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time-varying delay

Zixiao Xiong1, Xining Li1, Ming Ye2,3 and Qimin Zhang1,*

1 School of Mathematics and Statistics, Ningxia University, Yinchuan, 750021, China
2 Department of Scientific Computing, Florida State University,Tallahassee, FL 32306, USA
3 Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL

32306, USA

* Correspondence: Email: zhangqimin64@sina.com.

Abstract: In this paper, a reaction-diffusion vegetation-water system with time-varying delay, impulse
and Lévy jump is proposed. The existence and uniqueness of the positive solution are proved. Mean-
while, mainly through the principle of comparison, we obtain the sufficient conditions for finite-time
stability which reflect the effect of time delay, diffusion, impulse, and noise. Besides, considering the
planting, irrigation and other measures, we introduce control variable into the vegetation-water system.
In order to save the costs of strategies, the optimal control is analyzed by using the minimum principle.
Finally, numerical simulations are shown to illustrate the effectiveness of our theoretical results.
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1. Introduction

Vegetation and water resources are important components of the ecosystem. In arid regions, the lack
of water resources and the destruction of vegetation lead to desertification. If desertification is formed,
it will seriously affect human survival and economic development. From [1], worldwide, economic
losses caused by desertification are more than 40 billion dollars every year. On the other hand, in
the rainforest ecosystem, abundant vegetation and water resources provide sufficient oxygen for the
survival of life on earth. If the rainforest ecosystem is destroyed, life on earth will inevitably suffer the
disaster. Therefore, it is of great significance to model a reasonable dynamic system and analyze its
dynamic behavior. Meanwhile, studying the optimal control strategy is helpful for the reasonable and
effective protection of vegetation ecology.
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In the natural environment, the vegetation-water systems are usually disturbed by human activities
and natural disasters, such as planting vegetation, irrigation, pruning vegetation regularly, and so on.
These phenomena can be more accurately described by impulsive differential equations. Therefore, in
recent years, some results were proposed on modelling impulsive vegetation systems [2–5]. In these
references, only some impulse events that reduce the biomass density of vegetation were considered,
such as forest fires. In vegetation restoration and protection, we mainly adopt measures, including
planting and irrigation, etc. Obviously, these behaviors can increase the density of vegetation and
water. However, the corresponding impulsive vegetation-water systems are rarely analyzed.

On the other hand, in ecosystem, delay is also a ubiquitous phenomenon that may cause a dramatic
changes on dynamic behavior [6–8]. In recent years, delay has been taken into consideration in re-
search on vegetation systems [9,10,18]. In [9], Han et al. took constant delay into the vegetation water
system and studied the dynamic behavior. In [10], Wang et al. analyzed the asymptotic stability of the
equilibrium and Hopf bifurcation in a constant delay vegetation ecosystem. In [11], the authors consid-
ered the delay into vegetation-water system and studied the stability and Hopf bifurcation. However,
the papers mentioned all consider constant delay. In fact, in real ecology, the delay can be affected
by various factors such as temperature, soil moisture content and so on. Therefore, the delay of pen-
etration is related to time. In this paper, we consider the time-varying delay into the vegetation-water
system.

In addition to impulse and delay, there are many achievements evidence that noise also plays a
major role in vegetation systems [12, 13]. In the real world, it is known to all that there are various
environmental factors (such as organic matter, climate and so on) that can affect the ecosystem, which
is manifested by fluctuating ecological material density. Recent research results support the importance
of stochastic processes in ecosystems [14–16]. For example, Pan et al. [17] studied the near-optimal
control of a stochastic vegetation-water system. Zeng et al. [18] analyzed the catastrophic regime shifts
of a stochastic grazing ecosystem to explore the impact of noise on vegetation degradation. However,
the stochastic process they mainly consider is Gaussian white noise in the system. The Gaussian noise
is suitable to simulate non-abrupt and uniform environmental disturbances such as small-scale rainfall,
temperature change, etc. It is worth noting that the phenomenon of large disturbance exists in nature,
such as volcanic eruptions and earthquakes [19]. Meanwhile, there is evidence that the transition from
forest to drought will not be smooth but will exhibit sudden transitions. For example, in [20, 21], a
large-scale, long-term experiment showed that the mortality of vegetation will increase abruptly to
226 and 462 percent in the dry season. These sudden changes may have a profound impact on the
natural ecosystems and cannot be ignored [22]. The scholars have done some researches and shown
that for abrupt random pulsing phenomenons can be described by the Lévy process [23, 24]. There
are several existing works on the impact of the Lévy process on ecosystems. For instance, Zhang et
al. [25] considered the Lévy process into the grazing ecosystem and analyzed its impact on system
dynamics. Larissa et al. [26] introduced Lévy process to model the Amazon vegetation ecosystem and
analyzed metastability of system. However, there been no research that introduced Lévy process into
vegetation-water system to analyze dynamic behavior.

In the last several years, the dynamic behaviors of vegetation system were extensively investigated.
For example, R. Lefever and O.Lejeune [30] introduced a single-equation (vegetation biomass den-
sity) system and studied the bifurcation theory and the stability of the steady-state solution. Klaus-
meier et al. established a vegetation-water (soil water) system and explored the Turing instability of

Mathematical Biosciences and Engineering Volume 18, Issue 6, 8462–8498.



8464

the system [31]. Rietkerk et al. proposed a vegetation-water (soil water and surface water) system
and analyzed the stability of steady-state solution [32]. Obviously, they mainly paid attention to long-
term dynamic behaviors. Noteworthy, finite-time stability plays a significant role in modeling real-life
problems and arises in a wide range of applications, such as economic-controlled system, neural net-
works and so on [33–37]. In arid ecosystems, the density of vegetation and water is closely related
to eco-quality. Low-level vegetation and water density means desertification. Meanwhile, because the
environmental capacity is limited, the high density of vegetation and water will also harm the ecolog-
ical environment. Therefore, it is of significance to study the finite-time stability of vegetation-water
system. On the other hand, as is known to all that controlling drought land and rainforest degradation
have posed a huge economic burden. Because of the large affected area, it is costly to use control
strategy, such as planting vegetation, rational irrigation, etc. Therefore, from the perspective of eco-
logical economics, how to formulate optimal control strategies to balance the costs and benefits is an
important and meaningful question. However, there are few papers introducing control strategies to
study optimal control problems in the vegetation system.

In this paper, we propose a new vegetation-water system and analyze finite-time stability by using
comparative principles. Then, we introduce the control variables into the system and analyze the
optimal control of the controlled vegetation system by using the minimum principle. In summary, our
main contributions are as follows:

(i) We propose an impulsive stochastic reaction-diffusion vegetation-water system driven by Lévy
process with time-varying delay. Our model is an extension of literature [2, 9, 32].

(ii) The sufficient conditions for finite-time stability are given as theoretical results which reflect
the effects of diffusion, impulse, delay, and noise disturbance. Compared with existing work, in the
analysis of finite-time stability, our contribution is the study of system with time-varying delay and
Lévy noise. In order to deal with time-varying delay, we use the idea of classification.

(iii) The control strategies are considered into the impulsive stochastic vegetation-water system with
delay, such as planting vegetation, irrigation, applying chemicals etc. Then, the explicit expression of
optimal control is obtained through the minimum principle.

The remaining structure of the paper is organized as follows: in section 2, a stochastic diffusion
vegetation-water system, with varying-time delay, impulse, and Lévy jump is established. In section
3, we complete the proof of the existence and uniqueness of the global positive solution. Further,
we analyze the finite-time stability of the system and give sufficient conditions for the establishment of
stability theorem. In section 4, we analyze the optimal control problem by using the minimum principle
under the vegetation-water system with control. In section 5, a numerical simulation is presented to
illustrate theoretical results. In section 6, we discuss and summarize the main results of this paper.

2. Model formulation and preparations

2.1. Model formulation

In this section, a vegetation-water system with spatial diffusion, time-varying delay, impulse, noise
is proposed. Before driving our system, let us recall a classic vegetation-water system proposed by
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Rietkerk in [32]

∂ū(x, t)
∂t

= dū∆ū(x, t) +
cgmv̄(x, t)
v̄(x, t) + k1

ū(x, t) − dū(x, t),

∂v̄(x, t)
∂t

= dv̄∆v̄(x, t) + k0
(ū(x, t) + k2 f )

ū(x, t) + k2
w̄(x, t) −

gmv̄(x, t)
v̄(x, t) + k1

ū(x, t) − bv̄(x, t),

∂w̄(x, t)
∂t

= dw̄∆w̄(x, t) + Ro − k0
(ū(x, t) + k2 f )

ū(x, t) + k2
w̄(x, t),

(2.1)

here ū(x, t), v̄(x, t), w̄(x, t) represent the vegetation biomass density, soil water density and surface
water density, respectively. ∆ is the Laplace operator. The ∂Γ is the boundary of Γ ∈ R2. All parameters
in model (2.1) are assumed non-negative constants and are described in Table 1. In the following, we
complete the construction of the new vegetation system.

Table 1. Parameters description.

