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Abstract: Background: Various studies have suggested that the DNA methylation signatures were 

promising to identify novel hallmarks for predicting prognosis of cancer. However, few studies have 

explored the capacity of DNA methylation for prognostic prediction in patients with kidney renal 

clear cell carcinoma (KIRC). It’s very promising to develop a methylomics-related signature for 

predicting prognosis of KIRC. Methods: The 282 patients with complete DNA methylation data and 

corresponding clinical information were selected to construct the prognostic model. The 282 patients 

were grouped into a training set (70%, n = 198 samples) to determine a prognostic predictor by 

univariate Cox proportional hazard analysis, least absolute shrinkage and selection operator (LASSO) 

and multivariate Cox regression analysis. The internal validation set (30%, n = 84) and an external 

validation set (E-MTAB-3274) were used to validate the predictive value of the predictor by receiver 

operating characteristic (ROC) analysis and Kaplan–Meier survival analysis. Results: We 

successfully identified a 9-DNA methylation signature for recurrence free survival (RFS) of KIRC 

patients. We proved the strong robustness of the 9-DNA methylation signature for predicting RFS 

through ROC analysis (AUC at 1, 3, 5 years in internal dataset (0.859, 0.840, 0.817, respectively), 

external validation dataset (0.674, 0.739, 0.793, respectively), entire TCGA dataset (0.834, 0.862, 

0.842, respectively)). In addition, a nomogram combining methylation risk score with the 

conventional clinic-related covariates was constructed to improve the prognostic predicted ability for 

KIRC patients. The result implied a good performance of the nomogram. Conclusions: we 

successfully identified a DNA methylation-associated nomogram, which was helpful in improving 

the prognostic predictive ability of KIRC patients. 

Keywords: signature; DNA methylation; kidney renal clear cell carcinoma; recurrence free 

survival; nomogram  
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1. Introduction 

Renal cell carcinoma (RCC) is a genitourinary type of carcinoma, accounting for more than 2% 

of cancer-associated deaths worldwide [1,2]. KIRC is the most common subtype of RCC [3]. 

Presently, surgical resection is the major therapy of KIRC patients, after which patients with KIRC 

still have a quite large risk of cancer recurrence and metastasis [4]. In fact, more than 30% of patients 

who are diagnosed with KIRC experience metastasis, leading to a poor five-year survival rate [5]. It 

is commonly recognized that the patients with metastatic KIRC have a very dismal prognosis mainly 

due to the failure of early diagnosis and resistance to chemoradiotherapy [6]. it is urgently needed to 

find sensitive and reliable biomarkers for individualized prediction of KIRC patients.  

Previous studies have reported that specific molecules could serve as survival-associated 

KIRC hallmarks. For example, Chen et al. suggested that a 3-mRNA predictor was proved to be a 

useful model for prognostic evaluation and could improve personalized management of KIRC 

patients [7]. Guan et al. identified a biomarker in KIRC based on miRNA-seq and digital gene 

expression-seq data [8]. A study revealed the prognostic value of a long non-coding RNA signature 

in localized clear cell renal cell carcinoma [9]. A previous research reported that fibroblast activation 

protein predicted prognosis in KIRC [10]. In the process of exploring prognostic markers of cancer, 

accumulating studies reported that epigenetic modification could affect key cancer-related genes, 

which implied its significant role in carcinogenesis. For instance, a study suggested that epigenetic 

therapeutics served as a new weapon in the war against cancer [11]. A previous research revealed 

their study in the cancer epigenome for therapy [12]. A research reported the interacting cancer 

machineries: cell signaling, lipid metabolism, and epigenetics [13]. Presently, DNA methylation is 

significantly involved in epigenetic regulatory mechanism which is intensively studied. Alters in DNA 

methylation may impact gene expression and interplay with numerous feedback mechanisms [14]. Thus, 

DNA methylation is a key factor for cancer development and various studies has suggested that DNA 

methylation may function as a predictor for diagnosis and prognosis of cancer. For instance, Brock et 

al. revealed DNA methylation markers in stage I lung cancer [15]. Shen et al. suggested that seven-

DNA methylation CpG-based prognostic signature coupled with gene expression may predict 

survival of oral squamous cell carcinoma [16]. Gündert et al. indicated that genome-wide DNA 

methylation analysis revealed a prognostic classifier for non-metastatic colorectal cancer [17]. It has 

been reported that DNA methylation profiling is highly accurate and reproducible even using small 

specimens and poor quality material [18]. Therefore, the analysis of DNA methylation is promising 

to uncover novel biomarkers for predicting prognosis of cancer. However, few studies have explored 

the ability of DNA methylation for prognostic prediction in patients with KIRC. It’s very promising 

to build a methylomics-related signature for predicting prognosis of KIRC. 

