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Abstract: Plasma glucose concentration (PGC) and plasma insulin concentration (PIC) are two es-
sential metrics for diabetic regulation, but difficult to be measured directly. Often, PGC and PIC
are estimated from continuous glucose monitoring and insulin delivery data. Nevertheless, the inter-
individual variability and external disturbance (e.g. carbohydrate intake) bring challenges for accurate
estimations. This study is to estimate PGC and PIC adaptively by identifying personalized param-
eters and external disturbances. An observable glucose-insulin (OGI) dynamic model is established
to describe insulin absorption, glucose regulation, and glucose transport. The model parameters and
disturbances can be extended to observable state variables and be identified dynamically by Bayesian
filtering estimators. Two basic Gaussian noise based Bayesian filtering estimators, extended Kalman
filtering (EKF) and unscented Kalman filtering (UKF), are implemented. Recognizing the prevalence
of non-Gaussian noise, in this study, two new filtering estimators: particle filtering with Gaussian noise
(PFG), and particle filtering with mixed non-Gaussian noise (PFM) are designed and implemented. The
proposed OGI model in conjunction with the estimators is evaluated using the data from 30 in-silico
subjects and 10 human participants. For in-silico subjects, the OGI with PFM estimator has the ability
to estimate PIC and PGC adaptively, achieving RMSE of PIC 9.49± 3.81 mU/L, and PGC 0.89± 0.19
mmol/L. For human, the OGI with PFM has the promise to identify disturbances (95.46% ± 0.65%
accurate rate of meal identification). OGI model provides a way to fully personalize the parameters
and external disturbances in real time, and has potential clinical utility for artificial pancreas.
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1. Introduction

Type 1 diabetes is a chronic autoimmune disease that insulin production ceases because an autoim-
mune attack destroys the insulin-producing cells (β-cells) in the pancreas [1]. Insulin deficiency can
induce high blood glucose (BG) and cause various complications (i.e., retinopathy, angiocardiopathy,
and neuropathy). Generally, people with type 1 diabetes rely on exogenous insulin infusion to manage
blood glucose levels. The time and amount of exogenous insulin infusion directly determine the con-
trolling effectiveness of glucose level [2]. Given that the insulin demand always changes along with
the changes of individual condition, it is difficult for patients to have appropriate and timely insulin
infusion [3].

Recent technology advanced in the continuous glucose monitoring (CGM) [4, 5] and insulin pump
[6] has resulted in the development of artificial pancreas (AP) for diabetes care [7,8]. AP also refers to a
closed-loop glucose regulation system that can offer glucose-responsive insulin delivery automatically,
by integrating the CGM system and insulin pump [9, 10].

At this stage, the most widely used CGMs are to measure interstitial glucose concentration [11]. It
is worth noting that the decline of BG caused by insulin and the raise of BG caused by carbohydrate
intake both occur in plasma. Obtaining the plasma glucose concentration (PGC) is helpful for AP
to control glucose changes [12]. Similarly, given the safety and convenience, insulin pump normally
infuses exogenous insulin in subcutaneous tissue [13]. Indeed, the infused insulin cannot be absorbed
rapidly, remaining at the subcutaneous tissue before entering circulation [12], especially after insulin
bolus. The amount of previously infused insulin that is present in plasma or the subcutaneous space,
referred to as the insulin on board (IOB), must be quantified to prevent overdosing [14]. Therefore, it is
necessary to estimate PIC and PGC from the sampled glucose and insulin infusion data in subcutaneous
tissue [15].

Recognizing that (1) the inherent noise error of sensor and accuracy of mathematical models have a
significant impact on the estimation accuracy, (2) the manual input of carbohydrate intake information
can introduce another source of error from patient s inputs [16], filtering technology are adopted to es-
timate the hidden states [17] (i.e. the glucose and insulin concentration in plasma and the carbohydrate
intake). For example, De Pereda et al. estimated the plasma insulin concentration by combining the
classical Hovorka glucose-insulin dynamic model with extended Kalman filtering (EKF) [18]. Turksoy
et al. detected the carbohydrate intake using unscented Kalman filtering (UKF), and the effectiveness
was verified using the UVa/Padova simulation platform [19]. Charalampidis et al. introduced particle
filter technology to the estimation of plasma glucose concentration for ICU subjects, overcoming the
uncertainty from glucose measurement error [20]. Considering the individual variability, Hajizadeh
et al. [21] estimated PIC by estimating the extended parameters related to insulin absorption based
on UKF. While promising, the efforts reviewed above still face the challenges from the model pa-
rameter uncertainty due to the inter-individual variability. Specifically, since only part of the model
parameters extendable to observable state variables can be identified dynamically [22], research to-
date has mainly focused on personalizing part of the model parameters related to insulin absorption.
The inter-individual variability presents in whole metabolism [23, 24]. Although many models have
been proposed and analyzed [25–28], we contend that (1) there is a need to establish a glucose-insulin
dynamic model of which the parameters and disturbances can be extended to observable variables; and
(2) an appropriate Bayesian filtering estimator needs to be developed to personalize the parameters and
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Figure 1. The OGI dynamic model for PGC and PIC estimation.

In this research, a new observable glucose-insulin (OGI) dynamic model is proposed. According to
the physiological mechanism of glucose metabolism, the OGI model describes the integrated glycemic
regulation with three processes: insulin absorption, glucose regulation and glucose transport. In the
OGI model, the model parameters can be extended to the observable variables and mapped by CGM
data. Next, the Bayesian filtering technology is implemented to personalize the model parameters and
external disturbances for PIC and PGC estimation in real time. EKF and UKF are first explored. Since
both the filtering techniques are built upon Gaussian propagation process [22], the applicability of these
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filters may be questionable given that some state variables are non-negative due to the physiological
constraints. In view of this, an emerging filtering technology, particle filtering (PF) [29] is introduced.
PF obtains numerical results by Monte Carlo simulation, having advantages in dealing with nonlinear
engineering problems and non-Gaussian assumption [30, 31]. In this study, the applicability of PF and
its extensions to OGI is investigated comparing to EKF and UFK.

The rest of this paper is organized as follows. In Section 2, the observable glucose-insulin (OGI)
dynamic model is developed and the observability of OGI dynamic model is verified. In section 3,
four Bayesian filtering estimators, based on EKF, UKF, the PF with Gaussian noises (PFG), and the
PF with mixed non-Gaussian noises (PFM), are designed to estimate the extended state variables (i.e.
the model parameters and external disturbances) dynamically and to estimate the plasma glucose and
insulin concentration in real time. Section 4 introduces the experiment for validation. The results and
discussions are illustrated in section 5 and 6. The conclusion is drawn in section 7.