Symbol Physical significance Units

ū Plant density g/m2

v̄ Soil water mm
w̄ Surface water mm
dū Plant dispersal m2/d
dv̄ Diffusion coefficient for soil water m2/d
dw̄ Diffusion coefficient for surface water m2/d
c Conversion of water uptake by plants to plant growth g · mm−1 · m−2

gm Maximum specific water uptake mm · g−1 · m2 · d−1

d Natural loss rate of plant density due to mortality d−1

k1 Half saturation constant of plant growth and water uptake mm
k2 Rate at which infiltration increases with specific plant density g/m2

b Natural loss rate of soil water due to drainage d−1

p Natural loss rate of surface water water due to evaporation d−1

Ro Rainfall mm/d
f Minimum water infiltration in the absence of plants · · ·

k0 Proportion of surface water available for infiltration d−1

y Perturbation of Poisson process to loss rate d−1

σi (i = 1, 2, 3) Perturbation of random Brownian motion to loss rate d−1

ρi (i = 1, 2, 3) Intensity of the Lévy process · · ·

Iku Intensity of the impulse applied to the vegetation · · ·

Ikv Intensity of the impulse applied to the soil water · · ·

Ikw Intensity of the impulse applied to the surface water · · ·

(1) Surface water evaporation
In the real world, it is ubiquity for surface water (mainly refers to rivers) to evaporate under the

influence of some factors such as temperature, wind, etc. In arid regions, the problems of low rainfall
and high evaporation are widespread. The evaporation of surface water can hinder the supply of
soil water and further affects the growth of plants. Therefore, they may be the cause of ecological
degradation. For example, in Yinchuan, China, the annual evaporation reaches 2000 mm, but the
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rainfall is only 200-300 mm and the desertification situation here is serious [38]. For this phenomenon,
we take the loss rate of surface water into account in vegetation-water system. The system (2.1) can
be transformed to



∂ū(x, t)
∂t

= dū∆ū(x, t) +
cgmv̄(x, t)
v̄(x, t) + k1

ū(x, t) − dū(x, t),

∂v̄(x, t)
∂t

= dv̄∆v̄(x, t) + k0
(ū(x, t) + k2 f )

ū(x, t) + k2
w̄(x, t) −

gmv̄(x, t)
ū(x, t) + k1

v̄(x, t) − bv̄(x, t),

∂w̄(x, t)
∂t

= dw̄∆w̄(x, t) + Ro − k0
(ū(x, t) + k2 f )

ū(x, t) + k2
w̄(x, t) − pw̄(x, t).

(2.2)

(2) Time-varying delay
The transfer of surface water to soil water is considered as a time delay process. Meanwhile, because

the infiltration rate of surface water is affected by the water content of soil, we take time-varying delay
into system (2.2). In Figure 1, we show the time delay from surface water to soil water. Thereby, in
infiltration item of system (2.2), we replace w̄(t) with w̄(t − τ(t)) and get the following system

∂ū(x, t)
∂t

= dū∆ū(x, t) +
cgmv̄(x, t)
v̄(x, t) + k1

ū(x, t) − dū(x, t),

∂v̄(x, t)
∂t

= dv̄∆v̄(x, t) + k0
(ū(x, t) + k2 f )

ū(x, t) + k2
w̄(x, t − τ(t)) −

gmv̄(x, t)
ū(x, t) + k1

v̄(x, t) − bv̄(x, t),

∂w̄(x, t)
∂t

= dw̄∆w̄(x, t) + Ro − k0
(ū(x, t) + k2 f )

ū(x, t) + k2
w̄(x, t − τ(t)) − pw̄(x, t),

(2.3)

where the τ(t) is bounded, which implies that there is a constant τ̄ > 0, such that 0 < τ(t) ≤ τ̄. Besides,
we assume that 0 ≤ τ̇(t) ≤ η < 1. In fact, the hypothesis about ˙τ(t) ≥ 0 fits the real situation. Because
the time required for surface water to penetrate will increase with time. And when there is enough soil
water, the time required surface water infiltration will tend to a fixed value τ̄.

(3) Impulse phenomenon
Impulsive phenomena are very common in vegetation ecosystem. For example, human behavior

such as planting and felling vegetation, irrigation and so on can be described by impulse differential
equations. In this subsection, we introduce the impulse into the vegetation system. The details are as
follows:

(i) We define Iku as the impulse intensity that affects vegetation biomass density. It is worth noting
that the planting trees, planting grass and other events correspond to Iku > 0 and felling plants corre-
spond to Iku < 0. However, based on practical factors, vegetation can not be completely destroyed by
impulse events. Meanwhile, the impulse intensity can not be too large. We have reason to assume that
−1 < Iku ≤ Imu, where Imu is the maximum allowable impulse on vegetation.

(ii) We define Ikv, Ikw as the impulse intensities that affects soil water density and surface water
density, respectively. Irrigation, rainfall and other events correspond to Ikv > 0, Ikw > 0 and industrial
water, drainage and other events correspond to Ikv < 0, Ikw < 0. However, from reality, soil water and
surface water never thoroughly disappear due to impulse events and the impulse intensity can not be
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Figure 1. The time delay between surface water and soil water.

too large, which means that −1 < Ikv ≤ Imv, −1 < Ikw ≤ Imw, where Imv and Imw are the maximum
allowable impulse on soil water and surface water, respectively.

Therefore, the system (2.3) rewrites as

∂ū(x, t)
∂t

=dū∆ū(x, t)+
cgmv̄(x, t)
v̄(x, t) + k1

ū(x, t) − dū(x, t),

∂v̄(x, t)
∂t

=dv̄∆v̄(x, t)+k0
(ū(x, t) + k2 f )

ū(x, t) + k2
w̄(x, t − τ(t))−

gmv̄(x, t)
v̄(x, t) + k1

ū(x, t)

−bv̄(x, t),
∂w̄(x, t)
∂t

=dw̄∆w̄(x, t)+Ro−k0
(ū(x, t) + k2 f )

ū(x, t) + k2
w̄(x, t − τ(t)) − pw̄(x, t),



t, tk,

(k∈N),
t>0,
x∈Γ,

ū(x, t+k ) = (1 + Iku)ū(x, tk),
v̄(x, t+k ) = (1 + Ikv)v̄(x, tk),
w̄(x, t+k ) = (1 + Ikw)w̄(x, tk),

 t = tk (k ∈ N).

(2.4)

where {tk} (k ∈ N) is impulsive sequence satisfies 0 = t0 < t1 < t2 < · · · < tk < · · · < t∞ = ∞,
ϑ(x, t+k ) = limt→t+k

ϑ(x, t) (ϑ = u, v,w). We define dm = maxk∈N{tk − tk−1}, ds = mink∈N{tk − tk−1}.
x ∈ Γ ⊂ R2 is a bounded measurable set which means that there are constants bi > 0, such that |xi| ≤ bi,
where xi (i = 1, 2) are components of spatial variables x.

(4) Lévy processes
In the real world, there are physical environmental disturbances such as volcanic eruptions, sudden

sandstorms, temperature surges and so on, and biological environmental disturbances such as mass
migration of herbivores. It can affect the natural loss rate of species, can be modeled by the Lévy
noise. Therefore, we let

d → d + ρ1dL1(t), b→ b + ρ2dL2(t), p→ p + ρ3dL3(t),
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where Li(t) is Lévy process which is composed of a Brownian motion with a linear drift term and a
superposition of centered (independent) Poisson processes with different jump sizes ȳ ∈ Y. It follows
from the Lévy-Itô decomposition theorem that

dLi(t) = āidt + σ̄idBi(t) +
∫
Y

ȳÑ(dt, dȳ) (i = 1, 2, 3),

where āi (day−1) ∈ R, σ̄i (day−1) ≥ 0, Bi(t) is standard Brownian motion, Ñ(dt, dȳ) = N(dt, dȳ)−λ(dȳ)dt
is a compensated Poisson process and N(dt, dȳ) is a poisson counting measure with characteristic
measure λ on a measurable subset Y ∈ (0,∞) with λ(Y) < ∞. Thus, the model becomes



∂ū(x, t)
∂t

= (dū∆ū(x, t)+
cgmv̄(x, t)
v̄(x, t) + k1

ū(x, t) − l̄1ū(x, t)
)
dt − ρ1σ̄1ū(x, t)dB1(t)

− ρ1ū(x, t)
∫
Y

ȳÑ(dt, dȳ),

∂v̄(x, t)
∂t

=dv̄∆v̄(x, t)+k0
(ū(x, t) + k2 f )

ū(x, t) + k2
w̄(x, t − τ(t))−

gmv̄(x, t)
v̄(x, t) + k1

ū(x, t)

− l̄2v̄(x, t)
)
dt − ρ2σ̄2v̄(x, t)dB2(t) − ρ2v̄(x, t)

∫
Y

ȳÑ(dt, dȳ),

∂w̄(x, t)
∂t

=dw̄∆w̄(x, t)+Ro−k0
(ū(x, t) + k2 f )

ū(x, t) + k2
w̄(x, t − τ(t)) − l̄3w̄(x, t)

)
dt

− ρ3σ̄3w̄(x, t)dB3(t) − ρ3w̄(x, t)
∫
Y

ȳÑ(dt, dȳ),



t, tk,

(k∈N),
t>0,
x∈Γ,

ū(x, t+k ) = (1 + Iku)ū(x, tk),
v̄(x, t+k ) = (1 + Ikv)v̄(x, tk),
w̄(x, t+k ) = (1 + Ikw)w̄(x, tk),

 t = tk (k ∈ N).

(2.5)

where l̄1 = d + ρ1ā1, l̄2 = b + ρ2ā2, l̄3 = p + ρ3ā3. Besides, we assume that Bi(t) is in dependent of
N(t, dȳ). The initial value and boundary condition of system (2.5) are given as follows

ϑ(x, s) = ψϑ(x, s) (ϑ = u, v,w), x ∈ Γ, s ∈ (−τ̄, 0],

∂ϑ(x, t)
∂n

= (
∂ϑ(x, t)
∂x1

,
∂ϑ(x, t)
∂x2

) = 0 (ϑ = u, v,w), x ∈ ∂Γ, t > 0,

where n is the out normal vector of ∂Γ; ψϑ(x, s) (ϑ = u, v, w) are bounded and continuous functions
on (−τ̄, 0] × Γ.