In present study, an integrative analysis was carried out for the prediction of KIRC patients’ 

prognosis and a 9 DNA methylation signature-based classifier was developed using univariate, 

LASSO, and multivariate Cox regression model. Next, we used Kaplan-Meier analysis, ROC 

analysis to assess and validate the prediction accuracy of the classifier in internal validation set, 

external validation set and entire TCGA set. In addition, a high prognostic predicted power of our 

nomogram was proved based on the training set and internal validation set. 

2. Materials and methods 

2.1. DNA methylation information of KIRC patients 

The KIRC DNA methylation information and relevant clinical information was 
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downloaded from TCGA database by using R TCGAbiolinks package [19]. The KIRC DNA 

methylation data was measured by using Illumina Infinium HumanMethylation450 BeadChip 

(450 k) arrays based on the manufacturer’s instructions. E-MTAB-3274 was retrieved from 

ArrayExpress database using ArrayExpress package [20]. The DNA methylation levels were set 

as β values, computed as M / (M + U + 100), with U standing for an unmethylated signal and M 

standing for a methylated signal. After removing the patients without survival data, the remaining 

282 patients with complete DNA methylation data and clinical information were used for 

constructing prognostic model. The 282 patients were grouped into a training group (70%, n = 198 

samples) to identify a prognostic classifier and an internal validation group (30%, n = 84) to validate 

the predictive performance of the classifier. On the other hand, the 102 KIRC patients of E-MTAB-

3274 from ArrayExpress database were employed as an external validation dataset. LASSO COX 

regression analysis was employed to further determine the candidate methylation sites involved in 

KIRC patients’ RFS. In addition, LASSO analysis was executed by using 1000 iterations on the basis 

of a publicly available R package “glmnet” [21]. 

2.2. Data processing, normalization and determination of differentially expressed methylation sites 

Pre-processing of the raw data was implemented for the determination of a prognostic 

classifier of KIRC. First of all, Raw methylation data was filtered for selecting the probes in at least 

one sample. After that, the normalization of the data was executed with “betaqn” function of 

wateRmelon package [22]. Subsequently, the total KIRC samples were divided into two cohorts 

(recurrence and no recurrence cohort) in accordance to recurrence status. The standardized beta was 

transformed to M value on the basis of the formulation: M = log (β/(1-β)). M value was applied for 

the elimination of the variance which resulted from multiple probes. Finally, M value was exploited 

for the determination of the differentially expressed methylation sites between recurrence and no 

recurrence cluster according to “dmpFinder” function of minfi package [23]. 

2.3. Generation of methylomics-related signature 

In the training set, the differentially expressed methylation sites were analyzed by a 

univariate Cox proportional hazards regression analysis to screen the promising sites that were 

importantly associated with RFS of KIRC patients. Then, those sites with p-values < 0.05 in the 

univariate Cox proportional hazards regression model were used for the LASSO Cox regression 

analysis to extract candidate sites tightly related to KIRC patients’ RFS. Finally, the multivariate Cox 

regression analysis was performed by the candidate sites for selecting the methylome-based predictor 

of KIRC patients’ RFS. As a result, 9 DNA methylation sites were employed to develop the 

methylation-based prognostic predictor. Then a risk-score model was constructed by using the 9-

DNA methylation signature to compute risk scores of all of the KIRC patients. According to this risk 

score tool, we separated patients into high and low-risk groups by using a cutoff risk score of the 

median risk score. We conducted ROC analysis to assess the power of the 9-DNA methylation 

signature. AUC value was calculated in ROC analysis to weigh the predicted accuracy of 

methylome-based predictor for KIRC patients’ RFS with the “survivalROC” package [24], the larger 

of the AUC value, the better for the predicted accuracy of the signature. Kaplan–Meier survival was 

exploited to compare differences in RFS between high- and low-risk clusters and Kaplan–Meier 

curves were obtained across the “survival” package [25]. 
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2.4. Gene set variation analysis (GSVA) 

Single sample gene sets enrichment analysis (ssGSEA) was conducted based on TCGA KIRC 

mRNA dataset with GSVA package [26] to assess the 9-DNA methylation signature-relevant signaling 

pathways. The most important pathway positively correlated with risk score was measured. According to 

this risk score model, we separated patients into high and low-risk groups by using a cutoff risk score of 

the median risk score. A p value of < 0.05 was considered as statistically significant. 

2.5. Construction of the nomogram 

The univariate and multivariate Cox proportional hazard analysis were conducted via the 

methylation risk score and other clinic-related variables. Cox proportional hazard models was 

exploited to measure hazard ratios (HR) and corresponding 95% confidence interval (CI) of variables. 

Factors that were significant (P < 0.05) from the multivariate Cox proportional hazard analysis were 

applied for constructing a nomogram by using the ‘rms’ R package. The prognostic nomogram was 

developed in TCGA-KIRC dataset for predicting 1, 3, 5-year’s RFS of KIRC patients, respectively. 
C-index, ROC and calibration plot and decision curve analysis (DCA) were applied to evaluate 

prognostic nomogram performance. The results of the nomogram were presented in the calibrate 

curve, and the 45° line refers to the ideal prediction. 

