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Abstract: Background: Various studies have suggested that the DNA methylation signatures were
promising to identify novel hallmarks for predicting prognosis of cancer. However, few studies have
explored the capacity of DNA methylation for prognostic prediction in patients with kidney renal
clear cell carcinoma (KIRC). It’s very promising to develop a methylomics-related signature for
predicting prognosis of KIRC. Methods: The 282 patients with complete DNA methylation data and
corresponding clinical information were selected to construct the prognostic model. The 282 patients
were grouped into a training set (70%, n = 198 samples) to determine a prognostic predictor by
univariate Cox proportional hazard analysis, least absolute shrinkage and selection operator (LASSO)
and multivariate Cox regression analysis. The internal validation set (30%, n = 84) and an external
validation set (E-MTAB-3274) were used to validate the predictive value of the predictor by receiver
operating characteristic (ROC) analysis and Kaplan—Meier survival analysis. Results: We
successfully identified a 9-DNA methylation signature for recurrence free survival (RFS) of KIRC
patients. We proved the strong robustness of the 9-DNA methylation signature for predicting RFS
through ROC analysis (AUC at 1, 3, 5 years in internal dataset (0.859, 0.840, 0.817, respectively),
external validation dataset (0.674, 0.739, 0.793, respectively), entire TCGA dataset (0.834, 0.862,
0.842, respectively)). In addition, a nomogram combining methylation risk score with the
conventional clinic-related covariates was constructed to improve the prognostic predicted ability for
KIRC patients. The result implied a good performance of the nomogram. Conclusions: we
successfully identified a DNA methylation-associated nomogram, which was helpful in improving
the prognostic predictive ability of KIRC patients.
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1. Introduction

Renal cell carcinoma (RCC) is a genitourinary type of carcinoma, accounting for more than 2%
of cancer-associated deaths worldwide [1,2]. KIRC is the most common subtype of RCC [3].
Presently, surgical resection is the major therapy of KIRC patients, after which patients with KIRC
still have a quite large risk of cancer recurrence and metastasis [4]. In fact, more than 30% of patients
who are diagnosed with KIRC experience metastasis, leading to a poor five-year survival rate [5]. It
is commonly recognized that the patients with metastatic KIRC have a very dismal prognosis mainly
due to the failure of early diagnosis and resistance to chemoradiotherapy [6]. it is urgently needed to
find sensitive and reliable biomarkers for individualized prediction of KIRC patients.

Previous studies have reported that specific molecules could serve as survival-associated
KIRC hallmarks. For example, Chen et al. suggested that a 3-mRNA predictor was proved to be a
useful model for prognostic evaluation and could improve personalized management of KIRC
patients [7]. Guan et al. identified a biomarker in KIRC based on miRNA-seq and digital gene
expression-seq data [8]. A study revealed the prognostic value of a long non-coding RNA signature
in localized clear cell renal cell carcinoma [9]. A previous research reported that fibroblast activation
protein predicted prognosis in KIRC [10]. In the process of exploring prognostic markers of cancer,
accumulating studies reported that epigenetic modification could affect key cancer-related genes,
which implied its significant role in carcinogenesis. For instance, a study suggested that epigenetic
therapeutics served as a new weapon in the war against cancer [11]. A previous research revealed
their study in the cancer epigenome for therapy [12]. A research reported the interacting cancer
machineries: cell signaling, lipid metabolism, and epigenetics [13]. Presently, DNA methylation is
significantly involved in epigenetic regulatory mechanism which is intensively studied. Alters in DNA
methylation may impact gene expression and interplay with numerous feedback mechanisms [14]. Thus,
DNA methylation is a key factor for cancer development and various studies has suggested that DNA
methylation may function as a predictor for diagnosis and prognosis of cancer. For instance, Brock et
al. revealed DNA methylation markers in stage | lung cancer [15]. Shen et al. suggested that seven-
DNA methylation CpG-based prognostic signature coupled with gene expression may predict
survival of oral squamous cell carcinoma [16]. GUndert et al. indicated that genome-wide DNA
methylation analysis revealed a prognostic classifier for non-metastatic colorectal cancer [17]. It has
been reported that DNA methylation profiling is highly accurate and reproducible even using small
specimens and poor quality material [18]. Therefore, the analysis of DNA methylation is promising
to uncover novel biomarkers for predicting prognosis of cancer. However, few studies have explored
the ability of DNA methylation for prognostic prediction in patients with KIRC. It’s very promising
to build a methylomics-related signature for predicting prognosis of KIRC.

