.3), taking
inspiration from the event-triggered strategy given recently in [6] for finite dimensional ordinary dif-
ferential equations. This is the first attempt to generalize this strategy for infinite dimensional systems.
We point out that the ETIC method is new in the stabilization of infinite dimensional systems and
many recent results are established [18–20]. We shall generalize this strategy to adopt it to a system in
infinite dimension, under a more rational and easy to verify hypothesis, and such that the solution of
the following system:

pt(t, a) + pa(t, a) + µ(a)p(t, a) = 0, t ≥ 0, t , tk (2.4)
p
(
t+
k , a

)
= λik pe(tk, a) = Ik(p(tk, a)), t = tk, k = 1, 2, .. (2.5)

p(t, 0) =

∫ aM

0
β(a)p(t, a)da, (2.6)

p(0, a) = p0(a), (2.7)

Converge exponentially to a given referential population distribution pr(a), where ik ∈ Q, Q is a
finite discrete set and pe(tk, a) is the error between the current state p(tk, a) at time tk and the reference
trajectory pr(a):

pe(tk, a) = (p (tk, a) − pr(a)).
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We can guarantee that the Eqs (2.4)–(2.7) is well posed if the Eqs (2.1)–(2.3) is well posed for all
initial conditions p0 ∈ L1 (0, aM) and the process continues as long as the solution exists and as long
as they do not cause an infinite number to occur out of discrete transitions in a finite time interval.
The phenomenon of an infinite number of discrete transitions in a finite time interval is known as the
”Zeno behavior”. The existence of solutions of the linear Eqs (2.1)–(2.3) has been implicitly proved by
several authors and goes back to the work of McKendrick [33], Lotka [34], Gurtin and MacCamy [30]
and more recently Kappel and Zhang [31]. A more complete and detailed study of this equation is given
in [32, 35], where a more general case was considered and the boundary condition (2.2) becomes:

p(t, 0) =

∫ aM

0
β(t, a)p(t, a)da.

In the following we give a precise definition of the notion of rapidly exponential stabilization of a
reference trajectory by means of data-driven control.

Definition 2.1. The referential population pr(a) is rapidly exponentially stable if for all decay rate α,
there exist a sequence (t+

k , p(t+
k , .)) and a positive constant c, such that for all initial condition p0 ∈

L1(0, aM), the solution p of Eqs (2.4)–(2.7) satisfies :

‖p(t, ·) − pr(·)‖1 ≤ c e−αt‖p0(·)‖1, ∀ t ≥ 0. (2.8)

Remark 1. In the above definition, the word “rapidly” in the definition of “rapid exponential stability”
is due to the fact that the decay rate α in this case is predetermined, and therefore we can choose it as
large as we want. As well as, we have considered the L1(0, aM)-norm since the nature state space for
the Eqs (2.1)–(2.3) is L1 (0, aM). In fact, the L1 (0, aM) norm of a non negative age distribution is the
corresponding total population,

P(t) =

∫ aM

0
p(t, a)da.

For this reason, we adopt this norm in order to measure the convergence of the total population towards
the reference population.

3. Main result

In this section, we establish our main result concerning the design of data-driven control strategy
that rapidly stabilizes our Eqs (2.4)–(2.7) in the sense of the above definition.

Let σ and ∆ be two positive real numbers such that σ > 1. Let Q = {1, 2, 3} and λ1, λ2, λ3 are such
that

− 1 < λ3 < λ2 < λ1 < 0. (3.1)

From t = 0, we put t+
0 = 0 and pe(t+

0 , a) = p0(a) − pr(a), the construction of the sequence (tk, p(t+
k , a))

for k ≥ 1 is done in a recursive way according to the occurrence of the three following events:

E1 :


If ∀t ∈ ]tk, tk + ∆] , ‖pe(t)‖1 <

∥∥∥pe(t+
k )

∥∥∥
1
,

then we put
{

tk+1 = tk + ∆ and
pe(t+

k+1, a) = (1 + λ1)pe(tk+1, a).
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E2 :


If ∀ t ∈]tk, tk + ∆], ‖pe(t)‖1 < σ‖pe(t+

k )‖1, and ∃ t ∈]tk, tk + ∆], ‖pe(t)‖1 ≥ ‖pe(t+
k )‖1,

then we put
{

tk+1 = tk + ∆ and
pe(t+

k+1, a) = (1 + λ2)pe(tk+1, a).