3. Results 

3.1. Clinical characteristics of the study populations 

 

Figure 1. Flow chart of the present study. 
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Totally, 282 TCGA patients and 102 ArrayExpress database patients who were clinically and 

pathologically diagnosed as KIRC were included in this study. A flow chart of the study procedure 

was developed to summarize our study (Figure 1). The clinical feature of KIRC patients from TCGA 

dataset and ArrayExpress dataset was summarized in Table 1. 

Table 1. Clinical characteristics of patients of the study. 

Characteristics Total 

(n=282) 

Training dataset 

(n=198) 

Testing dataset 

(n=84) 

Gender 
   

FEMALE 104(36.88) 73(36.87) 31(36.9) 

MALE 178(63.12) 125(63.13) 53(63.1) 

Age 
   

≤ 60 132(46.81) 94(47.47) 38(45.24) 

> 60 150(53.19) 104(52.53) 46(54.76) 

Stage 
   

Stage I 147(52.13) 101(51.01) 46(54.76) 

Stage II 29(10.28) 19(9.6) 10(11.9) 

Stage III 68(24.11) 53(26.77) 15(17.86) 

Stage IV 36(12.77) 23(11.62) 13(15.48) 

Not Available 2(0.71) 2(1.01) 
 

M 
   

M0 238(84.4) 168(84.85) 70(83.33) 

M1 34(12.06) 22(11.11) 12(14.29) 

Not Available 10(3.55) 8(4.04) 2(2.38) 

T 
   

T1 149(52.84) 101(51.01) 48(57.14) 

T2 37(13.12) 24(12.12) 13(15.47) 

T3 93(32.98) 71(35.86) 22(26.19) 

T4 3(1.06) 2(1.01) 1(1.19) 

N 
   

N0 119(42.2) 85(42.93) 34(40.48) 

N1 8(2.84) 6(3.03) 2(2.38) 

Not Available 155(54.96) 107(54.04) 48(57.14) 

Grade 
   

G1 8(2.84) 7(3.54) 1(1.19) 

G2 122(43.26) 85(42.93) 37(44.05) 

G3 110(39.01) 80(40.4) 30(35.71) 

G4 38(13.48) 23(11.62) 15(17.86) 

Not Available 4(1.42) 3(1.52) 1(1.19) 

Cancer_Status 
  

TUMOR FREE 201(71.28) 144(72.73) 57(67.86) 

WITH TUMOR 59(20.92) 38(19.19) 21(25) 

Not Available 22(7.80) 16(8.08) 6(7.14) 

Laterality 
   

Bilateral 1(0.35) 1(0.51) 
 

Left 130(46.1) 92(46.46) 38(45.24) 

Right 151(53.55) 105(53.03) 46(54.76) 

Hemoglobin_result 
  

Continued on next page 
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Characteristics Total 

(n=282) 

Training dataset 

(n=198) 

Testing dataset 

(n=84) 

Elevated 4(1.42) 2(1.01) 2(2.38) 

Low 132(46.81) 86(43.43) 46(54.76) 

Normal 102(36.17) 75(37.88) 27(32.14) 

Not Available 44(16.60) 35(17.68) 9(10.71) 

Platelet_qualitative_result 
 

Elevated 14(4.96) 10(5.05) 4(4.76) 

Low 30(10.64) 24(12.12) 6(7.14) 

Normal 189(67.02) 125(63.13) 64(76.19) 

Not Available 49(17.38) 39(19.7) 10(11.9) 

Serum_calcium_result 
 

Elevated 4(1.42) 2(1.01) 2(2.38) 

Low 100(35.46) 65(32.83) 35(41.67) 

Normal 79(28.01) 60(30.3) 19(22.62) 

Not Available 99(35.11) 71(35.86) 28(33.33) 

White_cell_count_result 
 

Elevated 77(27.3) 56(28.28) 21(25) 

Low 3(1.06) 1(0.51) 2(2.38) 

Normal 150(53.19) 100(50.51) 50(59.52) 

Not Available 52(18.44) 41(20.71) 11(13.09) 

Race_list.race 
  

BLACK OR AFRICAN 

AMERICAN 

47(16.67) 34(17.17) 13(15.48) 

Not Available 3(1.06) 1(0.51) 2(2.38) 

WHITE 232(82.27) 163(82.32) 69(82.14) 

3.2. Determination of 9 methylation sites signature 

We selected 942 differentially methylated sites between recurrence and no recurrence cohorts 

for univariate Cox proportional hazard regression analysis. As a result, 403 DNA methylation sites 

were proved to be strongly involved in KIRC patients’ RFS (P < 0.05) (Table S1). After that the 

above 403 KIRC DNA methylation sites were projected to LASSO Cox regression model and 18 

methylation sites were screened as the candidate prognostic sites (Figure 2) which were significantly 

related to RFS of KIRC patients. Those 18 candidate methylation sites were further analyzed by 

multivariable Cox analysis in the training set. Finally, 9 methylation sites (P < 0.05) were identified 

as the independent risk factors tightly associated with RFS of KIRC patients, including cg12009697, 

cg14207589, cg07990546, cg04094846, cg11132272, ca11955474, cg03010887, cg09217923, 

cg25206071. These 9 methylation sites were used for building a DNA methylation-based signature to 

predict the RFS of KIRC patients. Therefore, we constructed the risk score formula as follows: risk 

score = 2.625*cg14207589 + 4.519*cg09217923 + 2.615*cg11132272 - 2.373*cg12009697 + 