In present study, an integrative analysis was carried out for the prediction of KIRC patients’
prognosis and a 9 DNA methylation signature-based classifier was developed using univariate,
LASSO, and multivariate Cox regression model. Next, we used Kaplan-Meier analysis, ROC
analysis to assess and validate the prediction accuracy of the classifier in internal validation set,
external validation set and entire TCGA set. In addition, a high prognostic predicted power of our
nomogram was proved based on the training set and internal validation set.

2. Materials and methods
2.1. DNA methylation information of KIRC patients
The KIRC DNA methylation information and relevant clinical information was
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downloaded from TCGA database by using R TCGAbiolinks package [19]. The KIRC DNA
methylation data was measured by using Illumina Infinium HumanMethylation450 BeadChip
(450 k) arrays based on the manufacturer’s instructions. E-MTAB-3274 was retrieved from
ArrayExpress database using ArrayExpress package [20]. The DNA methylation levels were set
as B values, computed as M / (M + U + 100), with U standing for an unmethylated signal and M
standing for a methylated signal. After removing the patients without survival data, the remaining
282 patients with complete DNA methylation data and clinical information were used for
constructing prognostic model. The 282 patients were grouped into a training group (70%, n = 198
samples) to identify a prognostic classifier and an internal validation group (30%, n = 84) to validate
the predictive performance of the classifier. On the other hand, the 102 KIRC patients of E-MTAB-
3274 from ArrayExpress database were employed as an external validation dataset. LASSO COX
regression analysis was employed to further determine the candidate methylation sites involved in
KIRC patients’ RFS. In addition, LASSO analysis was executed by using 1000 iterations on the basis
of a publicly available R package “glmnet” [21].

2.2. Data processing, normalization and determination of differentially expressed methylation sites

Pre-processing of the raw data was implemented for the determination of a prognostic
classifier of KIRC. First of all, Raw methylation data was filtered for selecting the probes in at least
one sample. After that, the normalization of the data was executed with “betagn” function of
wateRmelon package [22]. Subsequently, the total KIRC samples were divided into two cohorts
(recurrence and no recurrence cohort) in accordance to recurrence status. The standardized beta was
transformed to M value on the basis of the formulation: M = log (B/(1-p)). M value was applied for
the elimination of the variance which resulted from multiple probes. Finally, M value was exploited
for the determination of the differentially expressed methylation sites between recurrence and no
recurrence cluster according to “dmpFinder” function of minfi package [23].

2.3. Generation of methylomics-related signature

In the training set, the differentially expressed methylation sites were analyzed by a
univariate Cox proportional hazards regression analysis to screen the promising sites that were
importantly associated with RFS of KIRC patients. Then, those sites with p-values < 0.05 in the
univariate Cox proportional hazards regression model were used for the LASSO Cox regression
analysis to extract candidate sites tightly related to KIRC patients’ RFS. Finally, the multivariate Cox
regression analysis was performed by the candidate sites for selecting the methylome-based predictor
of KIRC patients” RFS. As a result, 9 DNA methylation sites were employed to develop the
methylation-based prognostic predictor. Then a risk-score model was constructed by using the 9-
DNA methylation signature to compute risk scores of all of the KIRC patients. According to this risk
score tool, we separated patients into high and low-risk groups by using a cutoff risk score of the
median risk score. We conducted ROC analysis to assess the power of the 9-DNA methylation
signature. AUC value was calculated in ROC analysis to weigh the predicted accuracy of
methylome-based predictor for KIRC patients’ RFS with the “survivalROC” package [24], the larger
of the AUC value, the better for the predicted accuracy of the signature. Kaplan—Meier survival was
exploited to compare differences in RFS between high- and low-risk clusters and Kaplan—Meier
curves were obtained across the “survival” package [25].
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2.4. Gene set variation analysis (GSVA)

Single sample gene sets enrichment analysis (sSSGSEA) was conducted based on TCGA KIRC
MRNA dataset with GSVA package [26] to assess the 9-DNA methylation signature-relevant signaling
pathways. The most important pathway positively correlated with risk score was measured. According to
this risk score model, we separated patients into high and low-risk groups by using a cutoff risk score of
the median risk score. A p value of < 0.05 was considered as statistically significant.