2. Modelling

2.1. Basic OGI model

As seen in Figure 1, basic OGI model considers three processes: (1) the insulin absorption from
subcutaneous infusion to plasma, (2) the glucose regulation under the influence of PIC and external dis-
turbance, and (3) the glucose transport from plasma to the subcutaneous interstitial, where the glucose
concentration can be measured by CGM.

2.1.1. Insulin absorption

The insulin absorption sub-model describes the insulin absorption process from subcutaneous infu-
sion to plasma. As given by [23], a two-compartment model is established to describe this process:

dx1(t)
dt = −

x1(t)
tI

+ u(t)
dx2(t)

dt =
x1(t)−x2(t)

tI
x(t) =

1000x2(t)
tI M W

(2.1)

where u(t) represents the exogenous insulin delivery rate(U/min, 1U/min=1/60 U/h) at time t (imme-
diate insulin bolus is modeled as a short burst insulin infusion), x1(t) and x2(t) represent the amount
of effective insulin in the first and second insulin absorption compartment respectively (U), x(t) is
the plasma insulin concentration (PIC) (mU/L), the number 1000 is derived from the unit conversion
(1 U/L=1000 mU/L), tI is the time-to-maximum of effective insulin concentration (min), M is the
metabolic clearance rate (L/kg/min) of effective insulin, and W is the measured body weight (kg).

2.1.2. Glucose regulation

The glucose regulation sub-model describes the kinetics of PGC regulation. Similar to the Bergman
model [32, 33], this regulation is described by a single-compartment model, where the rate of PGC
changes equals the production of glucose minus the consumption of glucose. As shown in Figure
1, the glucose production involves the endogenous glucose production (by liver) and the digestion of
carbohydrate. The glucose consumption involves the consumption independent of insulin (by brain),
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and the consumption stimulated by insulin (by the liver and muscles). Here, supported by [23, 34, 35],
it is assumed that the insulin-dependent glucose utilization does not depend on PGC. That is

dG(t)
dt

= −S ix(t) − K [G(t) −Gb] + D(t) (2.2)

where G(t) is the PGC (mmol/L), S i is the effect of insulin sensitivity (mmol/L/min per mU/L), Gb

is the basal glucose level (mmol/L) and K is the glucose self-regulation fractional rate (min−1) which
has an effect of glucose self-regulation towards Gb. D(t) is a lumped signal to describe the external
disturbance to glucose changes, such as carbohydrate intake and exercise (mmol/L/min).

2.1.3. Glucose transport

The CGM measures the glucose level in interstitial fluid. Lumping the dynamics introduced by
the CGM systems, the plasma glucose converts into interstitial glucose across a concentration gradient
with time lag τ (min). The interstitial glucose concentration is given as

dGI(t)
dt

=
G(t) −GI(t)

τ
(2.3)

where GI(t) is the interstitial glucose concentration which can be measured by CGM (mmol/L).

2.2. Observable Glucose-insulin dynamic model

The inter-individual variability induces the variability of model parameters, named parameter un-
certainty, which has a direct effect on PIG and PGC estimation. To identify parameters by filtering
techniques, the model parameters should be are extendable to observable state variables, as discussed
in [18].

It is the purpose of this study to achieve a deeper personalization, not limited to personalize the
parameters related to insulin absorption. We merged and simplified the parameters to form an OGI
dynamic model. To summarize, the OGI dynamic model can be expressed as

d
dt

X (t)=


− 1

tI
0 0 0

1
tI

− 1
tI

0 0
0 −

S ∗i
tIW

−K 0
0 0 1

τ
−1
τ

︸                         ︷︷                         ︸
:=A

X (t) +


0
0
1
0

︸︷︷︸
:=B1

U (t) +


1
0
0
0

︸︷︷︸
:=B2

u (t)

z (t) =
[

0 0 0 1
]︸            ︷︷            ︸

:=C

X (t)

(2.4)

where X = [x1, x2,G,GI]T . The U(t) represents the compound uncertainty of the system, composed
by K,Gb and D(t), U(t) = KGb + D(t). S ∗i = 1000S i

M represents a parameter related to insulin sensitivity.
z(t) is the measurable output of system (interstitial glucose concentration GI(t)).

On this basis, the parameters [tI , S ∗i , K, τ] and compound uncertainty U are generally regarded as
the extended variables, dθ

dt = 0, θ ∈ θ, θ = [tI , S ∗i , K, τ,U]. Here, the extended OGI dynamic model can
be formed as:

dX′(t)
dt = F(X′(t), u(t))

z(t) = H (X′(t))
(2.5)
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where X′ is the vector of state variables, X′=[x1, x2, G, GI , tI , S ∗i , K, τ, U]T .
To construct the estimator (observer), observability ensures that the state variable can be observed

and estimated [22], i.e., the state variable X′(t) can be uniquely mapped to the output z(t).
For a nonlinear system, the proof of observability is usually performed by calculating the observ-

ability matrix derived from the chain of Lie derivatives [36, 37]. The observability matrix of nonlinear
system is

ψ(t) =


∂
∂X′L

0
F (H (X′(t)))

∂
∂X′L

1
F (H (X′(t)))

...
∂
∂X′L

n−1
F (H (X′(t)))

 (2.6)

where n is the order of the system, Lk
F[H (X′(t))] = ∂

∂X′ Lk−1
F [ H (X′(t))]F, and L0

F [H (X′(t))] =

H (X′(t)). For the extended OGI dynamic model, the rank of observability matrix is Rank(ψ(t)) = 9,
and it is concluded that all the state variables are observable. That is, all the state variables [x1, x2, G,
GI , tI , S ∗i , K, τ, U] can be estimated from glucose measurement.