2.751*cg03010887 + 1.568*cg07990546 + 1.344*cg04094846 + 1.507*cg11955474 + 

2.065*cg25206071. We discovered that, the hypermethylation levels of cg14207589, cg09217923, 

cg11132272, cg03010887, cg07990546, cg04094846, cg11955474, cg25206071 tended to have poor 

survival rates. Whereas the hypomethylation levels of cg12009697 tended to have poor survival rates. 

(Figures 3 and S1). 



8565 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 8559–8576. 

 

Figure 2. Candidate methylation sites selection using the LASSO Cox regression model. 

(A) 10-fold cross-validation for tuning parameter selection in the LASSO model using 

minimum criteria (the 1-SE criteria). (B) LASSO coefficient profiles of the 403 

methylation sites. A coefficient profile plot was produced against log (lambda) sequence. 

Vertical line was implemented at the value selected by using 10-fold cross-validation, 

where optimal lambda resulted in 18 non-zero coefficients. 
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Figure 3. Boxplots of methylation β values against risk group in the entire TCGA dataset. 

“High Risk” and “Low Risk” stand for the high-risk and low-risk groups, respectively. 

The median risk score was applied as a cutoff. Y-axis stands for the β-value of 9-DNA 

methylation sites respectively. The differences between the 2 groups were measured by 

Mann-Whitney U test.  
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3.3. Interplays between 9 DNA methylation signature and KIRC patients’ RFS in the internal 

validation, external validation and entire TCGA set 

 

Figure 4. Kaplan-Meier and ROC analysis of patients with KIRC in the internal 

validation, external validation and entire TCGA set. (A, C, E) Kaplan-Meier analysis 

with two-sided log-rank test was used to estimate the differences in RFS between the 

low-risk and high-risk group KIRC patients. (B, D, F) 1-, 3-, 5-year ROC curves of the 9-

DNA methylation signature were used to assess the value of predicting the RFS of KIRC 

patients. “High” and “Low” stood for the high risk score group and low risk score group, 

respectively. The median risk score was set as a cutoff. 
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Figure 5. Methylation risk score analysis of 282 KIRC in the entire TCGA dataset. (A) 

Methylation risk score distribution against the rank of risk score. Median risk score 

served as the cut-off point. (B) Survival status of KIRC patients against the rank of risk 

score. (C) Heatmap of 9 methylation sites expression profiles of KIRC patients. 

In order to analyze the predictive capability of this 9 DNA methylation-based signature, we 

divided the patients in each set into high and low-risk cohorts based on the median risk score. Kaplan–

Meier survival analysis was exploited to examine the difference in RFS between the two cohorts. The 

patients in high- risk cohort generated a significantly unfavorable RFS in internal validation set (p = 3e-

04) (Figure 4A), similar results were obtained in external validation set (p = 8e-04) (Figure 4C) and 

entire TCGA set (p = 2e-13) (Figure 4E). After that, the power of the 9-DNA methylation 

signature-based indicator for KIRC patients’ RFS was explored by using a time-dependent ROC 

curve. The AUC of the biomarker at 1, 3, 5 years in internal set were 0.859, 0.840, 0.817, 

respectively (Figure 4B), in external validation set (0.674, 0.739, 0.793, respectively) (Figure 4D) 

and entire TCGA set (0.834, 0.862, 0.842, respectively) (Figure 4F). We concluded that the 9-
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DNA methylation signature-related indicator yielded a great power for the prediction of KIRC 

patients’ RFS. 

Subsequently, the rank of the patients from entire TCGA set was carried out according to the 

risk scores (Figure 5A), and the dotplot of the total patients was performed according to their 

survival status (Figure 5B). We noted that the high-risk cohort generated a worse survival than that in 

the low-risk cohort. Figure 5C showed the heatmap of 9 methylation sites distribution according to 

risk score, which supported the previous observation (Figure S2). Then, we performed subgroup 

analysis by using a few clinical variables containing age, gender, anatomic site, grade and stage. The 

majority of sub-groups showed a good predictive power of the 9-DNA methylation signature for 

KIRC patients’ RFS (Figures S3–S7). 

3.4. Determination of the 9-DNA methylation signature-related biological pathways 

 

Figure 6. Identification of the 9 DNA methylation signature-relevant biological 

pathways. (A) Heatmap of top 20 enriched pathways associated with high risk group. (B) 

Association graph between risk scores and top 20 pathways. 