2.5. Construction of the nomogram

The univariate and multivariate Cox proportional hazard analysis were conducted via the
methylation risk score and other clinic-related variables. Cox proportional hazard models was
exploited to measure hazard ratios (HR) and corresponding 95% confidence interval (Cl) of variables.
Factors that were significant (P < 0.05) from the multivariate Cox proportional hazard analysis were
applied for constructing a nomogram by using the ‘rms’ R package. The prognostic nomogram was
developed in TCGA-KIRC dataset for predicting 1, 3, 5-year’s RFS of KIRC patients, respectively.
C-index, ROC and calibration plot and decision curve analysis (DCA) were applied to evaluate
prognostic nomogram performance. The results of the nomogram were presented in the calibrate
curve, and the 45<line refers to the ideal prediction.

3. Results

3.1. Clinical characteristics of the study populations

KIRC data from TCGA database (282 samples) and ArrayExpress
database ( 102 samples)(including 485577 methylation sites)

942 differentially intersected methylation
sites were screened between recurrence and
no recurrence group

l Univariate COX analysis

403 differentially methylated sites were identified
that were significantly associated with RFS

Lasso COX model with training
J set, 1000 iterations

18 candidate DNA methylation sites were identified

Multivariate COX analysis with backward
and forward stepwise method

3 Evaluation of predictive performance

9-DNA methylation signature was identified b of the 9-DNA methylation signature and
identification of 9-DNAmethylation

signature associated pathways

K-M survival analysis

+

Association between 9-DNA methylation
signature and patient RFS in internal, external
validation sets and entire TCGA dataset

L ]

Construction of the nomogram |

» : Validation of the nomogram

Figure 1. Flow chart of the present study.
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Totally, 282 TCGA patients and 102 ArrayExpress database patients who were clinically and
pathologically diagnosed as KIRC were included in this study. A flow chart of the study procedure
was developed to summarize our study (Figure 1). The clinical feature of KIRC patients from TCGA
dataset and ArrayExpress dataset was summarized in Table 1.

Table 1. Clinical characteristics of patients of the study.

Characteristics Total Training dataset Testing dataset
(n=282) (n=198) (n=84)

Gender

FEMALE 104(36.88)  73(36.87) 31(36.9)

MALE 178(63.12)  125(63.13) 53(63.1)

Age

< 60 132(46.81)  94(47.47) 38(45.24)

> 60 150(53.19)  104(52.53) 46(54.76)

Stage

Stage | 147(52.13)  101(51.01) 46(54.76)

Stage 11 29(10.28) 19(9.6) 10(11.9)

Stage Il1 68(24.11) 53(26.77) 15(17.86)

Stage IV 36(12.77) 23(11.62) 13(15.48)

Not Available 2(0.71) 2(1.01)

M

MO 238(84.4) 168(84.85) 70(83.33)

M1 34(12.06) 22(11.11) 12(14.29)

Not Available 10(3.55) 8(4.04) 2(2.38)

T

T1 149(52.84)  101(51.01) 48(57.14)

T2 37(13.12) 24(12.12) 13(15.47)

T3 93(32.98) 71(35.86) 22(26.19)

T4 3(1.06) 2(1.01) 1(1.19)

N

NO 119(42.2) 85(42.93) 34(40.48)

N1 8(2.84) 6(3.03) 2(2.38)

Not Available 155(54.96)  107(54.04) 48(57.14)

Grade

Gl 8(2.84) 7(3.54) 1(1.19)

G2 122(43.26)  85(42.93) 37(44.05)

G3 110(39.01)  80(40.4) 30(35.71)

G4 38(13.48) 23(11.62) 15(17.86)

Not Available 4(1.42) 3(1.52) 1(1.19)

Cancer_Status

TUMOR FREE 201(71.28)  144(72.73) 57(67.86)

WITH TUMOR 59(20.92) 38(19.19) 21(25)