Since the CGM data are sampled discretely, a discrete OGI dynamic model is rewritten using the
first forward difference derivative approximation. To be consistent with practice, unmodeled dynamics
is introduced (refer to process noise). Besides, considering the parameter uncertainty, the extended
states are also incorporated in process noise [21]. To characterize the uncertainty of glucose measure-
ment, the measurement noise is added. The discrete OGI dynamic model is

x1(k + 1) =
(
−

x1(k)
tI (k) + u(k)

)
T + x1(k) + ωx1(k)

x2(k + 1) =
(

x1(k)−x2(k)
tI (k)

)
T + x2(k) + ωx2(k)

G(k + 1) =
(
−S ∗i (k)x2(k)

tI (k) W + U(k) − K(k)G(k)
)

T + G(k) + ωG(k)
GI(k + 1) =

(
G(k)−GI (k)

τ(k)

)
T + GI(k) + ωGI (k)

tI(k + 1) = tI(k) + ωtI(k)
S ∗i (k + 1) = S ∗i (k) + ωS i∗(k)
K(k + 1) = K(k) + ωK(k)
τ(k + 1) = τ(k) + ωτ(k)
U(k + 1) = U(k) + ωU(k)
z(k + 1) = GI(k + 1) + υ(k)

(2.7)

where T is the sampling period. ω represents the process noise vector, ω=[ωx1, ωx2, ωG, ωGI , ωtI , ωS ∗i ,
ωK , ωτ, ωU]T , and υ represents the measurement noise.

3. Bayesian filtering as estimator

Bayesian filtering technology incorporates the Bayesian inference with first-order hidden Markov
process [38]. The posterior distributions of the state variables are recursively conditioned on sensor
information collected up till the present moment. Based on the Bayesian inference, the posterior dis-
tribution Xk can be obtained by

p (Xk|z1:k) ∝ p (zk|Xk) p (Xk|z1:k−1) (3.1)
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where p (zk|Xk) is the likelihood probability at the kth sampling time, p (Xk|z1:k−1) represents the
prediction-step probability determined by the previous results p (Xk−1|z1:k−1), that is

p (Xk|z1:k−1) =

∫
p (Xk|Xk−1)p (Xk−1|z1:k−1) dXk−1 (3.2)

Differing in the specific way to update p (Xk|z1:k) and p (Xk|z1:k−1), four filtering estimators are de-
signed in the following parts, including extended Kalman filtering (EKF), unscented Kalman filtering
(UKF), particle filtering with Gaussian noises (PFG), and PF with mixed non-Gaussian noises (PFM).
The EKF and UKF are developed for comparison with PF.

3.1. EKF and UKF

EKF and UKF are based on the Kalman filtering principle. Both of them adopt the Gaussian prop-
agation to obtain the posterior solution, i.e., the process noise and measurement noise are assumed to
be Gaussian [22] (ω ∼ N (0,Q) and υ ∼ N (0,R)). In EKF, the nonlinear model is approximated with
first-order Taylor expansion at the last estimated point, then the standard Kalman filtering formulas are
used to calculate the posterior distribution [18]. The details of the EKF algorithm are given in Ap-
pendix. In UKF, unscented transformation (UT) is adopted. It uses a deterministic sampling approach
to estimate the mean and covariance of variables with a minimal set of sample points, also called
sigma points [39]. These sigma points are propagated through the true nonlinear system, meanwhile
the weighted mean and the covariance are calculated. The details of the UKF algorithm are given in
Appendix. The determination of the noise covariance matrix in EKF and UKF is given in section 4.

3.2. Particle filtering technology

3.2.1. PFG-particle filtering for Gaussian noise

Particle filtering (PF) approximates the posterior distribution of state variables based on Monte
Carlo statistical method [31]. For each X ∈ X, the probability p (Xk|z1:k) can be approximated by N
random particles X(i)

k and their associated weights WX
(i)
k in a weighted summation, such as

p(Xk|z1:k) =

N∑
i=1

W (i)
XkX(i)

k (3.3)

As the measured data are updated, the weights are adjusted in real time. In each update step,
sequential importance sampling (SIS) is incorporated to achieve the iteration [31]. The weight of the
ith particle at the kth step can be calculated by

WX
i
k ∝ WX

i
k−1

p
(
zk|Xi

k

)
p
(
Xi

k|X
i
k−1

)
q
(
Xi

k|X
i
k−1, zk

) (3.4)

where WX
i
k−1 is the weight of the ith particle at the last step, p

(
zk|Xi

k

)
is the likelihood probability related

to the measurement function and measurement noise υ, p
(
Xi

k|X
i
k−1

)
is the prior probability related to

the state transition function and process noise ωX, ωX ∈ ω, q
(
Xi

k|X
i
k−1, zk

)
is the sampling probability
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related to the distribution of particle samples. Generally, the particles are sampled from the prior
distribution, and the weight of the ith sampled particle is

WX
i
k ∝ WX

i
k−1 p

(
zk|Xi

k

)
(3.5)

Nevertheless, the particles tend to degenerate in the recursive estimation, and few particles survive
if the case comes to the worst. In view of this, a resampling procedure is conducted in regions of
higher sampling importance [40]. In other words, particles with higher probabilities generate more
new particles.

For a fair comparison, Gaussian noise is taken in PF, i.e., ω ∼ N (0,Q) and υ ∼ N (0,R). This
filtering is termed PFG (the details of PFG algorithm is given in Appendix).

3.2.2. PFM - particle filtering for mixed non-Gaussian noise

The state variables [x1, x2, G, GI , tI , S ∗i , K, τ, U] consist of (1) the state variables with non-negativity
constraint, that is, [x1, x2,G,GI], which are transformed from glycemic model variables, and the state
variables [tI , S ∗i , K, τ], which are extended from model parameters with non-negative physiological
meaning; (2) the compound uncertainty U can be either positive or negative (specifically, positive
D indicates the glycemic effect induced by carbohydrate disturbance, while negative D indicates the
hypoglycemic effect induced by exercise disturbance).

As for the state variables with non-negativity constraint, [x1, x2, G, GI , tI , S ∗i , K, τ], the shifted
log-normal distribution [41] with three parameters is introduced to model the process noise to ensure
the non-negativity of state variables. For each process noise of the non-negative state variable ωGLN

X , it
is assumed ωGLN

X ∼ GLN(λX, µX, σX) with PDF

fGLN(ωGLN
X ) =

exp
{
− 1

2σ2
X

[
ln(ωGLN

X + λX) − µX

]2
}

(ωGLN
X + λX)

√
2πσX

(3.6)

where λX is the position parameter, µX is the shape parameter, and σX is the scale parameter. The
position parameter λX shifts the log-normal distribution along X-axis to ensure that the expectation
of process noise is 0. Thus, log-normal distribution is chosen as the prior distribution of each non-
negativity parameter, just like the assumptions in [23]. Specifically, the hyper-parameters λk

X, µk
X, σk

X
at the kth step can be derived as

λk
X = F(Xk−1)
µk

X= ln(F(Xk−1))−1
2 ln

(
1 +

var(F(Xk−1)+ωX)
F(Xk−1)2

)
σk

X =

√
ln

(
1 +

var(F(Xk−1)+ωX)
F(Xk−1)2

) (3.7)

As for the compound uncertainty U, without the limitation of non-negativity, its process noise is still
set to Gaussian. This filtering mixed non-Gaussian noise is termed PFM (the details of PFM algorithm
is given in Appendix).