E3 :


∃ t ∈]tk, tk + ∆], ‖pe(t)‖1 ≥ σ‖pe(t+

k )‖1,

then we put
{

tk+1 = min{t ∈]tk, tk + ∆], ‖pe(t)‖1 ≥ σ‖pe(t+
k )‖1

pe(t+
k+1, a) = (1 + λ3)pe(tk+1, a).

The following Theorem is the main result of our work.

Theorem 3.1. There exist σ > 1, ∆ > 0, λ1, λ2, λ3 satisfying (3.1), such that Eqs (2.4)–(2.7) with the
above switching strategy is rapidly exponentially stable.

Proof. First of all, let us note that the system cannot have a Zeno behavior. In fact, it is well known
that a sufficient condition for that is the existence of some positive constant δ > 0 such that for all
k ≥ 0, tk+1 − tk ≥ δ. To do this, let δ = min{∆, ln(σ)}. From the construction of the events E1 and E2,
we have tk+1 − tk = ∆ ≥ δ, while in event E3 we have tk+1 = min{t ∈]tk, tk + ∆], ‖pe(t)‖1 ≥ σ‖pe(t+

k )‖1}
and thus ‖pe(t)‖1 = σ‖pe(t+

k )‖1 for t = tk+1 while ‖pe(t)‖1 < σ‖pe(t+
k )‖ for all t ∈ (tk, tk+1). In particular

it follows that tk+1 , tk and then there exists δ > 0 such that tk+1 − tk = δ, It therefore ensues that the
Zeno behaviour cannot occur.

Now, let’s prove the rapid exponential stability of the Eqs (2.4)–(2.7). Let

σ∗ =
1 + λ1

1 + λ2
.

In view of Eq (3.1), we have σ∗ > 1. In the following, we will show that for all σ ∈ (1, σ∗) the
referential trajectory pr is exponentially stable with a decay rate

α =
− ln(1 + λ1)

∆
> 0. (3.2)

Let t ∈ (tk, tk+1]. Three cases are possible.
First case : If tk+1 results from an occurrence of event E1. Then, by the definition of tk+1, we have
‖pe(tk+1)‖1 ≤ ‖pe(t+

k )‖1 and ‖pe(t)‖1 < ‖pe(t+
k )‖1 for all t ∈ [tk, tk+1). Then, we obtain in this case,

‖pe(t+
k+1)‖1 ≤ (1 + λ1)‖pe(t+

k )‖1. (3.3)

Second case : If tk+1 results from an occurrence of event E2. Then, from the definition of tk+1, we have
‖pe(tk+1)‖1 ≤ σ‖pe(t+

k )‖1 and ‖pe(t)‖1 < σ‖pe(t+
k )‖1 for all t ∈ [tk, tk+1). Then, we obtain in this case

‖pe(t+
k+1)‖1 ≤ σ(1 + λ2)‖pe(t+

k )‖1. (3.4)

Third case : If tk+1 results from an occurrence of event E3. Then, by continuity, we have ‖pe(tk+1)‖1 =

σ‖pe(t+
k )‖1 and ‖pe(t)‖1 < σ‖pe(t+

k )‖1 for all t ∈ [tk, tk+1). Then, we obtain in this case

‖pe(t+
k+1)‖1 ≤ σ(1 + λ3)‖pe(t+

k )‖1. (3.5)
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Let Nk
i be the number of occurrences of event Ei, i = 1, 2, 3 in the interval (0, tk]. Then, combining

(3.3), (3.4) and (3.5), it follows that for all k ≥ 0 and t ∈ (tk, tk+1] we have:

‖pe(tk+1)‖1 ≤ (σ(1 + λ2))Nk
2 (σ(1 + λ3))Nk

3 (1 + λ1)Nk
1‖p0‖1,

≤ (σ∗(1 + λ2))Nk
2 (σ∗(1 + λ3))Nk

3 (1 + λ1)Nk
1‖p0‖1,

≤ (1 + λ1)k‖p0‖1,

≤ exp
(
k ln(1 + λ1)

)
‖p0‖1,

≤ C exp
( ln(1 + λ1)

∆
t
)
‖p0‖1,

where C = 1
1+λ1

. We have used the fact that if t ∈ (tk, tk+1), then t ≤ (k + 1)∆ and therefore k ≥
t/∆ − 1. Thus, Eqs (2.4)–(2.7) with the switching strategy defined above is exponentially stable with
the prescribed decay rate α defined in (3.2). Noting that if λ1 (which can be chosen arbitrarily in (−1, 0))
is very close to −1, then the decay rate α can be as large as one wants. Then, the rapid exponential
stabilization for the Eqs (2.4)–(2.7) is proved. �

Remark 2. Note that the fact that the impulsive control acts on the whole Omega domain does not
diminish the interest of our work for several reasons. In addition to the reasons mentioned at the end of
the introduction of this paper, it often happens that in practice, one cannot control a system neither from
the boundary nor on a sub-domain, and one is thus obliged to apply a control on the whole domain.
For example, in the case of an epidemic (as in the case of Covid-19), many strict measures imposed
such as social distancing and the wearing of masks failed to control the propagation of the pandemic,
and many countries were forced to resort to a complete lockdown despite its disastrous effects on the
economy. The hope of controlling the spread of the epidemic has become dependent on the vaccination
of the whole population [36]. Finally, our control strategy can be applied to other types of equations,
such as those derived from brain activity. Although the localization in the brain of simple functions
is well known, brain observation techniques such as (MEG), (EEG) and (fMRI) allow us to study the
dynamics of the human brain. But unfortunately, for more complex functions (language, memory,
attention, ...), neuroscientists have not reached the level of the spatio-temporal resolution necessary
to specify the localizations corresponding to brain activities by these techniques [37, 38]. Therefore a
control on the whole domain is necessary [39].

Remark 3. The main issue to investigate is how to generalize the event-triggered impulsive control
method for the more general class of semi-linear evolution equation

u′(t) = Au(t) + f (t, u(t)), (3.6)

with initial condition u(0) = u0 ∈ D(A), where A is the generator of C0-semigroup and f satisfies the
hypothesis of Theorem 1.5 in [40].

Remark 4. It is important to mention that in the original ETIC method introduced by [6], the con-
dition imposed on the system that guaranteed the global uniform exponential stabilization cannot be
applied to obtain a rapid exponential stabilization. Indeed, the condition is expressed according to the
number of occurrences of events E1, E2 and E3, which are future incidents and therefore they are not
yet produced at the beginning of the process. This makes the validation of the convergence condition
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impossible. Furthermore, the convergence rate in the cited paper is bounded as mentioned in Remark
3.1 in [6]. However, in our work, the convergence is not formulated as a function of the numbers of
these incidents. In addition, our decay rate is unbounded.

4. Numerical application

To illustrate the applicability of our result, we consider Lotka-Mckendrick’s equation in a general
case where the functions birth rate and death rate are functions and not constants: the death rate func-
tion is µ(a) =

1
aM − a

and the birth rate function is β(a) = 1[3,8](a) tanh(a). To compute the numerical

solution, we adopt the discretization of Eqs (1)–(3) considered by [41] with age and time steps of length
h = 0.0078125. Moreover, we take as initial condition p0(t, a) = 100exp(−a − t) and as referential
solution the solution pr = a(aM − a) and we assume that the maximum age of an individual is aM = 10
and T = 10.

The state trajectories of Eqs (2.1)–(2.3) with initial condition p0(t, a) = 100exp(−a− t) and without
control are depicted in Figure 1.

Now, to stabilize the Eqs (2.1)–(2.3), we apply our strategy for event-triggered impulsive control
given in in Section 3 with the following values of parameters ∆ = 0.39, σ = 1.2, λ1 = −0.9, λ2 = −0.3,
and λ1 = −0.1.

The convergence of trajectories of the error dynamic pe = p− pr is depicted in Figure 2 in 3D and in
Figure 3, which shows that the error dynamics is exponentially stable under designed ETIC. Finally the
Figure 4 shows the exponential convergence of the solution p of system to the referential population
pr = a(aM − a).

Figure 1. The solution p of Eqs (2.1)–(2.3) without control.
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Figure 2. The convergence of the error dynamics pe to zero.

Figure 3. The convergence of the norm of error dynamics pe to zero.

Figure 4. The convergence of the solution p to the referential solution pr.
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5. Conclusions

In this paper, an event triggered impulsive control to stabilize the Lotka-McKendrick equation has
been designed. The rapid exponential stabilization is achieved and a numerical illustration to validate
the result is given. This work leaves some open questions for future works. The event-based stabi-
lization approaches may be applied to a semilinear evolution equation. Another interesting point is to
apply this control strategy for boundary control or sub-domain control with a finite number of actuation
points particularly for some systems in particular for Lotka-McKendrick equation.
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