Not Available 22(7.80) 16(8.08) 6(7.14)

Laterality

Bilateral 1(0.35) 1(0.51)

Left 130(46.1) 92(46.46) 38(45.24)

Right 151(53.55)  105(53.03) 46(54.76)

Hemoglobin_result
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Characteristics Total Training dataset Testing dataset
(n=282) (n=198) (n=84)
Elevated 4(1.42) 2(1.02) 2(2.38)
Low 132(46.81)  86(43.43) 46(54.76)
Normal 102(36.17)  75(37.88) 27(32.14)
Not Available 44(16.60) 35(17.68) 9(10.71)
Platelet_qualitative_result
Elevated 14(4.96) 10(5.05) 4(4.76)
Low 30(10.64) 24(12.12) 6(7.14)
Normal 189(67.02)  125(63.13) 64(76.19)
Not Available 49(17.38) 39(19.7) 10(11.9)
Serum_calcium_result
Elevated 4(1.42) 2(1.02) 2(2.38)
Low 100(35.46)  65(32.83) 35(41.67)
Normal 79(28.01) 60(30.3) 19(22.62)
Not Available 99(35.11) 71(35.86) 28(33.33)
White_cell_count_result
Elevated 77(27.3) 56(28.28) 21(25)
Low 3(1.06) 1(0.51) 2(2.38)
Normal 150(53.19)  100(50.51) 50(59.52)
Not Available 52(18.44) 41(20.71) 11(13.09)
Race_list.race
BLACK OR AFRICAN 47(16.67) 34(17.17) 13(15.48)
AMERICAN
Not Available 3(1.06) 1(0.51) 2(2.38)
WHITE 232(82.27)  163(82.32) 69(82.14)

3.2. Determination of 9 methylation sites signature

We selected 942 differentially methylated sites between recurrence and no recurrence cohorts
for univariate Cox proportional hazard regression analysis. As a result, 403 DNA methylation sites
were proved to be strongly involved in KIRC patients’ RFS (P < 0.05) (Table S1). After that the
above 403 KIRC DNA methylation sites were projected to LASSO Cox regression model and 18
methylation sites were screened as the candidate prognostic sites (Figure 2) which were significantly
related to RFS of KIRC patients. Those 18 candidate methylation sites were further analyzed by
multivariable Cox analysis in the training set. Finally, 9 methylation sites (P < 0.05) were identified
as the independent risk factors tightly associated with RFS of KIRC patients, including cg12009697,
€g14207589, cg07990546, cg04094846, cgl1132272, call955474, cg03010887, cg09217923,
€g25206071. These 9 methylation sites were used for building a DNA methylation-based signature to
predict the RFS of KIRC patients. Therefore, we constructed the risk score formula as follows: risk
score = 2.625*cg14207589 + 4.519*cg09217923 + 2.615*cg11132272 - 2.373*cgl12009697 +
2.751*cg03010887 + 1.568*cg07990546 + 1.344*cg04094846 + 1.507*cgl1955474 +
2.065*cg25206071. We discovered that, the hypermethylation levels of ¢g14207589, ¢g09217923,
€g11132272, cg03010887, cg07990546, cg04094846, cg11955474, cg25206071 tended to have poor
survival rates. Whereas the hypomethylation levels of cg12009697 tended to have poor survival rates.
(Figures 3 and S1).
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Figure 2. Candidate methylation sites selection using the LASSO Cox regression model.
(A) 10-fold cross-validation for tuning parameter selection in the LASSO model using
minimum criteria (the 1-SE criteria). (B) LASSO coefficient profiles of the 403
methylation sites. A coefficient profile plot was produced against log (lambda) sequence.
Vertical line was implemented at the value selected by using 10-fold cross-validation,
where optimal lambda resulted in 18 non-zero coefficients.
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Figure 3. Boxplots of methylation 3 values against risk group in the entire TCGA dataset.
“High Risk” and “Low Risk” stand for the high-risk and low-risk groups, respectively.
The median risk score was applied as a cutoff. Y-axis stands for the -value of 9-DNA
methylation sites respectively. The differences between the 2 groups were measured by
Mann-Whitney U test.
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3.3. Interplays between 9 DNA methylation signature and KIRC patients’ RFS in the internal
validation, external validation and entire TCGA set
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Figure 4. Kaplan-Meier and ROC analysis of patients with KIRC in the internal
validation, external validation and entire TCGA set. (A, C, E) Kaplan-Meier analysis
with two-sided log-rank test was used to estimate the differences in RFS between the
low-risk and high-risk group KIRC patients. (B, D, F) 1-, 3-, 5-year ROC curves of the 9-
DNA methylation signature were used to assess the value of predicting the RFS of KIRC
patients. “High” and “Low” stood for the high risk score group and low risk score group,
respectively. The median risk score was set as a cutoff.
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Figure 5. Methylation risk score analysis of 282 KIRC in the entire TCGA dataset. (A)
Methylation risk score distribution against the rank of risk score. Median risk score
served as the cut-off point. (B) Survival status of KIRC patients against the rank of risk
score. (C) Heatmap of 9 methylation sites expression profiles of KIRC patients.