4. Experiments

The objective of this study is to develop an observable glucose-insulin model of which the pa-
rameters can be personalized, to estimate plasma glucose concentration (PGC) and plasma insulin
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concentration (PIC) dynamically. Taking a progressive research approach, three sets of experiments
are conducted: (1) Experiment I is to prove that the proposed model has the ability to estimate PIC and
PGC. (2) Built upon the success from the first experiment, Experiment II is to validate the capability
of our model in identifying physiological parameters, in this study, 4 parameters, [tI , S ∗i , K, τ]. Con-
sidering the difficulty to continuously monitor PIC and PGC values on human participants, 30 in-silico
subjects with type 1 diabetes produced by UVa/Padova simulator [42] are used both in Experiment I
and Experiment II. Other than the 4 physiological parameters, we have a compound uncertainty param-
eter U, related to the disturbance, in the OGI model. (3) Since U is a time-varying parameter changed
in responding to meal intakes, we design Experiment III to demonstrate that parameter U is identifiable
as an indicator for meal identification. Recognizing that the meal intake of in-silico subjects only have
intra-day variability, not inter-day variability, we have extended Experiment III to include 10 human
subjects.

Table 1. The schedule of carbohydrate intake for all in-silico subjects.

Breakfast Lunch Snack Dinner Snack
Time 7:00 12:00 16:00 18:00 23:00

Carbohydrate 45(g) 70(g) 20(g) 80(g) 20(g)

The UVa/Padova simulator is a substitute for preclinical testing in diabetes care accepted by FDA
(Food and Drug Administration) [43]. The model embedded in UVa/Padova simulator is different
from the OGI model, which consists of 12 nonlinear differential equations, 18 algebraic equations and
35 parameters [42]. In general, this model is not usable for the quantification of specific metabolic
relationships, but is suitable for system simulation [44,45]. It contains 30 in-silico subjects (10 adults,
10 adolescents, 10 children), having been widely used in glycemic modeling and simulation [46–48].
In the UVa/Padova simulator, a simulation scenario was developed. The experimental duration was
set to one week (7 days), and the insulin injection rate of each subject was set to the default value,
determined automatically by the simulator in terms of the subject’s basal injection rate and the specific
ratio of carbohydrate to insulin. The schedule of daily carbohydrate intake is given in Table 1. In total,
1050 meals were produced in the experiment.

Table 2. The information of 10 human participants.

ID of participant 1 2 3 4 5
Gender F F M F M

Age (year) 25 32 18 23 26
Weight (kg) 56 60 70 44 57

Duration of diabetes (year) 14 20 10 8 10
ID of participant 6 7 8 9 10

Gender F F F M M
Age (year) 22 31 37 26 29
Weight (kg) 50 80 75 60 52

Duration of diabetes (year) 8 14 23 13 14

This study was approved by the institutional review boards (IRB), and all the participants signed
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informed consent forms prior to participation. The study was based on the group of 10 participants with
type 1 diabetes (see Table 2 for details). This dataset was used in [24]. The insulin and glucose data of
each participant were monitored over one week. All the participants used insulin pumps (MiniMed 712,
Medtronic) for insulin Lispro infusion, and they did not take any drugs other than exogenous insulin
infusion. The experiment of human subjects is an ambulatory study where subjects who are already
insulin pump users participated, came in to get a CGM, then went home to carry on with their life.
The daily routines and carbohydrate intakes of subjects are online reported to respective physicians in
real time via the Internet. Taking meal intake as an example, the types, weights, and cooking methods
of the ingredients for each meal were reported to their physicians, and then carbohydrate intake was
calculated by the hospital’s nutritionist. A total of 206 meals were recorded, and the glucose data were
sampled every 15 min by the glucose sensor, FreeStyle Libre CGM system (Abbott Diabetes Care).
The injection time and doses of insulin were recorded by the insulin pump. The timestep of updating
model is 15 min (T=15min).

In this study, the variances of state variables were heuristically adopted to Q= diag[10−2, 10−2, 1, 1,
10−6, 10−6, 10−6, 1, 1]. The variance of measurement noise was set to R = 0.45 [18]. The initial state
variables [x1, x2,G,GI] were set [u1 · tI , u1 · tI , z1, z1], where u1 was the first value of insulin delivery rate
(IDR) data and z1 was the first value of CGM data. The initial values of [tI , K], were set as [42,0.004]
according to the population values in [23]. The initial values of S ∗i is 294, calculated by S ∗i = 1000S i

M ,
where initial value of S i is 0.005 [23]. The initial value of τ was set to 16 min [17]. The number of
particles in PFG and PFM was set to 1000 after balancing the relationship between the accuracy and the
amount of calculation (details please see appendix). It is worth noting that the sensor noise produced
by UVa/Padova simulator is close to that in real CGM (FreeStyle Libre, Abbott Diabetes Care ), which
is complex [49]. For simplicity, this noise is usually considered to be Gaussian approximately, such as
in [39] and [46].

To evaluate the performances of OGI model on estimating PGC and PIC, root mean square error
(RMSE) is used to measure the accuracy:

RMS E=

√√√√ m∑
i=1

(
y j − ŷ j

)2

m
(4.1)

One of the outputs is the estimated U, which can be used to identify the state of carbohydrate
disturbances [46,47]. Similar to [16], the CGM data, the forward difference of disturbance DU(k), and
previous identification results are used to identify a new carbohydrate intake. Specifically, an active
identification of new carbohydrate intake, three conditions must be met at the same time: (1) DU(k)
exceeds the threshold two times successively; (2) measured CGM data goes beyond a threshold (5.56
mmol/L [47]); (3) it has been more than 120 minutes since the last active identification. The indicator
’Flag’ takes 1 when carbohydrate intake is identified, otherwise it takes 0. The specific formula of
’Flag’ can be given as:

Flag(k) = 1 i f


DU(k),DU(k − 1) ≥ Threshold
CGM(k) ≥ 5.56 mmol/L
Flag(k − 1, k − 2, k − 3, k − 4) = 0

Flag(k) = 0 otherwise

(4.2)
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Here the ability to identify carbohydrate disturbance within two hours is also evaluated.
For each carbohydrate disturbance, the 120 min counted from the beginning of the meal is defined

as an identification test window Tcarbo, as defined in literature [16, 47]. The definitions of true-positive
(TP) event, false-negative (FN), false-positive (FP) event, and true-negative (TN) event are given below.