2.2. Preparations

In order to facilitate the subsequent theoretical analysis, we implement the dimensionless processing
for the system (2.5) using the method of Zelnik et.al. [12]. Therefore, we obtain the following non-
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dimensional vegetation-water system with time delay and impulse

du(x, t) =
(
du∆u(x, t) +

v(x, t)
v(x, t) + 1

u(x, t) − l1u(x, t)
)
dt − ρ1σ1u(x, t)dB1(t)

− ρ1u(x, t)
∫
Y

yÑ(dt, dy),

dv(x, t) =
(
dv∆v(x, t) + α u(x,t)+ f

u(x,t)+1 w(x, t − τ(t)) − γ v(x,t)
v(x,t)+1u(x, t)

− l2v(x, t)
)
dt − ρ2σ2v(x, t)dB2(t) − ρ2v(x, t)

∫
Y

yÑ(dt, dy),

dw(x, t) =
(
dw∆w(x, t) + R − α u(x,t)+ f

u(x,t)+1 w(x, t − τ(t)) − l3w(x, t)
)
dt

− ρ3σ3w(x, t)dB3(t) − ρ3w(x, t)
∫
Y

yÑ(dt, dy),



t, tk,

(k∈N),
t>0,
x∈Γ,

u(x, t+k ) = (1 + Iku)u(x, tk),
v(x, t+k ) = (1 + Ikv)v(x, tk),
w(x, t+k ) = (1 + Ikw)w(x, tk),

 t = tk (k ∈ N),

(2.6)

where u = ū
k2
, v = v̄

k1
, w = k0w̄

cgmk1
, du =

k0duo
dwocgm

, dv =
k0dvo

dwocgm
, dw = 1, l1 =

l̄1
cgm
, γ = k2

ck1
, l2 =

l̄2
cgm
, R =

Ro
cgmk1

, α = k0
cgm
, l3 =

l̄3
cgm
, f = f , σi =

σ̄i
cgm

(i = 1, 2, 3), ȳ = ȳ
cgm
, t = cgmtoriginnal, x =

√
dwo
k0

xoriginnal.

The toriginnal and xoriginnal are the time and space variables before the dimensionless transformation
processing.

Let X = {(u, v,w) ∈ W2,2, ∂(u,v,w)
∂n = 0 on ∂Ω}. Define Cb

+ as a family of bounded and con-
tinuous functions. M+ = L2(Γ × [0,∞),R3

+) represents the set of square integrable functions de-
fined on Γ × [0,∞), which is equipped with the norm ∥ · ∥, where ∥y(x, t)∥ = (

∫
Γ

y(x, t)yT (x, t)dx)
1
2 .

y(x, t) = (u(x, t), v(x, t),w(x, t)). Let (Ω, F , (Ft)0≤t≤T , P) be a complete filtered probability space with
a filtration {(Ft)0≤t≤T }. E denotes the probability expectation corresponding to P. Additionally, there is
a hypothesis that needs to be given.
Assumption 2.1 There is a positive constant Li such that

∫
Y
ρiy(ρiy+2m(Γ)−2)λ(dy)

)
< Li < +∞ (i =

1, 2, 3), where m(Γ) is the measure of Γ.
Remark 2.1 The assumption 2.1 implies that the intensity of random noise is constrained, which
follows the biological background.

3. Main results

In this section, the positivity, existence and uniqueness of the global solution of system (2.6) is
analyzed by a method similar to [39, 40]. Then, we study the finite-time stability of vegetation-water
system. In the end, we introduce control variables into the vegetation-water system and study the
optimal control of the control system.

3.1. Existence and uniqueness of positive solutions

Theorem 3.1 For any given initial data (ψu(x, s), ψv(x, s), ψw(x, s)) ∈ Cb
+, there is a unique global

positive solution (u(x, t), v(x, t),w(x, t)) of system (2.6) on t ≥ 0 almost surely, which means the solution
will remain inM+ with probability 1.

The proof of Theorem 3.1 is given in Appendix.
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3.2. Finite-time stability

Definition 3.2 Given positive number T, B1, B2 with B1 < B2, system is said to be finite-time stabile
with respect to (T, B1, B2), if any t ∈ [0,T ],

∥y(0)∥ = sup
−τ̄≤s≤0

∫
Γ

y(x, t)yT (x, t)dx ≤ B1 ⇒ E∥y(t)∥ = E
∫
Γ

y(x, t)yT (x, t) ≤ B2,

where y(x, t) = (u(x, t), v(x, t),w(x, t)).
Remark 3.3 Definition 3.2 implies that when the initial value of the state variable is within a given
limit, it does not exceed the given threshold in a finite time. The image of finite-time stability is dis-
played in Figure 2.

Figure 2. Illustration of finite-time stability. P is the initial value of the state variable.

In the following, we give the theorem of finite-time stability of impulsive stochastic reaction-
diffusion system with time-varying delay. We present some parallel sufficient conditions of finite-
time stability of the system. These conditions reflect the influence of random disturbance and spatial
diffusion on finite-time stability. Before proposing the theorem, assign

c1 =
ln θ
dm
+ |K3|, c2 =

ln θ
dm
, c3 =

ln θ
ds
+ K3, c4 =

ln θ
ds
, ω = ln B2 − ln(B1 + |

K2
K3
|),

θ = max{(1 + Iku)2, (1 + Ikv)2, (1 + Ikw)2}, K2=m(Γ), K4=α(1 + f ),
K3u = 1 + ρ2

1σ
2
1 + L1 − l1 − 2du

∑2
i=1 b−2

i , K3v = α(1 + f ) + ρ2
2σ

2
2 + L2 − l2 − 2dv

∑2
i=1 b−2

i ,

K3w = R2 + α(1 + f ) + ρ2
3σ

2
3 + L3 − l3 − 2dw

∑2
i=1 b−2

i , K3=max{K3u,K3v,K3w}.

Theorem 3.4 The system (2.6) is finite-time stable with respect to (T, B1, B2) if one of the following
condition holds:
C1 : 0 < θ < 1, K3 , 0, c1θ ≤ −K4e−c2τ̄ < 0, − ln θ ≤ ω,
C2 : 0 < θ < 1, K3 , 0, −K4e−c1τ̄ ≤ c2θ ≤ 0,

(
c1 +

K4
θ(1−η)e

−c2τ̄
)
T + K4

θ(1−η)e
−c2τ̄τ̄ − ln θ ≤ ω,

C3 : 0 < θ < 1, K3 > 0, c1 > 0, (K4 + c1)T − ln θ ≤ ω,
C4 : θ ≥ 1,K3 > 0, c3 > 0, (K4 + c3)T ≤ ω,
C5 : θ ≥ 1,K3 < 0, c3 > 0, (K4 + c4)T ≤ ω,
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C6 : θ ≥ 1,K3 < 0, c3 < 0,
(
c4+

K4
1−ηe−c4τ̄

)
T+ K4τ̄

1−ηe−c4τ̄≤ ω.

Proof. For a given number B1, letting sup−τ̄≤s≤0

∫
Γ

u2(x, s) + v2(x, s) + w2(x, s)dx ≤ B1. Set

V(t) =
∫
Γ

u2(x, t)dx +
∫
Γ

v2(x, t)dx +
∫
Γ

w2(x, t)dx.

An application of Itô formula yields that

dV(t)

= 2
∫
Γ

duu(x, t)∆u(x, t) +
v(x, t)

v(x, t) + 1
u(x, t)2 − l1u2(x, t)dx + 2

∫
Γ

dvv(x, t)∆v(x, t)

+ α
u(x, t) + f
u(x, t) + 1

w(x, t − τ(t))v(x, t) − γ
v(x, t)

v(x, t) + 1
u(x, t)v(x, t) − l2v2(x, t)dx

+ 2
∫
Γ

dww(x, t)∆w(x, t) + Rw(x, t) − α
u(x, t) + f
u(x, t) + 1

w(x, t − τ(t))w(x, t) − l3w2(x, t)dx

+

∫
Y

∫
Γ

(1 − ρ1y)2u2(x, t)dx −
∫
Γ

u2(x, t)dx + ρ1u(x, t)y
∫
Γ

2u(x, t)dxdλ(dy)

+

∫
Y

∫
Γ

(1 − ρ2y)2v2(x, t)dx −
∫
Γ

v2(x, t)dx + ρ2v(x, t)y
∫
Γ

2v(x, t)dxdλ(dy)

+

∫
Y

∫
Γ

(1 − ρ3y)2w2(x, t)dx −
∫
Γ

w2(x, t)dx + ρ3w(x, t)y
∫
Γ

2w(x, t)dxdλ(dy)

−

∫
Γ

ρ1σ1u2(x, t)dB1(x, t)dx −
∫
Γ

ρ2σ2v2(x, t)dB2(x, t)dx −
∫
Γ

ρ3σ3w2(x, t)dB3(x, t)dx

+

∫
Y

∫
Γ

(1 − ρ1y)2u2(x, t)dx −
∫
Γ

u2(x, t)dxÑ(dt, dy) +
∫
Y

∫
Γ

(1 − ρ2y)2v2(x, t)dx

−

∫
Γ

v2(x, t)dxÑ(dt, dy) +
∫
Y

∫
Γ

(1 − ρ3y)2w2(x, t)dx −
∫
Γ

w2(x, t)dxÑ(dt, dy)

+

∫
Γ

ρ2
1σ

2
1u2(x, t) + ρ2

2σ
2
2v2(x, t) + ρ2

3σ
2
3w2(x, t)dx.