In order to analyze the predictive capability of this 9 DNA methylation-based signature, we
divided the patients in each set into high and low-risk cohorts based on the median risk score. Kaplan—
Meier survival analysis was exploited to examine the difference in RFS between the two cohorts. The
patients in high- risk cohort generated a significantly unfavorable RFS in internal validation set (p = 3e-
04) (Figure 4A), similar results were obtained in external validation set (p = 8e-04) (Figure 4C) and
entire TCGA set (p = 2e-13) (Figure 4E). After that, the power of the 9-DNA methylation
signature-based indicator for KIRC patients’ RFS was explored by using a time-dependent ROC
curve. The AUC of the biomarker at 1, 3, 5 years in internal set were 0.859, 0.840, 0.817,
respectively (Figure 4B), in external validation set (0.674, 0.739, 0.793, respectively) (Figure 4D)
and entire TCGA set (0.834, 0.862, 0.842, respectively) (Figure 4F). We concluded that the 9-
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DNA methylation signature-related indicator yielded a great power for the prediction of KIRC
patients’ RFS.

Subsequently, the rank of the patients from entire TCGA set was carried out according to the
risk scores (Figure 5A), and the dotplot of the total patients was performed according to their
survival status (Figure 5B). We noted that the high-risk cohort generated a worse survival than that in
the low-risk cohort. Figure 5C showed the heatmap of 9 methylation sites distribution according to
risk score, which supported the previous observation (Figure S2). Then, we performed subgroup
analysis by using a few clinical variables containing age, gender, anatomic site, grade and stage. The
majority of sub-groups showed a good predictive power of the 9-DNA methylation signature for
KIRC patients’ RFS (Figures S3-S7).

3.4. Determination of the 9-DNA methylation signature-related biological pathways
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Group
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Figure 6. Identification of the 9 DNA methylation signature-relevant biological
pathways. (A) Heatmap of top 20 enriched pathways associated with high risk group. (B)
Association graph between risk scores and top 20 pathways.

We separated patients into high and low-risk groups by using a cutoff risk score of the
median risk score. Figure 6A showed the top 20 enriched pathways that were more activated in the
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high-risk cases than that in low-risk cases. The same trend between the enriched pathways and risk
score was further addressed in Figure 6B, which proved a good correlation between the pathways
and the risk score (Table S2).
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Figure 7. 9-DNA methylation-related nomogram for the prediction of KIRC patients’
RFS. The nomogram was developed in the entire TCGA cohort based on the DNA
methylation risk score, cancer status and grade.

3.5. Nomogram development

Table 2. Univariate and multivariate Cox regression analysis results in accordance to
DNA methylation risk score as well as other clinical factors.

id HR HR.95 HR.95 pvalue HR HR.95 HR.95 pvalue
L H L H

Cancer_Status 6.5596 4.5975 9.3591 3.30E- 4.3339 29315 6.4073 1.95E-
82 69 68 25 7 38 18 13

Score 2.7182 21972 3.3628 3.24E- 1.4694 1.1264 1.9168 0.0045
82 52 63 20 38 49 62 41