TP :Flag(k) = 1, while k ∈ Tcarbo

FN :Flag(k) = 0, while k ∈ Tcarbo

FP :Flag(k) = 1, while k < Tcarbo

TN :Flag(k) = 0, while k < Tcarbo

On this basis, four metrics: accuracy rate (AR), precision rate (PR), false-positive rate (FPR) and
recall rate (RR) are derived as:

AR = NT P+NT N
NT P+NT N+NFP+NFN

PR= NT P
NT P+NFP

FPR= NFP
NT P+NFP

RR = NT P
NT P+NFN

(4.3)

Figure 2. An example of PGC and PIC estimation based on OGI model with different
Bayesian filtering estimators (OGI-EKF, OGI-UKF, OGI-PFG, and OGI-PFM). The sam-
pling period is 15min.
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5. Results

The performances of OGI model on estimating PGC, PIC and physiological states are evaluated
with four Bayesian filtering estimators: EKF, UKF, PFG, and PFM.

5.1. Experiment I: PIC and PGC estimation

Figure 2 shows an example of PIC and PGC estimation for an in-silico subject based on OGI-
EKF, OGI-UKF, OGI-PFG, and OGI-PGM respectively. As seen, the results show that the OGI model
can estimate the insulin and glucose concentration in plasma with any one type of Bayesian filtering
estimator.

Figure 3. Comparison of different Bayesian filtering estimators on PIC and PGC estima-
tion for in-silico subjects. (The solid lines are the mean values, and the upper and lower
boundaries of shadow areas represent the upper and lower standard deviations.)

To quantify the performances, Figure 3 illustrates the absolute errors of different Bayesian filtering
estimators on PGC and PIG estimation for all in-silico subjects. The top figure shows the absolute
errors of PIC estimation. It is observed that the absolute errors of OGI model stay lower than 20 mU/L
for all four estimators. The error profiles of OGI-PFG and OGI-PFM are fairly close to each other,
and both are under OGI-EKF and OGI-UKF. The bottom figure illustrates the estimation results of
PGC. It is worth noting that similar to the results in [50], the absolute errors in the first few days are
larger than those of the other days, especially for OGI-EKF and OGI-UKF. This is because the state
variables require a period of training time to converge. Besides, the errors of estimated PIC and PGC
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appear periodic changes. For PGC estimation, OGI-EKF and OGI-UKF have larger absolute errors
than OGI-PFG and OGI-PFM. The results confirm the advantages of PF technology (PFG and PFM)
for PIC and PGC estimation.

Table 3. RMSEs of estimated PGC (mmol/L) and PIG (mU/L) for different groups of in-
silico subjects (mean±standard deviation).

Model Project Adults Adolescents Children All
OGI-EKF PGC 1.08±0.47 1.59±1.00 1.74±0.63 1.47±0.76

PIC 8.69±3.03 11.94±5.71 13.78±2.61 11.47±4.43
OGI-UKF PGC 0.94±0.22 1.32±0.58 1.62±0.53 1.29±0.53

PIC 7.91±3.40 10.94±6.50 12.62±3.70 10.49±4.99
OGI-PFG PGC 0.75±0.16 1.05±0.27 0.95±0.15 0.92±0.23

PIC 7.08±2.83 9.56±4.73 11.82±1.99 9.49±3.81
OGI-PFM PGC 0.73±0.10 0.96±0.17 0.99±0.18 0.89±0.19

PIC 7.08±2.83 9.56±4.42 11.82±2.01 9.49±3.81

For different groups of in-silico subjects (adults, adolescents, and children), the RMSEs of estimated
PGC and PIC on each age group are given in Table 3. The results of each group are not only confirmed
the advantages of PFG and PFM for the estimation again, but also interestingly found that OGI model
performs better for the adult group.
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Figure 4. An example of parameter evolution over 7 days. The sampling period is 15min.

5.2. Experiment II: Identifying physiological parameters

Due to the difference in model structure, the parameters in UVa/Padova simulator are different from
those in OGI model. As human subject based study, obtaining the ground truth from in-silico subjects

Mathematical Biosciences and Engineering Volume 18, Issue 6, 8499–8523.



8512

is challenging. Instead of providing ground truth as a prior, we decide to take a sensitivity analysis
approach, that is, we interrogate the model performances on the data generated by giving parameter
settings. A glucose dataset is generated by giving model parameters, meal intake and insulin delivery
data. Glucose data and insulin delivery data, as the input, are used to estimate parameters. An example
of parameter evolution over 7 days is shown in Figure 4. The black dashed line is the true value of the
parameter.

It can be seen that the estimated values converge to the true values, especially after the warm-up
period. Although the changes of all parameters estimations under the four filters are smoothed over
time, it is observed that the results from OGI-UKF and OGI-EKF fluctuate greatly in the early stage,
especially on the first day due to the warm-up period. This phenomenon is consistent with the results
in [50]. In contrast, the performance of OGI-PFG and OGI-PFM in this warm-up period is more stable.

The parameter estimations for in-silico subjects with mean and standard deviation are shown in
Table 4. The results are average estimation across 30 in-silico subjects throughout 7 days.

The parameter estimations for in-silico subjects with population mean and standard deviation are
shown in Table 4. It is worth noting that the in-silico subject are closer to the real environment, the
nonlinearity and uncertainty are stronger, and the performances of different filters have remarkable
differences. This further reflects the advantages of the designed particle filter.

Table 4. Parameter identification for 30 in-silico subjects over 7 days (mean ± standard
deviation).

Model tI S i(×10−2) K(×10−2) τ

OGI-EKF 41.46±7.70 0.23±0.83 4.58±2.93 21.85±14.44
OGI-UKF 42.22±7.30 0.63±0.60 4.79±4.36 32.67±12.89
OGI-PFG 41.83±6.64 0.39±0.24 6.36±3.76 29.19±8.05
OGI-PFM 41.83±6.63 0.41±0.22 6.41±3.21 28.38±6.98

Table 5. An example of the meal time and sizes for a human subject.