By using some basic inequalities and applying of Green identity (lemma 2, [41]), we have

dV(t)

≤−2
( m∑

i=1

b−2
i

∫
Γ

duu2(x, t)dx+
m∑

i=1

b−2
i

∫
Γ

dvv2(x, t)dx+
m∑

i=1

b−2
i

∫
Γ

dww2(x, t)dx
)
+

∫
Γ

u2(x, t)dx

−

∫
Γ

l1u2(x, t)dx +
∫
Γ

α(1 + f )
(
w2(x, t − τ(t)) + v2(x, t)

)
dx −

∫
Γ

l2v2(x, t)dx +m(Γ)

+

∫
Γ

R2w2(x, t)dx +
∫
Γ

α(1 + f )
(
w2(x, t − τ(t)) + w2(x, t)

)
dx −

∫
Γ

l3w2(x, t)dx

+

∫
Γ

∫
Y

ρ1y(ρ1y + 2m(Γ)−2)dλ(dy)u2(x, t)dx+
∫
Γ

∫
Y

ρ2y(ρ2y+2m(Γ)−2)dλ(dy)v2(x, t)dx

+

∫
Γ

∫
Y

ρ3y(ρ3y + 2m(Γ) − 2)dλ(dy)w2(x, t)dx +
∫
Γ

∫
Y

ρ1y(ρ1y − 2)Ñ(dt, dy)u2(x, t)dx

+

∫
Γ

∫
Y

ρ2y(ρ2y − 2)Ñ(dt, dy)v2(x, t)dx +
∫
Γ

∫
Y

ρ3y(ρ3y − 2)Ñ(dt, dy)w2(x, t)dx

−

∫
Γ

ρ1σ1u2(x, t)dB1(x, t)dx −
∫
Γ

ρ2σ2v2(x, t)dB2(x, t)dx −
∫
Γ

ρ3σ3w2(x, t)dB3(x, t)dx

+

∫
Γ

ρ2
1σ

2
1u2(x, t) + ρ2

2σ
2
2v2(x, t) + ρ2

3σ
2
3w2(x, t)dx

(3.1)
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≤ K2 + K3(
∫
Γ

u2(x, t)dx +
∫
Γ

v2(x, t)dx +
∫
Γ

w2(x, t)dx) + K4(
∫
Γ

u2(x, t − τ(t))dx

+

∫
Γ

v2(x, t − τ(t))dx +
∫
Γ

w2(x, t − τ(t))dx) +
∫
Γ

∫
Y

ρ1y(ρ1y − 2)Ñ(dt, dy)u2(x, t)dx

+

∫
Γ

∫
Y

ρ2y(ρ2y − 2)Ñ(dt, dy)v2(x, t)dx +
∫
Γ

∫
Y

ρ3y(ρ3y − 2)Ñ(dt, dy)w2(x, t)dx

−

∫
Γ

ρ1σ1u2(x, t)dB1(x, t)dx −
∫
Γ

ρ2σ2v2(x, t)dB2(x, t)dx −
∫
Γ

ρ3σ3w2(x, t)dB3(x, t)dx.

where K2=m(Γ), K4=α(1 + f ), K3=max
{
1 + ρ2

1σ
2
1 + L1 − l1 − 2du

∑2
i=1 b−2

i , α(1 + f ) + ρ2
2σ

2
2 + L2 −

l2 − 2dv
∑2

i=1 b−2
i ,R

2 + α(1 + f ) + ρ2
3σ

2
3 + L3 − l3 − 2dw

∑2
i=1 b−2

i
}
.

For t = tk, one can derive that

V(u(x, t+k ), v(x, t+k ),w(x, t+k ))

=

∫
Γ

(1 + Iku)2u2(x, tk)dx +
∫
Γ

(1 + Ikv)2v2(x, tk)dx +
∫
Γ

(1 + Ikw)2w2(x, tk)dx

≤ θ

∫
Γ

V(tk)dx.

(3.2)

where θ = max{(1 + Iku)2, (1 + Ikv)2, (1 + Ikw)2}. Taking expectation on Eq.(3.1), Eq.(3.2), we get

dEV(t) ≤ K2 + K3EV(t) + K4EV(t − τ(t)), t , tk k ∈ N+,

EV(t+k ) ≤ θEV(tk).

Next, we choose b(t) satisfies
˙b(t) = K2 + K3b(t) + K4b(t − τ(t)) t , tk,

b(t+k ) = θb(tk) t = tk,

b(s) = EV(s) − τ̄ ≤ s ≤ 0.
(3.3)

It follows from comparison lemma [42] that

EV(t) ≤ b(t).

According to the method of variation of constant on (3.3), we have

b(t) = −θN(t,0) K2
K3
+ θN(t,0)eK3t(b(0) + K2

K3
) +
∫ t

0
θN(t,s)[K4b(s − τ(s))eK3(t−s)]ds, (3.4)

for t ≥ 0. Noting that
t − s − dm

dm
≤ N(t, s) ≤

t − s
ds

.

Therefore, a direct computation gives that

exp{N(t, s) ln θ + K3(t − s)}

≤ exp{
t − s − dm

dm
ln θ + K3(t − s)}

= exp{(
ln θ
dm
+ K3)(t − s) − ln θ}.
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Hence, based on (3.4), for t ≥ 0, there is

b(t) ≤ −θN(t,0) K2

K3
+

e( ln θ
dm
+K3)t

θ
(b(0) +

K2

K3
) +

1
θ

∫ t

0
e( ln θ

dm
+K3)(t−s)[K4b(s − τ(s))]ds. (3.5)

In the following, we continue our analysis under two situations.
Situation1 : 0 < θ < 1.
Case C1 − 1 : K3 > 0.
Take a continuous function h(λ) = K4e−λτ̄ − θ(λ − ln θ

dm
− K3). We have h(−∞) = +∞, h(0) =

K4 + θ(K3 +
ln θ
dm

). Form C1, we can know θ( ln θ
dm
+ K3) < −K4e−( ln θ

dm
+K3)τ̄ . Therefore, we can easily yield

that h(0) = θ( ln θ
dm
+ K3) + K4 < 0. Besides, ḣ(λ) = −τ̄K4e−λτ̄ − θ < 0. Therefore, there is at least one

number λ1 < 0 such that K4e−λ1τ̄ = θ(λ1 −
ln θ
dm
− K3). It is clearly that

b(t) ≤
1
θ

(b(0) +
K2

K3
)eλ1t, −τ̄ ≤ t < 0.

In the following, we prove the inequality

b(t) ≤ 1
θ
(b(0) + K2

K3
)eλ1t, t ≥ 0. (3.6)

If the inequality is not true, there is a t∗ such that

b(t∗) > 1
θ
(b(0) + K2

K3
)eλ1t∗ , (3.7)

and
b(t) ≤

1
θ

(b(0) +
K2

K3
)eλ1t, t < t∗.

However, it follows from (3.4) that

b(t∗) ≤ −θN(t∗,0) K2

K3
+

e( ln θ
dm
+K3)t∗

θ
(b(0) +

K2

K3
) +

1
θ

∫ t∗

0
e( ln θ

dm
+K3)(t∗−s)[K4b(s − τ(s))]ds

≤
e( ln θ

dm
+K3)t∗

θ
(b(0) +

K2

K3
) +

1
θ

∫ t∗

0
e( ln θ

dm
+K3)(t∗−s)[K4b(s − τ(s))]ds

=
e( ln θ

dm
+K3)t∗

θ

(
b(0) +

K2

K3
+

∫ t∗

0
e−( ln θ

dm
+K3)s[K4b(s − τ(s))]ds

)
≤

e( ln θ
dm
+K3)t∗

θ

(
b(0) +

K2

K3
+

∫ t∗

0
e−( ln θ

dm
+K3)s[

K4

θ
(b(o) +

K2

K3
)eλ1(s−τ(s))]ds

)
≤

e( ln θ
dm
+K3)t∗

θ

(
b(0) +

K2

K3
+

K4

θ
(b(0) +

K2

K3
)e−λ1τ̄

∫ t∗

0
e
(
λ1−( ln θ

dm
+K3)
)

sds
)

≤
e( ln θ

dm
+K3)t∗

θ

(
b(0) +

K2

K3
+

K4(b(o) + K2
K3

)e−λ1τ̄

θ
(
λ1 − ( ln θ

dm
+ K3)

) (e(λ1−( ln θ
dm
+K3)
)

t∗
− 1)
)

≤
1
θ

(b(0) +
K2

K3
)eλ1t∗ .

(3.8)

It contradicts (3.7), so (3.6) holds. Furthermore, we have

EV(t) ≤ b(t) ≤
1
θ

(b(0) +
K2

K3
)eλ1t ≤

1
θ

(B1 +
K2

K3
).
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Based on C1, we have − ln θ ≤ ln B2 − ln(B1 +
K2
K3

) for K3 > 0. This implies that EV(t) ≤ B2. It shows
the desired result.

Case C1 − 2 : K3 < 0.
From (3.4), we have

b(t) = −θN(t,0) K2

K3
+ θN(t,0)eK3t(b(0) +

K2

K3
) +
∫ t

0
θN(t,s)[K4b(s − τ(s))eK3(t−s)]ds

≤ exp{(
ln θ
dm

)(t − dm)}(b(0) −
K2

K3
) +

1
θ

∫ t

0
e( ln θ

dm
+K3)(t−s)[K4b(s − τ(s))]ds

≤
1
θ

e
ln θ
dm

t(b(0) −
K2

K3
) +

1
θ

∫ t

0
e( ln θ

dm
)(t−s)[K4b(s − τ(s))]ds.