We separated patients into high and low-risk groups by using a cutoff risk score of the 

median risk score. Figure 6A showed the top 20 enriched pathways that were more activated in the 
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high-risk cases than that in low-risk cases. The same trend between the enriched pathways and risk 

score was further addressed in Figure 6B, which proved a good correlation between the pathways 

and the risk score (Table S2). 

 

Figure 7. 9-DNA methylation-related nomogram for the prediction of KIRC patients’ 

RFS. The nomogram was developed in the entire TCGA cohort based on the DNA 

methylation risk score, cancer status and grade. 

3.5. Nomogram development 

Table 2. Univariate and multivariate Cox regression analysis results in accordance to 

DNA methylation risk score as well as other clinical factors. 

id HR HR.95

L 

HR.95

H 

pvalue HR HR.95

L 

HR.95

H 

pvalue 

Cancer_Status 6.5596

82 

4.5975

69 

9.3591

68 

3.30E-

25 

4.3339

7 

2.9315

38 

6.4073

18 

1.95E-

13 

Score 2.7182

82 

2.1972

52 

3.3628

63 

3.24E-

20 

1.4694

38 

1.1264

49 

1.9168

62 

0.0045

41 

Grade 2.1965

78 

1.6860

27 

2.8617

31 

5.53E-

09 

1.3305

98 

1.0250

83 

1.7271

69 

0.0318

65 

platelet_qualitative_r

esult 

1.8093

24 

1.1915

03 

2.7474

99 

0.0054

02 

1.3384

6 

0.8787

16 

2.0387

41 

0.1745

36 

M 3.2791

85 

2.4948

14 

4.3101

64 

1.68E-

17 

1.3298

3 

0.7804

02 

2.2660

71 

0.2945

44 

T 2.7762

56 

2.0779

11 

3.7093

01 

4.94E-

12 

1.3279

95 

0.6805

82 

2.5912

71 

0.4055

69 

Stage 2.9309

31 

2.3114

73 

3.7164 6.90E-

19 

1.1545

49 

0.5554

77 

2.3997

06 

0.7002

52 

White_cell_count_re

sult 

0.6543

28 

0.4784

44 

0.8948

71 

0.0079

23 

0.9649

21 

0.6950

44 

1.3395

88 

0.8310

69 

Serum_calcium_resu

lt 

1.4771

63 

1.0922

62 

1.9976

99 

0.0113

11 

1.0335

13 

0.7454

13 

1.4329

64 

0.8432

71 

Sex 1.5336 0.9034 2.6034 0.1132 
    

Continued on next page 



8571 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 8559–8576. 

         

id HR HR.95

L 

HR.95

H 

pvalue HR HR.95

L 

HR.95

H 

pvalue 

 23 22 33 39     

Laterality 0.8488

2 

0.6699

24 

1.0754

9 

0.1746

83 

    

Hemoglobin_result 0.8689

24 

0.6679

48 

1.1303

69 

0.2951

56 

    

N 1.1983

48 

0.7614

75 

1.8858

65 

0.4341

47 

    

Race 1.1029

63 

0.7574

93 

1.6059

91 

0.6092

15 

    

 

Figure 8. Validation of the DNA methylation gene-related nomogram in the entire 

TCGA dataset. (A) The higher the bar chart, the greater the percentage. (B) 1-, 3-, 5-year 

receiver operating characteristic curves for the metabolic gene-related nomogram. (C–E) 

referred to the 1-, 3-, 5-year nomogram calibration curves, respectively. The closer the 

dotted line fitted to the ideal line, the better the predictive value of the nomogram. (F) 

The DCA for the nomogram. The net benefit was plotted versus the threshold probability. 

The red line represented the nomogram. The blue line represented the treat-all and the 

green line represented the treat-none. 
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We first performed univariate and multivariate Cox tool according to a few clinic-related 

covariates. Hazard ratios (HRs) manifested that the 9-DNA methylation-related classifier was tightly 

related to KIRC patients’ RFS (P < 0.001, HR 1.47, 95% CI 1.13–1.92) (Table 2 and Figure S8), 

manifesting that the 9-DNA methylation signature was an independent predictor of KIRC patients’ 

RFS in the entire TCGA set. To further reinforce the prognostic value of the 9-DNA methylation-based 

signature for KIRC in a quantitative strategy. We developed a nomogram (Figure 7) that integrated the 

9-DNA methylation-associated signature and the conventional clinic-associated covariates containing 

cancer status, grade. The significance between the 9-DNA methylation-based factor and the 

conventional clinic-associated covariates was described in Figure 8A. The value of the nomogram 

was weighed on the basis of C-index (0.802, 95%CI: 0.768-0.828), AUC (1, 3, 5-year: 0.912, 0.922, 

0.915) (Figure 8B) and calibration plot (Figure 8C–E), proving a good value of the tool. In addition, 

DCA manifested that the nomogram created more crucial value of clinical utilization as predictor of 

KIRC patients’ RFS than that in treat all or treat none group. Net benefit was available for KIRC 

patients in 3-year recurrent risks (Figure 8F). We concluded that our nomogram had a great value and 

may have potential for clinical application. 