Day Time CHO(g) Day Time CHO(g)
1 7:15 20 4 8:00 36

11:15 81.7 14:00 53
18:15 50 18:00 38

2 7:30 38 5 6:00 20
12:00 80 11:30 85
19:20 40 17:30 38
0:30 35 6 7:00 37

3 7:00 35.4 12:40 69
13:30 73 19:10 33.4
19:00 34 7 12:30 85
22:00 37 20:00 24.7
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5.3. Experiment III: Identifying carbohydrate disturbance

In this experiment, given that meal intake can be known as a ground truth, we decide to use this
information to demonstrate that the parameter U can be identified and has potential in real-world
application such as meal identification. As for the performances of OGI model with different estimators
on identifying compound uncertainty U, an example of meal identification from a human subject is
illustrated in Table 5 and Figure 5 (the meal times and sizes of the subject are summarized in the table
and identification results are shown in the figure). The top figure shows the glucose level given by
CGM, while the bottom figure illustrates the estimated U and the identification results of carbohydrate
disturbances.

As seen, OGI-PFG and OGI-PFM are able to identify most of the carbohydrate disturbances. The
performances on meal identification for all the subjects, including the in-silico and human participants,
are shown in Table 6 (with the threshold heuristically set to 0.1 mmol/L/min). It shows that the per-
formances from OGI-PFG and OGI-PFM are similar which outperform OGI-EFK and OGI-UKF. The
OGI-PFM shows the daily ability with AR 95.46%±0.65%, PR 68.89%±3.57%, FPR 31.11%±3.57%,
and RR 71.90% ± 3.72%.
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Figure 5. An example of identifying meal disturbance for a human subject. The sampling
period is 15min.
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Table 6. The daily averages and standard deviation of OGI model with different estimators
on meal identification.

Model AR PR RR FPR
OGI-EKF 92.10% ± 0.79% 46.35% ± 4.10% 34.38% ± 2.77% 53.65% ± 4.10%
OGI-UKF 93.75% ± 1.45% 58.74% ± 8.73% 55.90% ± 9.37% 41.26% ± 8.73%
OGI-PFG 95.11% ± 0.74% 66.62% ± 4.69% 70.19% ± 3.10% 33.38% ± 4.69%
OGI-PFM 95.46% ± 0.65% 68.89% ± 3.57% 71.90% ± 3.72% 31.11% ± 3.57%

6. Discussion

It is a benefit for a fully automatic AP system to estimate the PGC and PIC based on the collected
CGM and IDR data. However, the inter-individual variability limits the accuracy of estimation, be-
cause they increase the uncertainty of model parameters from the mathematical perspective. To solve
this problem, it is feasible to extend the uncertainty parameters into state variables and estimate them
based on Bayesian filtering estimator. But this method can be adopted only if the extended variables are
completely observable. This research proposes an observable glucose-insulin (OGI) model in which
the model parameters and environment disturbance can be extended to state variables and the observ-
ability of the extended system is proved. On this basis, four Bayesian filtering estimators (EKF, UKF,
PFG, and PFM) are designed to estimate all the state variables and the PGC and PIC.

It is observed from the experiment of in-silico subjects that the proposed model has high accuracy
in PIC and PGC estimation (Figure 2 and Figure 3), and the OGI-PFM outperforms other estimators
in most cases. According to the results of different groups, it is found that the OGI model tends to
perform better for the older subjects (Table 3). Based on the estimation of physiological states, the
OGI model has the potential in identifying parameters and disturbance (Figure 4, Figure 5, Table 4 and
Table 6).

In looking at the estimators, the EKF is less effective than the UKF in PIC estimation, which is
consistent with the results in [21]. An interesting observation is that PF (PFG, PFM) has better per-
formances than EKF and UKF indicating the promises of PF based estimator, which is not consistent
with the conclusion drawn from [39]. This may be because when more model parameters are extended
to state variables, the nonlinearity of the model is further enhanced. In this case, the advantages of PF
in dealing with nonlinear systems are fully utilized. Comparing PFG vs. PFM, while PFM has the best
performance among the four, it is surprising that the outperformance of PFM over PFG is marginal.
It is contended that this may be due to the limited dataset where the mixed noises are not apparent.
This discovery indeed points out the immediate future effort which is to collect PIC and PGC data
from human participants, to conduct the validation on the larger dataset, and to explore the influence
of other noise distributions on the estimation.

Although PFG and PFM have better performance in estimating PIC and PGC, PFG and PFM rely
on powerful computing power. The simulation is implemented in the computer (Intel(R) Core i9-
9900 K 2-Core 3.60 GHz processor). It is worth noting that in real application scenarios, these are not
high-performance computation devices but embedded devices with significant constraints in processing
power, memory, and power usage. Therefore, it is essential to develop a low-computational and low-
power mode in future work, as discussed in [51]. For example, if the computational cost needs to be

Mathematical Biosciences and Engineering Volume 18, Issue 6, 8499–8523.



8515

reduced due to the limitation of computing power and a little accuracy is allowed to be sacrificed, some
parameters with low sensitivity can be fixed.

Table 7. Comparative results with other method in literature on PIC estimation.

Study Model Personalized parameter Estimator Results (mU/L)
Iman Hajizadeh [21] Hovorka model tI , ke, U EKF RMSE(PIC): 19

UKF RMSE(PIC): 13.14
This study OGI model tI ,S ∗i ,K,τ,U PFM RMSE(PIC): 9.49

To the best of our knowledge, research to date has mainly focused on PIC estimation, in which the
variability of insulin absorption parameters was focused. Few works of literature discussed the estima-
tion accuracy of PGC. Thus, OGI is compared with the models from the literature on PIC estimations
only. Since the objective of the study in [21] aligns with our study, the comparison of our proposed
OGI model with the methods in [21] is conducted using our dataset. As seen in Table 7, using the
method mentioned in [21], the RMSEs of PIC estimation enhanced by EKF and UKF are 16.64 mU/L
and 13.28 mU/L respectively, which is larger than that conducted by OGI-PFM 9.49 mU/L. It can be
concluded that OGI-PFM has better performances on our dataset.

In parameter identification, two types of parameters are involved in the model, physiological pa-
rameters [tI , S ∗i , K, τ] and parameter of compound uncertainty U. Given that (1) in the experiment
on in-silico subjects produced by the UVa/Padova simulator, physiological parameters are fixed as
in [16,46]; (2) in human subjects, although the physiological parameters changes all the time, the spe-
cific changes of these parameters cannot be continuously monitored, the ability to dynamically identify
variable parameters needs to be verified in future work. Nevertheless, since (1) meal intake can induce
the U changes; (2) the time and size of meal intake can be set in UVa/Padova Simulator and are also
recorded in the experiment of human subject, meal identification is developed to be an application to
show the ability to dynamically identify the parameter U. Please note that the focus of this study is
to develop a complete observable model. Meal identification is just a preliminary attempt to show
the potential of identifying the parameter impacted by external disturbance (carbohydrate intake). It
is the author’s future work to improve meal identification based on estimated U, such as adding post-
processing and choosing an appropriate threshold. Developing a fast and effective way to detect meal
intake is worthy of further research.