(3.9)

Based on C1, we can obtain θ( ln θ
dm

) < −K4e−( ln θ
dm

)τ̄ < 0. By the same discussion as in C1 − 1, we obtain
that

b(t) ≤
1
θ

(b(0) −
K2

K3
)eλ2t, t ≥ 0, (3.10)

where λ2 is the root of equation h(λ) = K4e−λτ̄ − θ(λ − ln θ
dm

) and λ2 < 0. C1 implies that − ln θ ≤
ln B2 − ln(B1 −

K2
K3

) for K3 < 0. This means that

EV(t) ≤ b(t) ≤
1
θ

(b(0) −
K2

K3
) ≤ B2.

It is the desired result.
Case C2 − 1 : K3 > 0.
Contrary to C1-1, we consider −K4e−( ln θ

dm
+K3)τ̄

≤ θ( ln θ
dm
+ K3) ≤ 0. Assign

q1(t) = b(t)e−( ln θ
dm
+K3)t > 0.

Form (3.5), 0 ≤ η < 1 and Gronwall inequality [43], one has

q1(t) ≤
1
θ

(b(0) +
K2

K3
) +

1
θ

∫ t

0
e−( ln θ

dm
+K3)(s−τ(s))e−( ln θ

dm
+K3)τ(s)[K4b(s − τ(s))]ds

≤
1
θ

(b(0) +
K2

K3
) +

1
θ

e−( ln θ
dm
+K3)τ̄
∫ t

0
e−( ln θ

dm
+K3)(s−τ(s))[K4b(s − τ(s))]ds

≤
1
θ

(b(0) +
K2

K3
) +

1
θ(1 − η)

e−( ln θ
dm
+K3)τ̄
∫ t

−τ̄

[K4q1(s)]ds

≤ 1
θ
(b(0) + K2

K3
) exp

{
K4

θ(1−η)e
−( ln θ

dm
+K3)τ̄(t + τ̄)

}
.

Then, there is

EV(t) ≤ b(t) = q1(t)e( ln θ
dm
+K3)t

≤
1
θ

(B1 +
K2

K3
) exp

{( ln θ
dm
+ K3 +

K4

θ(1 − η)
e−( ln θ

dm
+K3)τ̄)t + K4τ̄

θ(1 − η)
e−( ln θ

dm
+K3)τ̄
}
.

(3.11)

C2 gives that
(
( ln θ

dm
+ K3) + K4

θ(1−η)e
−( ln θ

dm
+K3)τ̄)T + K4τ̄

θ(1−η)e
−( ln θ

dm
+K3)τ̄
− ln θ ≤ ln B2 − ln(B1 +

K2
K3

). Therefore,
we obtain EV(t) ≤ B2. It means that the system (2.6) is finite-time stability under condition C1.
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Case C2 − 2 : K3<0.
Contrary to C1-2, we consider −K4e−( ln θ

dm
)τ̄
≤ θ( ln θ

dm
). In this case, choosing

q2(t) = b(t)e−
ln θ
dm

t.

Similar discussion as in C2 − 1, one obtains

q2(t) = b(t)e−
ln θ
dm

t

=
(
− θN(t,0) K2

K3
+ θN(t,0)eK3t(b(0) +

K2

K3
) +
∫ t

0
θN(t,s)[K4b(s − τ(s))eK3(t−s)]ds

)
e−

ln θ
dm

t

≤
1
θ

(b(0) −
K2

K3
) +

1
θ

∫ t

0
e−

ln θ
dm

s[K4b(s − τ(s))]ds

≤
1
θ

(b(0) −
K2

K3
) +

K4

(1 − η)θ
e−

ln θ
dm
τ̄

∫ t

τ̄

e−
ln θ
dm

sb(s)ds

≤
1
θ

(b(0) −
K2

K3
) exp

{ K4

(1 − η)θ
e−

ln θ
dm
τ̄(t + τ̄)

}
Further, we can compute that

EV(t) ≤ b(t) = q2(t)e
ln θ
dm

t

≤
1
θ

(B1 −
K2

K3
) exp

{( ln θ
dm
+

K4

(1 − η)θ
e−

ln θ
dm
τ̄)T + K4τ̄

(1 − η)θ
e−

ln θ
dm
τ̄
}
.

(3.12)

In view of C2, one can calculate that
( ln θ

dm
+ K4

(1−η)θe
−( ln θ

dm
)τ̄)T + K4τ̄

(1−η)θe
−( ln θ

dm
)τ̄
− ln θ ≤ ln B2 − ln(B1 −

K2
K3

).
Therefore, EV(t) ≤ B2.

Case C3 − 1 : K3 > 0.
Contrary to the above case, we consider K3 +

ln θ
dm
> 0. Let f (t) satisfy the following equation


f (t) = −θN(t,0) K2

K3
+

e( ln θ
dm
+K3)t

θ
( f̃ (0) +

K2

K3
) +

1
θ

∫ t

0
e( ln θ

dm
+K3)(t−s)[K4 f (s − τ(s))]ds, t > 0,

f (s) = EV(s), −τ̄ ≤ t ≤ 0,

(3.13)

where f̃ = sup−τ̄<s<0 f (s). By virtue of (3.5) and (3.13), we derive 0 ≤ b(t) ≤ f (t) for t ≥ −τ̄. Before
the following proof, setting

A1 = {t |t ≤ τ(t), t ∈ (0, τ̄]}, A2 = {t |t > τ(t), t ∈ (0, τ̄]}.

It is obvious that A1 ∪ A2 = (0, τ̄]. For t ∈ A1, one can obtain

f (t) − f (t − τ(t)) ≥ f (t) −
1
θ

( f̃ (0) +
K2

K3
)

=
1
θ

( f̃ (0) +
K2

K3
)(e( ln θ

dm
+K3)t
− 1) +

1
θ

∫ t

0
e( ln θ

dm
+K3)(t−s)[K4 f (s − τ(s))]ds ≥ 0.
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For t ∈ A2 ∪ (τ̄,T ], a direct calculation leads that

f (t) − f (t − τ(t))

= (−θN(t,0) + θN(t−τ(t),0))
K2

K3
+ (

1
θ

e( ln θ
dm
+K3)t
−

1
θ

e( ln θ
dm
+K3)(t−τ(t)))( f̃ (0) +

K2

K3
)

+
1
θ

∫ t

0
e( ln θ

dm
+K3)(t−s)[K4 f (s − τ(s))]ds −

1
θ

∫ t−τ(t)

0
e( ln θ

dm
+K3)(t−τ(t)−s)[K4 f (s − τ(s))]ds

= (−θN(t,0) + θN(t−τ(t),0))
K2

K3
+

1
θ

e( ln θ
dm
+K3)t(1 − 1

exp
{
( ln θ

dm
+ K3)τ(t)

})( f̃ (0) +
K2

K3
)

+
1
θ

e( ln θ
dm
+K3)t
∫ t

0
e−( ln θ

dm
+K3)s[K4 f (s − τ(s))]ds −

1
θ

e( ln θ
dm
+K3)(t−τ(t))

∫ t−τ(t)

0
e−( ln θ

dm
+K3)s
×

[K4 f (s − τ(s))]ds

≥ (−θN(t,0) + θN(t−τ(t),0))
K2

K3
+

1
θ

e( ln θ
dm
+K3)t(1 − 1

exp
{
( ln θ

dm
+ K3)τ(t)

})( f̃ (0) +
K2

K3
)

+
1
θ

e( ln θ
dm
+K3)(t−τ(t))

∫ t

t−τ(t)
e−( ln θ

dm
+K3)s[K4 f (s − τ(s))]ds ≥ 0.

This implies that f (t) ≥ f (t − τ(t)) when t > 0. Then, in light of (3.13), we can deduce the following
inequality

f (t) ≤
1
θ

( f̃ (0) +
K2

K3
)e( ln θ

dm
+K3)t +

1
θ

∫ t

0
e( ln θ

dm
+K3)(t−s)[K4 f (s)]ds.

The Gronwall inequalities [43] gives that

f (t)e−( ln θ
dm
+K3)t
≤

1
θ

( f̃ (0) +
K2

K3
)eK4t.

That is to say

EV(t) ≤ b(t) ≤ f (t) ≤
1
θ

( f̃ (0) +
K2

K3
)e(K4+

ln θ
dm
+K3)t
≤

1
θ

(B1 +
K2

K3
)e(K4+

ln θ
dm
+K3)T .

By virtue of C3, one can see that (K4 +
ln θ
dm
+ K3)T − ln θ ≤ ln B2 − ln(B1 +

K2
K3

). This implies that
EV(t) ≤ B2. Then we can obtain the required statement.