Grade 21965 1.6860 2.8617 5.53E- 13305 1.0250 1.7271 0.0318
78 27 31 09 98 83 69 65

platelet_qualitative r 1.8093 1.1915 2.7474 0.0054 1.3384 0.8787 2.0387 0.1745

esult 24 03 99 02 6 16 41 36

M 3.2791 24948 4.3101 1.68E- 13298 0.7804 2.2660 0.2945
85 14 64 17 3 02 71 44

T 2.7762 2.0779 3.7093 4.94E- 13279 0.6805 25912 0.4055
56 11 01 12 95 82 71 69

Stage 29309 23114 3.7164 6.90E- 1.1545 0.5554 2.3997 0.7002
31 73 19 49 77 06 52

White _cell count re 0.6543 0.4784 0.8948 0.0079 0.9649 0.6950 1.3395 0.8310

sult 28 44 71 23 21 44 88 69

Serum_calcium_resu 1.4771 1.0922 19976 0.0113 1.0335 0.7454 1.4329 0.8432

It 63 62 99 11 13 13 64 71

Sex 1.5336 0.9034 2.6034 0.1132
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id HR HR.95 HR.95 pvalue HR HR.95 HR.95 pvalue
L H L H
23 22 33 39
Laterality 0.8488 0.6699 1.0754 0.1746
2 24 9 83
Hemoglobin_result  0.8689 0.6679 1.1303 0.2951
24 48 69 56
N 1.1983 0.7614 1.8858 0.4341
48 75 65 47
Race 11029 0.7574 1.6059 0.6092
63 93 91 15
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Figure 8. Validation of the DNA methylation gene-related nomogram in the entire
TCGA dataset. (A) The higher the bar chart, the greater the percentage. (B) 1-, 3-, 5-year
receiver operating characteristic curves for the metabolic gene-related nomogram. (C-E)
referred to the 1-, 3-, 5-year nomogram calibration curves, respectively. The closer the
dotted line fitted to the ideal line, the better the predictive value of the nomogram. (F)
The DCA for the nomogram. The net benefit was plotted versus the threshold probability.
The red line represented the nomogram. The blue line represented the treat-all and the
green line represented the treat-none.
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We first performed univariate and multivariate Cox tool according to a few clinic-related
covariates. Hazard ratios (HRs) manifested that the 9-DNA methylation-related classifier was tightly
related to KIRC patients’ RFS (P < 0.001, HR 1.47, 95% CI 1.13-1.92) (Table 2 and Figure S8),
manifesting that the 9-DNA methylation signature was an independent predictor of KIRC patients’
RFS in the entire TCGA set. To further reinforce the prognostic value of the 9-DNA methylation-based
signature for KIRC in a quantitative strategy. We developed a nomogram (Figure 7) that integrated the
9-DNA methylation-associated signature and the conventional clinic-associated covariates containing
cancer status, grade. The significance between the 9-DNA methylation-based factor and the
conventional clinic-associated covariates was described in Figure 8A. The value of the nomogram
was weighed on the basis of C-index (0.802, 95%CI: 0.768-0.828), AUC (1, 3, 5-year: 0.912, 0.922,
0.915) (Figure 8B) and calibration plot (Figure 8C-E), proving a good value of the tool. In addition,
DCA manifested that the nomogram created more crucial value of clinical utilization as predictor of
KIRC patients’ RFS than that in treat all or treat none group. Net benefit was available for KIRC
patients in 3-year recurrent risks (Figure 8F). We concluded that our nomogram had a great value and
may have potential for clinical application.

4. Discussion

The KIRC DNA methylation information and relevant clinical information from TCGA
database was analyzed to unearth the predictor of KIRC patients’ RFS. Eventually, 9 DNA
methylation sites (cg12009697, c¢g14207589, cg07990546, cg04094846, cgl1132272, call955474,
cg03010887, ¢g09217923, cg25206071) were found to be strongly associated with RFS of KIRC
patients. The above 9 DNA methylation sites were mapped to 4 genes (TLX2, OSBP, TAARZ2, IL19).
It is interesting to note that, previous researches suggested that most of these 4 genes were correlated
with cancer, respectively. For instance, Liu et al. found that methylated COL4A1, COL4A2, TLX2,
and ITGA4 demonstrated high accuracy for the detection of colorectal neoplasms in stool and they
may be potentially valuable biomarkers for the detection of colorectal cancer [27]. Liao et al.
demonstrated that TAT-OSBP-MKKG6(E) was a novel artificially designed molecule, which induced
apoptosis and selectively targeted human ovarian carcinoma HO8910 cells. Their study provided
novel insights that may aid in the development of a new generation of anticancer drugs, which
implied the importance of OSBP in cancer [28]. Hsing et al. suggested that upregulated IL-19 in
breast cancer promoted tumor progression and affected clinical result [29]. The result manifested that
the 3 of the 4 genes involved in the 9 sites played important roles in progression of cancer.