When the cannula site is no longer absorbing the insulin effectively or even occlusion, the insulin de-
livery rate displayed in the insulin pump cannot achieve the desired hypoglycemic effect. It is guessed
that the parameters which have positive effects on rising glucose level may be overestimated, such as
[tI ,U], while the parameters which have negative effects may be underestimated, such as S i. This may
also bring new challenges to meal identification. Exploring the performance of the proposed method
in facing such faults is very valuable. Taking fault diagnosis as an example, it may be warning that the
cannula site is no longer absorbing the insulin effectively or even occlusion, when the parameter tI is
overestimated (exceeding a certain threshold). In addition, it is also worth exploring how to ensure the
robustness of the system in the case of sensor data loss.
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7. Conclusion

In this study, an OGI dynamic model is proposed for personalized estimation of PIC and PGC based
on CGM and IDR data. The OGI model, which describes the dynamics of glucose and insulin changes,
takes full account of the parameter uncertainty caused by inter-individual variability. To deal with the
uncertainty, the OGI model is extended to a non-parametric dynamic model, of which all the state
variables, including the original ones and those extended from the model parameters, are observable.
On this basis, four types of Bayesian filtering estimators are designed to estimate the state variables,
including EKF, UKF, PFG, and PFM. For EKF, UKF and PFG, the Gaussian assumption is adopted, but
considering the non-negativity of some state variables, PFM explores the non-Gaussian characteristic
of process noise and assuming it to be subjected to a distribution mixed of Gaussian and shifted log-
normal distribution. Tested by the in-silico experiment, OGI-PFG and OGI-PFM show better abilities
to estimate PIC and PGC than OGI-EKF and OGI-UKF. Especially, the OGI-PFM has a particularly
promising performance (RMSE of PIC estimation: 9.49±3.81 mU/L, RMSE of PGC estimation: 0.89±
0.19 mmol/L). It also indicates that particle filter has advantages in personalizing the parameters and
disturbances. It is also found that compared with the influence from filtering types, the distribution of
noise has much less influence on the estimation performances. Moreover, the personalized estimations
of PIC and PGC for clinic application remains to be verified.
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impair microvascular reactivity and endothelial function during hyperinsulinemic isoglycemic and
hyperglycemic clamp in type 1 diabetic patients, Exper. Diabetes Res., 2012, 59–66.

35. N. Magdelaine, L. Chaillous, I. Guilhem, J.-Y. Poirier, M. Krempf, et al., A long-term model
of the glucose–insulin dynamics of type 1 diabetes, IEEE Transact. Biomed. Eng., 62 (2015),
1546–1552.

36. R. Hermann, A. Krener, Nonlinear controllability and observability, IEEE Transact. Autom.
Control, 22 (1977), 728–740.

37. Q. Ma, Structural conditions on observability of nonlinear systems, Int. J. Inform. Technol.
Computer Sci., 3 (2011), 16–22.

38. C. Yardim, Z. H. Michalopoulou, P. Gerstoft, An overview of sequential Bayesian filtering in
ocean acoustics, IEEE J. Ocean. Eng., 36 (2011), 71–89.

39. C. Eberle, C. Ament, The Unscented Kalman Filter estimates the plasma insulin from glucose
measurement, Biosystems, 103 (2011), 67–72.

Mathematical Biosciences and Engineering Volume 18, Issue 6, 8499–8523.



8519

40. T. Li, M. Bolic, P. M. Djuric, Resampling methods for particle filtering: classification, implemen-
tation, and strategies, IEEE Signal Proc. Mag., 32 (2015), 70–86.

41. B. M. Hill, The three-parameter lognormal distribution and Bayesian analysis of a point-source
epidemic, J. Am. Stat. Assoc., 58 (1963), 72–84.

42. C. D. Man, F. Micheletto, D. Lv, M. Breton, B. Kovatchev, C. Cobelli, The UVA/PADOVA type
1 diabetes simulator: New features, J. Diabetes Sci. Technol., 8 (2014), 26–34.

43. R. Visentin, C. Dalla Man, C. Cobelli, One-day Bayesian cloning of type 1 diabetes subjects:
toward a single-day UVA/Padova type 1 diabetes simulator, IEEE Transact. Biomed. Eng., 63
(2016), 2416–2424.

44. B. P. Kovatchev, M. Breton, C. D. Man, C. Cobelli, In silico preclinical trials: a proof of concept
in closed-loop control of type 1 diabetes, J. Diabetes Sci. Technol., 3 (2009), 44–55.

45. C. Cobelli, C. D. Man, M. G. Pedersen, A. Bertoldo, Advancing our understanding of the glucose
system via modeling: A perspective, IEEE Transact. Biomed. Eng., 61 (2014), 1577–1592.

46. S. Samadi, K. Turksoy, I. Hajizadeh, J. Feng, M. Sevil, A. Cinar, Meal detection and carbohydrate
estimation using continuous glucose sensor data, IEEE J. Biomed. Health Inform., 21 (2017),
619–627.

47. K. Turksoy, S. Samadi, J. Feng, E. Littlejohn, L. Quinn, A. Cinar, Meal detection in patients with
type 1 diabetes: a new module for the multivariable adaptive artificial pancreas control system,
IEEE J. Biomed. Health Inform., 20 (2015), 47–54.

48. M. Vettoretti, A. Facchinetti, G. Sparacino, C. Cobelli, Type-1 diabetes patient decision simulator
for in silico testing safety and effectiveness of insulin treatments, IEEE Transact. Biomed. Eng.,
65 (2017), 1281–1290.

49. M. Breton, B. Kovatchev, Analysis, modeling, and simulation of the accuracy of continuous
glucose sensors, J. Diabetes Sci. Technol., 2 (2008), 853–862.

50. D. J. Albers, M. Levine, B. Gluckman, H. Ginsberg, G. Hripcsak, L. Mamykina, Personalized
glucose forecasting for type 2 diabetes using data assimilation, PLoS Comput. Biol., 13 (2017),
1–38.

51. F. Rahmanian, M. Dehghani, P. Karimaghaee, M. Mohammadi, R. Abolpour, Hardware-in-the-
loop control of glucose in diabetic patients based on nonlinear time-varying blood glucose model,
Biomed. Signal Process. Control, 66 (2021), 1–12.