Situation 2: θ ≥ 1.
In this situation, one can calculate that

exp{N(t, s) ln θ + K3(t − s)} ≤ exp
{ t − s

ds
ln θ + K3(t − s)

}
= exp

{
(
ln θ
ds
+ K3)(t − s)

}
,

(3.14)

and

b(t) ≤ −θN(t,0) K2

K3
+ e( ln θ

ds
+K3)t(b(0) +

K2

K3
) +
∫ t

0
e( ln θ

ds
+K3)(t−s)[K4b(s − τ(s))]ds. (3.15)

It is clear that inequalities (3.15) and (3.5) have the same form and properties. We can use the same
method as the discussions in Situation 1, and yield the desired result. For the sake of simplicity, we
omit the details.
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Remark 3.5 In the theorem 3.4, we have dealt with sufficient conditions that are more stringent than
the actual situation. For example, in C1, we show the system 2.6 is finite-time stable when the condition
c1θ ≤ −K4e−c2τ̄ < 0 holds. In fact, in our proof, we put forward that the system 2.6 is finite time stable
under the condition c1θ ≤ −K4e−c1τ̄ < 0. It is clearly that −K4e−c2τ̄ < −K4e−c1τ̄.
Remark 3.6 For an ecosystem, the initial material (vegetation and water) density B1 can be estimated.
Similarly, the desired maximum density B2 of vegetation and water can also be given. In addition, the
desired time T to keep the density of plants and water between B1 and B2 can also be given. Therefore,
we can judge whether the system is finite-time stable through the relationship between the parameters.

4. Optimal control strategies

Desertification can bring great economic losses. We need to adopt some control strategies to in-
crease the amount of vegetation and water density. There are many strategies for the management of
vegetation systems such as replanting, irrigation, and so on. The cost of strategy is inevitable. It is
easy to think that the way to save costs is the search for optimal control. In the following, we mainly
use the principle of minimum value to find the optimal control in the vegetation system.

Consider (u(x, t), v(x, t),w(x, t)) ∈ X where X is defined in preparations. We define a control func-
tion set as U = U1

⋃
U2 =

{
πi = πi(x, t) where (x, t) ∈ Γ × {t|[0,T ] − {tk, (k ∈ N)}}|i = 1, 2, 3

}⋃
{πi =

πi(x, tk) where x ∈ Γ, tk ∈ [0,T ] and k ∈ {1, · · ·N}|i = 4, 5, 6} where the meaning of πi are listed as
follows:

(a) π1 indicates that the planting strategy is used to increase vegetation density.
(b) π2 is the strategy of applying aquasorb which can reduce the infiltration and loss of soil water

[44].
(c) π3 is the use of chemical substances such as Hexadecanol, Octadecanol, Cetyl and Stearyl alco-

hols strategy which can inhibit the evaporation of surface water [45–47].
(d) The control strategy of πi (i = 4, 5, 6) can be explained by human control or government inter-

vention.
Due to the limitation of technology or cost, each control strategy πi has an upper bound πmax. A

vegetation model with control strategy can be given as

du(x, t) =
(
du∆u(x, t) + π1u(x, t) +

v(x, t)
v(x, t) + 1

u(x, t) − l1u(x, t)
)
dt

− ρ1σ1u(x, t)dB1(t) − ρ1u(x, t)
∫
Y

yÑ(dt, dy),

dv(x, t) =
(
dv∆v(x, t) + α u(x,t)+ f

u(x,t)+1 w(x, t − τ(t)) − γ v(x,t)
v(x,t)+1u(x, t)

− (l2 − π2)v(x, t)
)
dt − ρ2σ2v(x, t)dB2(t) − ρ2v(x, t)

∫
Y

yÑ(dt, dy),

dw(x, t) =
(
dw∆w(x, t) + R − α u(x,t)+ f

u(x,t)+1 w(x, t − τ(t)) − (l3 − π3)w(x, t)
)
dt

− ρ3σ3w(x, t)dB3(t) − ρ3w(x, t)
∫
Y

yÑ(dt, dy),



t ∈ [0,T ],
t, tk,

k∈N,
x∈Γ,

u(x, t+k ) − u(x, tk) = Ikuπ4u(x, tk),
v(x, t+k ) − v(x, tk) = Ikvπ5v(x, tk),
w(x, t+k ) − w(x, tk) = Ikwπ6w(x, tk),

 t = tk (k ∈ N),

(4.1)

The conditions of initial value and boundary are the same as system (4.1). The set X is admissible
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trajectories is given by

X = {X(·) ∈ W2,2(Γ × [0,T ]; R3)| (4.1) is satis f ied},

and the admissible control set U is given by

U = {U(·) ∈ L∞(Γ × [0,T ]; R6)|0 < πi(x, t) ≤ πmax < 1, ∀(x, t) ∈ Γ × [0,T ]}.

We consider the objective function

J(X(·),U1(·)) =
N∑

k=1

∫ tk

tk−1

∫
Γ

(−P1u − P2v − P3w +
1
2

3∑
i=1

Qiπi(x, t)2)dxdt,

J(X(·),U2(·)) =
N∑

k=1

∫
Γ

−P̄1u − P̄2v − P̄3w +
1
2

6∑
i=4

Qiπi(x, tk)2dx.

It is worth noting that Qi (i = 1, 2 · · · 6) are the weight constants for control strategies, Pi (P̄i) (i =
1, 2, 3) are positive weight constant of vegetation, soil water, surface water, respectively. 1

2 Qiπ
2
i (i =

1, 2, · · · 6) is the cost of control strategies. The square of the control variables means that the cost
of strategies is gradually increasing [48]. Our goal is to obtain the most plants and the lowest cost
of corresponding control strategy. Therefore, optimal control problem is equivalent to finding the
optimal control U∗ in the allowable control set U and determining the corresponding vector function
(u∗, v∗,w∗) ∈ X to satisfy the objective function:

J(X(·),U(·)) = min
(X(·),U(·))∈X×U

(
J(X(·),U1(·)) + J(X(·),U2(·))

)
. (4.2)

Further, we introduce adjoint equation and Hamiltonian function [49–52]

H(t, u, v,w, p1, p2, p3) = p1
[
du∆u + π1u +

v
v + 1

u − l1u
]
+ p2
[
dv∆v + α

u + f
u + 1

w(t − τ(t))

− γ
v

v + 1
u − (l2 − π2)v

]
+ p3
[
dw∆w + R − α

u + f
u + 1

w(t − τ(t)) − (l3 − π3)w
]

− q1ρ1σ1u − q2ρ2σ2v − q3ρ3σ3w −
∫
Y

ρ1uyr1(y)λ(dy) −
∫
Y

ρ2vyr2(y)λ(dy)

−

∫
Y

ρ3wyr3(y)λ(dy) − P1u − P2v − P3w +
1
2

3∑
i=1

Qiπ
2
i

IH(tk, u, v,w, p1, p2, p3) =
1
2

6∑
i=4

Qiπi(tk)2 + p1(tk)Ikuπ4(tk)u + p2(tk)Ikvπ5(tk)v

+ p3(tk)Ikwπ6(tk)w − P̄1u − P̄2v − P̄3w.

Theorem 4.1 The optimal control problem (4.2) with fixed time T admits a unique optimal solution
(u∗, v∗,w∗) associated with an optimal control U(x, t) for (x, t) ∈ Γ× [0,T ]. Moreover, there are adjoint
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functions pi(·, ·) (i = 1, 2, 3) such as

dp1=−
[
du∆p1+(π1 − l1)p1+

v∗

v∗ + 1
(p1 − γp2)+α

1 − f
(u∗ + 1)2 w∗(t − τ(t))(p2 − p3)

− ρ1σ1q1 −

∫
Y

ρ1yr1(y)λ(dy) − P1
]
dt + q1dB1(t) +

∫
Y

r1(y)Ñ(dt, dy)

dp2=−
[
dv∆p2+

u∗

(v∗ + 1)2 (p1 − γp2)−(l2 − π2)p2−ρ2σ2q2 −

∫
Y

ρ2yr2(y)λ(dy)

− P2
]
dt + q2dB2(t) +

∫
Y

r2(y)Ñ(dt, dy)

dp3=−
[
dw∆p3+

χ[0,T−τ(T )](t)
1 − τ̇(t + ς(t))

(p2(t + ς(t))−p3(t + ς(t))α
u∗(t + ς(t)) + f
u∗(t + ς(t)) + 1

−l3 p3

+ π3 p3 − ρ3σ3q3 −

∫
Y

ρ3yr3(y)λ(dy) − P3
]
dt + q3dB3(t)+

∫
Y

r3(y)Ñ(dt, dy)



t∈ [0,T ],
t, tk,

(k∈N),
x∈Γ,

p1(t+k ) − p1(tk) = −Ikuπ4(tk)p1(tk) − P̄1,

p2(t+k ) − p2(tk) = −Ikvπ5(tk)p2(tk) − P̄2,

p3(t+k ) − p3(tk) = −Ikwπ6(tk)p3(tk) − P̄3,

 t = tk (k ∈ N) x∈Γ,

pi(T ) = 0
∂pi
∂x = 0

}
(i = 1, 2, 3),

(4.3)
where ς(t) is introduced to take into account the function dependence of the time-varying delay τ(t) on
time; if s = t − τ(t), 0 ≤ t ≤ T, is solved for t, ς(t) is given by t = s + ς(s). Additionally, the χ[a,b](t) is
a characteristic function defined by

χ[a,b](t) =
{

1, i f t ∈ [a, b],
0, otherwise.

Furthermore,
π∗i = max[0,min(π̃i, πmax)] (i = 1, 2, 3, 4, 5, 6), (4.4)

where
π̃1 =

−p1u∗

Q1
, π̃2 =

−p2v∗

Q2
, π̃3 =

−p3w∗

Q3
,

π̃4 =
−p1Ikuu∗

Q4
, π̃5 =

−p2Ikvv∗

Q5
, π̃6 =

−p3Ikww∗

Q6
.

(4.5)

The proof is omitted. Interested readers can see the reference [49].