Multiple studies indicated that nomograms may strengthen prognostic predictive accuracy for
cancer by integrating several clinical variables in a quantitative method. For example, Wang et al.
constructed a nomogram to predict gleason sum upgrading of clinically diagnosed localized prostate
cancer among Chinese patients [30]. Lee et al. built a prognostic nomogram to predict progression-
free survival in patients with platinum-sensitive recurrent ovarian cancer [31]. Taskin et al. found a
nomogram with potential clinical application to predict lymph node metastasis in endometrial cancer
patients diagnosed incidentally by postoperative pathological assessment [32]. However, nomograms
for improving predictive ability of KIRC patients’ RFS have been rarely reported. In this study, we
aimed to develop a nomogram using both methylation risk score and several clinic-associated
covariates for predicting 1, 3, 5-year RFS for KIRC patient from the entire TCGA set. The indicators
of the C-index, AUC, DCA and calibration curve from the entire TCGA set exhibited that our
nomogram had discriminative accuracy and was adopted as the preferred predictive model.
Furthermore, we developed the nomogram as a predicator in a quantitative method for the prognosis
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of KIRC patient, which could predict the accruate survival percentage of KIRC patients. In addition,
the key virtues of the nomogram contained clinical applicability and convenient factors, which was
readily available according to historical records. On the other hand, DNA methylation profiling is
highly accurate and reproducible even using small specimens and poor quality material [18],
suggesting that this methylomics-correlated nomogram method had a great advantage to predict
prognosis of cancer patients in comparison to other signatures.

Growing researches manifested that LASSO Cox regression model can be employed to
unearth markers of multiple cancers, For example, Connell et al. found a four-group urine risk
classifier for predicting outcome in prostate cancer patients based on LASSO Cox regression
analysis [33]. Zhang et al. identified a new eight-long noncoding RNA molecular signature for
breast cancer survival prediction according to the LASSO method, univariate and multivariate Cox
analyses [34]. Liu et al. identified an eight-IncRNA prognostic model for breast cancer using
WGCNA network analysis and a Cox - proportional hazards model based on LASSO Cox
regression model [35]. Du et al. constructed a diagnostic nomogram of platelet-based score models for
hepatic alveolar echinococcosis and atypical liver cancer using LASSO Cox regression model [36]. A
significant merit of LASSO is that it has sparse estimates of the regression coefficients which
suggests that various components are precisely 0. In other words, LASSO can automatically
remove unnecessary variables. LASSO has various preferred properties for regression models with
numerous variables, and multiple efficient optimization algorithms are available for linear
regression and generalized linear models [37]. To our knowledge, fewer studies have used LASSO
regression model for the determination of a prognostic predictor of KIRC. We performed LASSO
Cox regression analysis to select candidate methylation sites tightly related to KIRC patients’ RFS
for filtering the variables between univariate and multivariate Cox analysis, further improving
prognostic predicted ability of 9-DNA methylation-associated signature.

There are still a few limitations of this study. Firstly, our study is a retrospective one and the
prospective studies including a larger number of samples of various medical centers are needed to
verify the outcomes. Secondly, more factors should be mapped into our external validation set to
improve the predicted accuracy of the nomogram. Thirdly, the nomograms were developed by using
retrospective data from TCGA database, which may be correlated with the potential hazard of
selection bias.

5. Conclusions

We successfully identified a 9-DNA methylation-based signature, which was a useful
prognostic predictor for KIRC patients’ RFS. A nomogram combining methylation risk score and the
conventional clinic-related covariates was helpful in improving the predicted ability of clinical
prognosis for KIRC patients.
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