4. Discussion 

The KIRC DNA methylation information and relevant clinical information from TCGA 

database was analyzed to unearth the predictor of KIRC patients’ RFS. Eventually, 9 DNA 

methylation sites (cg12009697, cg14207589, cg07990546, cg04094846, cg11132272, ca11955474, 

cg03010887, cg09217923, cg25206071) were found to be strongly associated with RFS of KIRC 

patients. The above 9 DNA methylation sites were mapped to 4 genes (TLX2, OSBP, TAAR2, IL19). 
It is interesting to note that, previous researches suggested that most of these 4 genes were correlated 

with cancer, respectively. For instance, Liu et al. found that methylated COL4A1, COL4A2, TLX2, 

and ITGA4 demonstrated high accuracy for the detection of colorectal neoplasms in stool and they 

may be potentially valuable biomarkers for the detection of colorectal cancer [27]. Liao et al. 

demonstrated that TAT-OSBP-MKK6(E) was a novel artificially designed molecule, which induced 

apoptosis and selectively targeted human ovarian carcinoma HO8910 cells. Their study provided 

novel insights that may aid in the development of a new generation of anticancer drugs, which 

implied the importance of OSBP in cancer [28]. Hsing et al. suggested that upregulated IL-19 in 

breast cancer promoted tumor progression and affected clinical result [29]. The result manifested that 

the 3 of the 4 genes involved in the 9 sites played important roles in progression of cancer. 

Multiple studies indicated that nomograms may strengthen prognostic predictive accuracy for 

cancer by integrating several clinical variables in a quantitative method. For example, Wang et al. 

constructed a  nomogram to predict gleason sum upgrading of clinically diagnosed localized prostate 

cancer among Chinese patients [30]. Lee et al. built a prognostic nomogram to predict progression-

free survival in patients with platinum-sensitive recurrent ovarian cancer [31]. Taşkın et al. found a 

nomogram with potential clinical application to predict lymph node metastasis in endometrial cancer 

patients diagnosed incidentally by postoperative pathological assessment [32]. However, nomograms 

for improving predictive ability of KIRC patients’ RFS have been rarely reported. In this study, we 

aimed to develop a nomogram using both methylation risk score and several clinic-associated 

covariates for predicting 1, 3, 5-year RFS for KIRC patient from the entire TCGA set. The indicators 

of the C-index, AUC, DCA and calibration curve from the entire TCGA set exhibited that our 

nomogram had discriminative accuracy and was adopted as the preferred predictive model. 

Furthermore, we developed the nomogram as a predicator in a quantitative method for the prognosis 
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of KIRC patient, which could predict the accruate survival percentage of KIRC patients. In addition, 

the key virtues of the nomogram contained clinical applicability and convenient factors, which was 

readily available according to historical records. On the other hand, DNA methylation profiling is 

highly accurate and reproducible even using small specimens and poor quality material [18], 
suggesting that this methylomics-correlated nomogram method had a great advantage to predict 

prognosis of cancer patients in comparison to other signatures. 

Growing researches manifested that LASSO Cox regression model can be employed to 

unearth markers of multiple cancers, For example, Connell et al. found a four-group urine risk 

classifier for predicting outcome in prostate cancer patients based on LASSO Cox regression 

analysis [33]. Zhang et al. identified a new eight-long noncoding RNA molecular signature for 

breast cancer survival prediction according to the LASSO method, univariate and multivariate Cox 

analyses [34]. Liu et al. identified an eight-lncRNA prognostic model for breast cancer using 

WGCNA network analysis and a Cox ‑ proportional hazards model based on LASSO Cox 

regression model [35]. Du et al. constructed a diagnostic nomogram of platelet-based score models for 

hepatic alveolar echinococcosis and atypical liver cancer using LASSO Cox regression model [36]. A 

significant merit of LASSO is that it has sparse estimates of the regression coefficients which 

suggests that various components are precisely 0. In other words, LASSO can automatically 

remove unnecessary variables. LASSO has various preferred properties for regression models with 

numerous variables, and multiple efficient optimization algorithms are available for linear 

regression and generalized linear models [37]. To our knowledge, fewer studies have used LASSO 

regression model for the determination of a prognostic predictor of KIRC. We performed LASSO 

Cox regression analysis to select candidate methylation sites tightly related to KIRC patients’ RFS 

for filtering the variables between univariate and multivariate Cox analysis, further improving 

prognostic predicted ability of 9-DNA methylation-associated signature.   

There are still a few limitations of this study. Firstly, our study is a retrospective one and the 

prospective studies including a larger number of samples of various medical centers are needed to 

verify the outcomes. Secondly, more factors should be mapped into our external validation set to 

improve the predicted accuracy of the nomogram. Thirdly, the nomograms were developed by using 

retrospective data from TCGA database, which may be correlated with the potential hazard of 

selection bias. 