Appendix

Algorithm of EKF

The pseudocode of the EKF algorithm is presented in Algorithm 1.
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Algorithm 1 Algorithm of EKF
1: Input: Q, R, X0, z
2: Initialization: P1 = P0, X1 = X0, where P is covariance matrix, P0 is set as unit matrix.
3: for k = 2 : t do
4: X′k = F

(
X̂k−1, uk

)
, z′k = H

(
X′k

)
5: Covariance matrix prediction:

P′k = Φk Pk−1Φ
T
k + Q, whereΦk =

∂F(X′k)
∂X′k

6: Kalman gain:
Kk = P′kϕk

T (ϕk P′kϕk
T + R)−1

where ϕk =
∂H(X)
∂X

7: Covariance matrix update:
Pk = (I − Kkϕk) P′k

8: State variability update:
X̂k = X′k + Kk (zk − z′k)

9: end for
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Algorithm 2 Algorithm of UKF
1: Input: Q, R, X0, z
2: Initialization: P1 = P0, X1 = X0, n = 10, λ = −7, α = 1, β = 2
3: where P is covariance matrix, P0 is set as unit matrix , λ is a scaling parameter, α determines the

spread of the sigma points, β is used to incorporate prior knowledge of the distribution.
4: for k = 2 : t do

5: 2n+1 sigma points and associated scalar weights:
X(0)

k−1=X̂k−1

X(i)
k−1=X̂k−1+

(√
(n + λ)Pk−1

)
i
, i=1, ..., n

X(i)
k−1=X̂k−1−

(√
(n + λ)Pk−1

)
i
, i=n + 1, ..., 2n

w(0)
m = λ

n+λ

w(0)
c = λ

n+λ
+

(
1 − α2 + β

)
w(i)

m = w(i)
c = λ

2(n+λ) , i = 1, ..., 2n

where
(√

A
)

i
is the ith column of the matrix square root, i.e., lower triangle Cholesky factoriza-

tion.
6: Sigma points prediction:

X′(i)k = F
(
X(i)

k−1, uk

)
, z′k = H

(
X′k

)
7: State Prediction:

X′k =
n∑

i=0
w(i)X′(i)k

P′k =
2n∑
i=0

w(i)
[
X′k − X′(i)k

] [
X′k − X′(i)k

]T
+Q

8: UT transformation:
X′′(0)

k = X′k
X′′(i)k = X′k +

(√
(n + λ)P′k

)
i
, i = 1, ..., n

X′′(i)k = X′k −
(√

(n + λ)P′k
)

i
, i = n + 1, ..., 2n

9: Output prediction:
z
′(i)
k = H(X′′(i)k )

ẑk =
2n∑
i=0

w(i)z
′(i)
k

10: Covariance matrix prediction:

S k =
2n∑
i=0

w(i)(z
′(i)
k − ẑk)(z

′(i)
k − ẑk)

T
+ R

ψk =
2n∑
i=0

w(i)(X′

k − X
′(i)
k )(z

′(i)
k − ẑk)

T

11: Kalman gain: Kk = ψkS −1
k

12: Covariance matrix update: Pk = P′k − KkS kKT
k

13: State update: X̂k = X′k + Kk (zk − z′k)
14: end for

Algorithm of PFG

The pseudocode of the PFG algorithm is presented in Algorithm 3.
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8522

Algorithm 3 Algorithm of PFG
1: Input: Q, R, X0, z
2: Initialization: X1 = X0

N initial particles production for each variable X ∈ X:
Xi

1 ∼ N (X0,QX),i = 1 : N
3: for k = 2 : t do
4: State prediction:

X
′i
k ∼ N

(
F

(
Xi

k−1, uk

)
,Q

)
z
′i
k = H

(
Xi

k

)
5: Weight calculation:

W̃ i
k =

W i
k

N∑
i=1

W i
k

6: Resampling X̂i
k according to the W̃ (N)

k , and weight reset: W i
k = 1

N

7: X̂k ≈
1
N

N∑
i=1
δ(X̂i

k)

8: end for

Algorithm of PFM

The pseudocode of the PFM algorithm is presented in Algorithm 4.

RMSEs of PGC and PIC estimation with various particle numbers

We have presented the RMSEs of PGC and PIC estimation with various particle numbers in the
Table 8 and added explanation on it.

Table 8. RMSEs of PGC and PIC estimation with various particle numbers.

The Number of particles 200 500 800 1000 2000 5000
Time cost (s) 27 81 268 402 886 2623
RMSE of PGC (mmol/L) 1.47 1.23 0.98 0.89 0.88 0.86
RMSE of PIC (mU/L) 9.95 9.77 9.61 9.49 9.47 9.45

As expected, we can see that as the number of particles increases, the accuracy gradually increases.
Nevertheless, when the number of particles exceeds 1000, the increase of particles has less and less
influence on the improvement of estimation accuracy, and the corresponding calculation cost is heavier
and heavier. Considering the limited computing power of the artificial pancreas, we balanced the
relationship between the accuracy and the amount of calculation. For this reason, we set the number of
particles to 1000.
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Algorithm 4 Algorithm of PFM
1: Input: Q, R, X0, z
2: Initialization: X1 = X0

Hyperparameter computation:
λ1

X = X0

µ1
X= ln(X0)−1

2 ln
(
1 +

QX

X0
2

)
σ1

X =

√
ln

(
1 +

QX

X0
2

)
N initial particles production for each non-negativity variability: Xi

1 ∼ GLN(λ1
X
, µ1

X
, σ1

X
), and for

variability U: U i
1 ∼ N (0,QU).

Note that the X represents each non-negativity variability, i.e., all parameters except U.
3: for k = 2 : t do
4: Hyperparameter computation:

λk
X = f (Xk−1)

µk
X= ln( f (Xk−1))−1

2 ln
(
1 +

QX

f (Xk−1)2

)
σk

X =

√
ln

(
1 +

QX

f (Xk−1)2

)
5: State prediction:

X
′i
k ∼ GLN(λk

X
, µk

X
, σk

X
)

U i
k ∼ N

(
U i

k−1,QU

)
z
′i
k = H

(
X
′i
k

)
6: Weight calculation:

W i
k = 1

√
R

exp
(
−

(
zk−z

′i
k

)2

2R

)
7: Weight normalization:

W̃ i
k =

W i
k

N∑
i=1

W i
k

8: Resampling X̂i
k according to the W̃ (N)

k , and weight reset: W i
k = 1

N

9: X̂k ≈
1
N

N∑
i=1
δ(X̂i

k)

10: end for
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