5. Numerical examples

In this section, numerical simulations are given to illustrate our theoretical results. We select the
parameters from the Table 2.

5.1. Finite-time stability

In this section, we discuss that the system is finite time stable when the sufficient conditions are
satisfied. We take Γ = [−0.25, 0.25], d = 0.1, k0 = 0.05, Ro = 3, ρi = 0.3, ai = 0.5, σi = 0.9
(i = 1, 2, 3). Then, one can obtain the m = 1, L1 = L2 = L3 = 0.09, K2 = 0.500, K3 = 0.7809 , 0,
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Table 2. Parameters Value.

Symbol Value Reference Symbol Value Reference

duo 0.1 m2/d [53] c 10 g · mm−1 · m−2 [53]
dvo 0.1 m2/d [53] gm 0.05 mm · g−1 · m2 · d−1 [53]
dwo 100 m2/d [53] d (0, 0.5) d−1 [32]
k1 2 mm [32] Ro (0, 3) mm/d [53]
k2 2 g/m2 [32] f 0.2 [53]
b (0, 0.5) d−1 [53] p (0, 1) d−1 Estimated
k0 (0.05, 0.2) d−1 Estimated ρi (i = 1, 2, 3) [0, 1] Estimated
ai (i = 1, 2, 3) [0, 1] Estimated σi (i = 1, 2, 3) [0, 1] Estimated
Iϑ (ϑ = u, v,w) (−1, 1) Estimated

K4 = 0.12. Letting B1 = 1.44, B2 = 8.41, T = 4, (u0(x, t), v0(x, t),w0(x, t) = (0.9, 0.9, 1) where
t ∈ (−τ̄, 0) and taking Iu = Iv = Iw = −0.2, we can get c1 = −0.3348, θ = 0.64 ∈ (0, 1) and y(0) = 1.144
by simple calculation. We set the impulse sequence tk = {0.4, 0.8, 1.2, 1.6, 2, 2.4, 2.8, 3.2, 3.6, 4, 4.4}.
Therefore, dm = 0.4, ds = 0.4. Additionally, we choose

τ(t) =

 1
10 f sin(25 f 2π

2 t), t ∈ [0, 1],
1/10 f , t ∈ [1,T ],

(5.1)

and noise (Figure 3(a)). Through calculation, we have τ̄ = 1
10 f = 1/2, η = 5 fπ

4 = π/4. For noise,
we choose a α stable Lévy process which is randomly generated and shown in Figure 3(a). A directly
calculation shows c1θ = −0.2143 < −K4e−c2τ̄ = −0.2096 < −K4ec1τ̄ = −0.1419 < 0, and − ln(θ) =
0.4463 < ln(B2) − ln(B1 +

K2
K3

) = 2.8619. Therefore, the condition C1 is holds. From Figure 4, we
can know ∥y(x, 0)∥ = 1.144 <

√
B1 = 1.2 < max

Γ×[0,T ]
∥y(x, t)∥ = 2.8814 <

√
B2 = 2.9, which means the

system (2.6) is finite-time stable.

0 1 2 3 4

time
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1
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(a)

0 1 2 3 4
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−2.5
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−1.5

−1
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0

0.5

time

P
a
th

(b)

Figure 3. The different state trajectories of α stable lévy process where α=0.9.
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Figure 4. State trajectories of vegetation-water system which is finite-time stable. The unit
of time is d (day) and unit of space is m (meter).

(1) The role of impulse

In this section, we consider the impact of impulses on finite-time stability. Obviously, from suffi-
cient conditions, we can find that the finite time stability of system (2.6) can be effected by impulse.
In order to intuitively indicate the effect of the impulses through numerical simulation, we keep the
system parameters, time delay function τ(t) and noise (Figure 3 (a)) unchanged and show the variation
of the finite-time stability of the system (2.6) under different impulse intensities. Therefore, we choose
Iu = Iv = Iw = 0.

Through simple calculations, we can get θ = 1, c3 = 0.7809 >, K2 = 0.5, K3 = 0.7809 > 0,
K4 = 0.12 and (K4 + c3)T = 4.0541 > ln(B2) + ln(B1 + K2/K3) = 1.3969. Therefore, the conditions
of theorem 3.4 is not satisfied. The results of the numerical simulation of Iu = Iv = Iw = 0 are shown
in Figure 5. We can find y(1.9154) = 4.0297 >

√
B2 = 2.9 which means system (2.6) is not finite time

stable. Comparing with the results of Iu = Iv = Iw = −0.2 which are shown in Figure 4, we can know
that the impulse can affect the finite-time stability.
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Figure 5. State trajectories of vegetation-water system with Iu = Iv = Iw = 0. The unit of
time is d (day) and unit of space is m (meter).

(2) The role of time delay

Time delay does affect the finite-time stability of system (2.6). For example, in details, the larger
τ̄ plays an opposite role in satisfying the inequality c1θ ≤ −K4e−c2τ̄ in C1. Retaining the system
parameters, the impulse intensity and noise (Figure 3 (a)) unchanged, we choose τ2(t) = τ̄2 = 4.5.

Through a direct calculation, it can be known that η = 0, θ = 0.64 < 1, K2 = 0.5, K3 = 0.7809 > 0,
K4 = 0.12, c1 = −0.3348 and (c1 + K4/θ/(1 − η) exp(−c1τ̄))T + K4τ̄/θ/(1 − η) exp(−c1τ̄) − ln(θ) =
6.5531 > ln(B2)+ ln(B1+K2/K3) = 1.3969, which means the conditions of theorem 3.4 is not satisfied.
Further, from Figure 6, we find ∥y(3.3980)∥ = 4.0454 > 2.9 =

√
B2 which implies the system is not

finite-time stable. Compared with τ̄ = 1/2 in Figure 4, the change of delay affects the finite-time
stability.
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Figure 6. State trajectories of vegetation-water system with τ̄ = 4.5. The unit of time is d
(day) and unit of space is m (meter).

(3) The role of noise

It is essential to analyze the impact of environmental noise. For comparison, we choose ρi = 0 and
ρi = 0.5 (i = 1, 2, 3) to carry out numerical simulation. The time delay function τ(t), noise path as
Figure 3(a) and system parameters except ρi (i = 1, 2, 3) are also unchanged.

When ρi = 0 (i = 1, 2, 3), we have − ln(θ) = 0.4463 < ln(B2) − ln(B1 +
K2
K3

) = 1.3918 which
means the system is finite time stable. Meanwhile, through calculation, when ρi = 0.5 (i = 1, 2, 3), the
sufficient condition for finite-time stability also is not satisfied. The results of the numerical simulation
are shown in Figures 7 and 8. Comparing with the ρi = 0.3 (i = 1, 2, 3) in Figure 4, we can observe
that noise intensity does affect the finite-time stability.
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Figure 7. State trajectories of vegetation-water system with noise intensity ρi = 0 (i =
1, 2, 3). The unit of time is d (day) and unit of space is m (meter).

(4) The role of diffusion

In this section we mainly analyze the impact of the diffusion on finite-time stability. In the ecologi-
cal environment, different types of plants have different diffusion intensities. The vegetation structure
of the area can be changed through human planting, etc. However, the diffusion strength of water is
fixed and not easily changed. Therefore, we adjust the diffusion coefficient of vegetation to analyze the
impact of diffusion. We choose duo = 10 (m2/d) while keeping all other parameters unchanged.

Through calculation, it can be obtain that du = 0.1, θ = 0.64 < 1, K2 = 0.5, K3 = −0.0991 and
− ln(θ) = 0.4463 > ln(B2)− ln(B1 +

K2
K3

) = 0.2599. This is obvious that the conditions of theorem 3.4 is
not hold. The results of the numerical simulation are shown in Figure 9 which confirmed the analysis.
Comparing with the results of duo = 0.1 (m2/d) which are shown in Figure 4, we know that diffusion
can affect the finite-time stability.”
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Figure 8. State trajectories of vegetation-water system with noise intensity ρi = 0.5 (i =
1, 2, 3). The unit of time is d (day) and unit of space is m (meter).

5.2. Optimal control

In this section, we mainly show optimal control through numerical simulation. We choose t ∈
[0, 300], x ∈ [−5, 5], d = 0.35, b = 0.5, z = 0.7, ai = 0.2, σi = 0.2, ρi = 0.1, qi = 0.2, ri = 0.2,
Pi = 1, P̄i = 1, Qi = 1 (i = 1, 2, 4, 5, 6), Q3 = 5, Iku = Ikv = Ikw = 0.2 where i = 1, 2, 3. We set the
impulse sequence tk = {25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275} and choose noise (Figure 3
(b)). Other parameters can be found in Table 2. Because of technical limitations, we set the maximum
value of the control variable π1 ∈ (0, 0.3), π2 ∈ (0, 0.4), π3 ∈ (0, 0.5), π4 ∈ (0, 2), π5 ∈ (0, 2), π6 ∈ (0, 2).

From (4.1), (4.3), (4.5), we can get the numerical solution of optimal control which are shown in
Figures 9 and 10. Meanwhile, under optimal control, state trajectories of vegetation-water system is
shown in Figure 11 (a). For comparison, we give state trajectories of vegetation-water system without
control, which is shown in Figure 11(b). Obviously, the biomass density of vegetation has increased
significantly under control. From the view of ecology, this is beneficial to the ecological environment.
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Figure 9. State trajectories of vegetation-water system with duo = 10. The unit of time is d
(day) and unit of space is m (meter).

(a) (b) (c)

Figure 10. The three-dimensional diagram of control variable π1, π2, π3.