5. Conclusions 

We successfully identified a 9-DNA methylation-based signature, which was a useful 

prognostic predictor for KIRC patients’ RFS. A nomogram combining methylation risk score and the 

conventional clinic-related covariates was helpful in improving the predicted ability of clinical 

prognosis for KIRC patients. 

Acknowledgements 

This work was supported by the National Nature Science Foundation of China (Grant Nos. 

82073324). 

Conflict of interest 

The authors declare that they have no competing interests. 



8574 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 8559–8576. 

References 

1. R. L. Siegel, K. D. Miller, A. Jemal, Cancer Statistics, CA Cancer J. Clin., 67 (2017), 7–30. 

2. G. Gandaglia, P. Ravi, F. Abdollah, A. E. Abd-El-Barr, A. Becker, I. Popa, et al., Contemporary 

incidence and mortality rates of kidney cancer in the United States, Can. Urol. Assoc. J., 8 

(2014), 247–252. 

3. D. J. Sanchez, M. C. Simon, Genetic and metabolic hallmarks of clear cell renal cell carcinoma, 

Biochem. Biophys. Acta Rev. Cancer, 1870 (2018), 23–31. 

4. P. Fisel, S. Kruck, S. Winter, J. Bedke, J. Hennenlotter, A. T. Nies, et al., DNA methylation of 

the SLC16A3 promoter regulates expression of the human lactate transporter MCT4 in renal 

cancer with consequences for clinical outcome, Clin. Cancer Res., 19 (2013), 5170–5181. 

5. P. Cairns, Renal cell carcinoma, Cancer Biomarks, 9 (2010), 461–473. 

6. S. H. Rossi, T. Klatte, J. Usher-Smith, G. D. Stewart, Epidemiology and screening for renal 

cancer, World J. Urol., 36 (2018), 1341–1353. 

7. L. Chen, Y. Luo, G. Wang, K. Qian, G. Qian, C. L. Wu, et al., Prognostic value of a gene 

signature in clear cell renal cell carcinoma, J. Cell Physiol., 234 (2019), 10324–10335. 

8. L. Guan, J. Tan, H. Li, X. Jin, Biomarker identification in clear cell renal cell carcinoma based 

on miRNA-seq and digital gene expression-seq data, Gene, 647 (2018), 205–212. 

9. L. Qu, Z. L. Wang, Q. Chen, Y. M. Li, H. W. He, J. J. Hsieh, et al., Prognostic Value of a Long 

Non-coding RNA Signature in Localized Clear Cell Renal Cell Carcinoma, Eur. Urol., 74 

(2018), 756–763. 

10. J. I. Lopez, P. Errarte, A. Erramuzpe, R. Guarch, J. M. Cortes, J. C. Angulo, et al., Fibroblast 

activation protein predicts prognosis in clear cell renal cell carcinoma, Hum. Pathol., 54 (2016), 

100–105. 

11. N. Ahuja, A. R. Sharma, S. B. Baylin, Epigenetic Therapeutics: A New Weapon in the War 

Against Cancer, Ann. Rev. Med., 67 (2016), 73–89. 

12. P. A. Jones, J. P. Issa, S. Baylin, Targeting the cancer epigenome for therapy, Nat. Rev. Genet., 

17 (2016), 630–641. 

13. T. W. Grunt, Interacting Cancer Machineries: Cell Signaling, Lipid Metabolism, and 

Epigenetics, Trends Endocrinol. Metab., 29 (2018), 86–98. 

14. A. Nebbioso, F. P. Tambaro, C. Dell'Aversana, L. Altucci, Cancer epigenetics: Moving forward, 

PLoS Genet., 14 (2018), e1007362. 

15. M. V. Brock, C. M. Hooker, E. Ota-Machida, Y. Han, M. Guo, S. Ames, et al., DNA 

methylation markers and early recurrence in stage I lung cancer, N. Eng. J. Med., 358 (2008), 

1118–1128. 

16. S. Shen, G. Wang, Q. Shi, R. Zhang, Y. Zhao, Y. Wei, et al., Seven-CpG-based prognostic 

signature coupled with gene expression predicts survival of oral squamous cell carcinoma, Clin. 

Epigenet., 9 (2017), 88. 

17. M. Gundert, D. Edelmann, A. Benner, L. Jansen, M. Jia, V. Walter, et al., Genome-wide DNA 

methylation analysis reveals a prognostic classifier for non-metastatic colorectal cancer 

(ProMCol classifier), Gut, 68 (2019), 101–110. 

18. D. Capper, D. T. W. Jones, M. Sill, V. Hovestadt, D. Schrimpf, D. Sturm, et al., DNA 

methylation-based classification of central nervous system tumours, Nature, 555 (2018), 469–

474. 

19. A. Colaprico, T. C. Silva, C. Olsen, L. Garofano, C. Cava, D. Garolini, et al., TCGAbiolinks: an 

R/Bioconductor package for integrative analysis of TCGA data, Nucleic Acids Res., 44 (2016), e71. 



8575 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 8559–8576. 

20. I. Merelli, P. Lio, L. Milanesi, NuChart: an R package to study gene spatial neighbourhoods 

with multi-omics annotations, PLoS One, 8 (2013), e75146. 

21. S. Engebretsen, J. Bohlin, Statistical predictions with glmnet, Clin. Epigenet., 11 (2019), 123. 

22. R. Pidsley, Y. W. CC, M. Volta, K. Lunnon, J. Mill, L. C. Schalkwyk, A data-driven approach 

to preprocessing Illumina 450K methylation array data, BMC Genom., 14 (2013), 293. 

23. M. J. Aryee, A. E. Jaffe, H. Corrada-Bravo, C. Ladd-Acosta, A. P. Feinberg, K. D. Hansen, et 

al., Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium 

DNA methylation microarrays, Bioinformatics, 30 (2014), 1363–1369. 

24. X. Robin, N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J. C. Sanchez, et al., pROC: an 

open-source package for R and S+ to analyze and compare ROC curves, BMC Bioinf., 12 

(2011), 77. 

25. G. De Angelis, R. De Angelis, L. Frova, A. Verdecchia, MIAMOD: a computer package to 

estimate chronic disease morbidity using mortality and survival data, Comput. Methods 

Programs Biomed., 44 (1994), 99–107. 

26. S. Hanzelmann, R. Castelo, J. Guinney, GSVA: gene set variation analysis for microarray and 

RNA-seq data, BMC Bioinf., 14 (2013), 7. 

27. X. Liu, J. Wen, C. Li, H. Wang, J. Wang, H. Zou, High-Yield Methylation Markers for Stool-

Based Detection of Colorectal Cancer, Dig. Dis. Sci., 65 (2020), 1710–1719. 

28. H. Liao, J. L. Kang, W. Y. Jiang, C. Deng, J. Yuan, R. Shuai, Delivery of Constitutively Active 

Mutant MKK6(E) With TAT-OSBP Induces Apoptosis in Human Ovarian Carcinoma HO8910 

Cells, Int. J. Gynecol. Cancer, 25 (2015), 1548–1556. 

29. C. H. Hsing, H. C. Cheng, Y. H. Hsu, C. H. Chan, C. H. Yeh, C. F. Li, et al., Upregulated IL-19 

in breast cancer promotes tumor progression and affects clinical outcome, Clin. Cancer Res., 18 

(2012), 713–725. 

30. J. Y. Wang, Y. Zhu, C. F. Wang, S. L. Zhang, B. Dai, D. W. Ye, A nomogram to predict 

Gleason sum upgrading of clinically diagnosed localized prostate cancer among Chinese 

patients, Chin. J. Cancer, 33 (2014), 241–248. 

31. C. K. Lee, R. J. Simes, C. Brown, S. Lord, U. Wagner, M. Plante, et al., Prognostic nomogram 

to predict progression-free survival in patients with platinum-sensitive recurrent ovarian cancer, 

Br. J. Cancer, 105 (2011), 1144–1150. 

32. S. Taskin, Y. E. Sukur, B. Varli, K. Koyuncu, M. M. Seval, C. Ates, et al., Nomogram with 

potential clinical use to predict lymph node metastasis in endometrial cancer patients 

diagnosed incidentally by postoperative pathological assessment, Arch. Gynecol. Obstet., 

296 (2017), 803–809. 

33. S. P. Connell, M. Hanna, F. McCarthy, R. Hurst, M. Webb, H. Curley, et al., A Four-Group 

Urine Risk Classifier for Predicting Outcome in Prostate Cancer Patients, BJU Int., 2019. 

34. Y. Zhang, Z. Li, M. Chen, H. Chen, Q. Zhong, L. Liang, et al., Identification of a New Eight-

Long Noncoding RNA Molecular Signature for Breast Cancer Survival Prediction, DNA Cell 

Biol., 38 (2019), 1529–1539. 

35. Z. Liu, M. Li, Q. Hua, Y. Li, G. Wang, Identification of an eight-lncRNA prognostic model for 

breast cancer using WGCNA network analysis and a Coxproportional hazards model based on 

L1-penalized estimation, Int. J. Mol. Med., 44 (2019), 1333–1343. 

36. Q. Du, Y. Wang, S. Guan, C. Hu, M. Li, L. Zhou, et al., The diagnostic nomogram of platelet-

based score models for hepatic alveolar echinococcosis and atypical liver cancer, Sci. Rep., 9 

(2019), 19403. 



8576 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 8559–8576. 

37. S. M. Kim, Y. Kim, K. Jeong, H. Jeong, J. Kim, Logistic LASSO regression for the diagnosis of 

breast cancer using clinical demographic data and the BI-RADS lexicon for ultrasonography, 

Ultrasonography, 37 (2018), 36–42. 

©2021 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 