6. Conclusions

The desertification phenomenon caused by the destruction of the ecological environment by human
beings is becoming more and more serious. Severe desertification may cause a food crisis and bring
the disaster. Therefore, it is necessary for us to study the dynamics of vegetation-water system in arid
areas and consider control strategies. In this paper, we propose a vegetation-water system with delay,
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Figure 11. The two-dimensional cross section of control variable π1, π2, π3 and control
variable for impulse π4, π5, π6.

0 50 100 150 200 250 300

t (days)

0

20

40

60

80

100

u(x,t)

v(x,t)

w(x,t)

(a)

0 50 100 150 200 250 300

t (days)

0

2

4

6

8

u(x,t)

v(x,t)

w(x,t)

(b)

Figure 12. State trajectories of vegetation-water system under optimal control.

impulse and noise. Through the proof, we show that the system has a unique global positive solution.
Different from the analysis of the long-term dynamic behavior, we give the sufficient conditions for the
finite-time stability of the system. It is worth noting that what we analyze is the finite-time stability of
the system with time-varying delay. Some simulations are provided to support the theoretical results.
Furthermore, we considered several control strategies and formulated an optimal control strategy to
increase the density of vegetation. Through numerical algorithm, the numerical path for optimal control
is given.

It is well-known that the initial values and parameters can affect the dynamic behavior of the system
[54, 55]. Obviously, this phenomenon can also be observed from the conditions of Theorem 3.4. For
example, from C2, we can find that delay has a negative impact on the finite-time stability. As the
delay increases, the system may lose finite-time stability, which is shown in Figure 6. The effect of
diffusion coefficients du, dv, dw, noise intensities σi, Li (i = 1, 2, 3) and impulse intensities Iu, Iv, Iw

on the finite-time stability also can be obtained from Theorem 3.4 via similar discussion. Furthermore,
through the analysis, we naturally raise a question. Whether changes in parameters can cause more
complex dynamics of the system, such as the change of basins of attraction [54] and the generation of
branching phenomena [55]. These will also be our further investigation.
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Appendix

The proof of Theorem 3.1 is as follows
Proof Considering the following stochastic partial differential equation without impulse:



dX(x, t) =
(
du∆X(x, t)+ Av(t)Y(x,t)

Av(t)Y(x,t)+1 X(x, t) − (l1−Au(t) ln(1+Iku))X(x, t)
)
dt

− ρ1σ1X(x, t)dB1(t) − ρ1X(x, t)
∫
Y

yÑ(dt, dy),

dY(x, t) =
(
dv∆Y(x, t)+αAv(t)−1 Au(t)X(x, t) + f

Au(t)X(x, t) + 1
Aw(t − τ(t))Z(x, t − τ(t))

−(l2−Av(t) ln(1+Ikv))Y(x, t) − γAv(t)−1 Av(t)Y(x, t)
Av(t)Y(x, t) + 1

Au(t)X(x, t)
)
dt

− ρ2σ2Y(x, t)dB2(t) − ρ2Y(x, t)
∫
Y

yÑ(dt, dy),

dZ(x, t) =
(
dw∆Z(x, t)+RAw(t)−1−α

Au(t)X(x, t) + f
Au(t)X(x, t) + 1

Aw(t − τ(t))
Aw(t)

Z(x, t − τ(t))

−(l3−Aw(t) ln(1+Ikw))Z(x, t)
)
dt − ρ3σ3Z(x, t)dB3(t) − ρ3Z(x, t)

∫
Y

yÑ(dt, dy),

(6.1)

with initial value (X(0),Y(0),Z(0)) = (u(0), v(0),w(0)), where Aϑ (ϑ = u, v,w) can be defined by

Aϑ(t) =


1 t ∈ [−τ̄, 0),

(1 + Ikϑ)[t]−t t , tk

(1 + Ikϑ)−1 t = tk

}
t ≥ 0 (k ∈ N).

(6.2)

Clearly, Aϑ (ϑ = u, v,w) is left-continuous, bounded and 1-periodic when t ≥ 0. Next,
we explain that system (2.6) and system (6.1) are equivalent. Let (u(x, t), v(x, t),w(x, t)) =
(Au(t)X(x, t), Av(t)Y(x, t), Aw(t)Z(x, t)). It can be easily checked that (X(x, t),Y(x, t),Z(x, t)) are con-
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tinuous on (k, k + 1) ∈ [0,∞), k ∈ N. For t , tk, one can compute

du = A′u(t)X(x, t) + Au(t)dX(x, t)

= Au(t)
((

du∆X(x, t) +
Av(t)Y(x, t)

Av(t)Y(x, t) + 1
X(x, t) − (l1 − Au(t) ln(1 + Iku))X(x, t)

)
dt

− ρ1σ1X(x, t)dB1(t) − ρ1X(x, t)
∫
Y

yÑ(dt, dy)
)
− Au(t) ln(1 + Iku)X(x, t)

=
(
du∆u(x, t) +

v(x, t)
v(x, t) + 1

u(x, t) − l1u(x, t)
)
dt − ρ1σ1u(x, t)dB1(t) − ρ1u(x, t)

∫
Y

yÑ(dt, dy)).

(6.3)
For k, we have

u(x, k−) = lim
t→k−

Au(t)X(x, t) = (1 + Iku)(k−1)−kX(x, k) = (1 + Iku)−1X(x, k) = u(x, k),

u(x, k+) = limt→k+ Au(t)X(x, t) = (1 + Iku)k−kX(x, k) = X(x, k).

This means that u(x, k+) = (1 + Iku)u(x, k) for t = tk. Similarly, we can derive that

dv(x, t) =
(
dv∆v(x, t) + α

u(x, t) + f
u(x, t) + 1

w(x, t)(x, t − τ(t)) − γ
v(x, t)

v(x, t) + 1
u(x, t) − l2v(x, t)

)
dt

− ρ2σ2v(x, t)dB2(t) − ρ2v(x, t)
∫
Y

yÑ(dt, dy),

dw(x, t) =
(
dw∆w(x, t) + R − α u(x,t)+ f

u(x,t)+1 w(x, t − τ(t)) − l3w(x, t)
)
dt

− ρ3σ3w(x, t)dB3(t) − ρ2w(x, t)
∫
Y

yÑ(dt, dy).

(6.4)

In this way, we have shown that the system (6.1) without impulse is equivalent to system (2.6). There-
fore, in the following, we just need to analyze the solution of system (6.1).

Obviously, the coefficients of the system conforming to the local Lipschitz continuous, for any given
initial data (X(x, s), Y(x, s), Z(x, s)) ∈ C(Γ× [−τ̄, 0]; R3

+), the system (6.1) has a unique maximal local
solution (X(x, t),Y(x, t),Z(x, t))) on Γ×[−τ̄, τe), where τe is explosion time. Make k0 > 0 be sufficiently
large number for

1
k0
< min
Γ×[−τ̄,0]

{X(x, t),Y(x, t),Z(x, t)} ≤ max
Γ×[−τ̄,0]

{X(x, t),Y(x, t),Z(x, t)} < k0.

Define the stopping time

τk = inf{t ∈ [0, τe) : min
x∈Γ,t∈[0,τe)

{X(x, t),Y(x, t),Z(x, t)} ≤
1
k0

or max
x∈Γ,t∈[0,τe)

{X(x, t),Y(x, t),Z(x, t)} ≥ k0},

for each k ≥ k0, k ∈ N. We set inf ∅ = ∞ (usually ∅ is the empty set). We can easily know that τk is
increasing as k → ∞. Besides, we set limk→∞ τk = τ∞, whence τ∞ < τe. Hence, if we can show that
τ∞ = ∞, then τe = ∞ and the solution of system (6.1) is positive.

Define a C2(R+; R) function

V(t) =
∫
Γ

X2(x, t)dx +
∫
Γ

Y2(x, t)dx +
∫
Γ

Z2(x, t)dx.
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For 0 ≤ t < τk ∧ T , Applying Itô formula to V(t) leads to

dV(t)
= 2
∫
Γ

X(x, t)
((

du∆X(x, t)+ Av(t)Y(x,t)
Av(t)Y(x,t)+1 X(x, t) − (l1−Au(t) ln(1+Iku))X(x, t)

)
dt − ρ1σ1X(x, t)×

dB1(t)
)
dx + 2

∫
Γ

Y(x, t)
((

dv∆Y(x, t)+αAv(t)−1 Au(t)X(x, t) + f
Au(t)X(x, t) + 1

Aw(t − τ(t))Z(x, t − τ(t))

−(l2−Av(t) ln(1+Ikv))Y(x, t) − γAv(t)−1 Av(t)Y(x, t)
Av(t)Y(x, t) + 1

Au(t)X(x, t)
)
dt − ρ2σ2Y(x, t)dB2(t)

)
dx

+ 2
∫
Γ

Z(x, t)
((

dw∆Z(x, t)+RAw(t)−1−α
Au(t)X(x, t) + f
Au(t)X(x, t) + 1

Aw(t − τ(t))
Aw(t)

Z(x, t − τ(t))

−(l3−Aw(t) ln(1+Ikw))Z(x, t)
)
dt − ρ3σ3Z(x, t)dB3(t)

)
dx +

∫
Γ

(
ρ2

1σ
2
1X2(x, t) + ρ2

2σ
2
2Y2(x, t)

+ρ2
3σ

2
3Z2(x, t)

)
dtdx+

∫
Y

[
∫
Γ

(
1−ρ1y

)2X2(x, t)dx−
∫
Γ

X2(x, t)dx]Ñ(dt, dy)+
∫
Y

[
∫
Γ

(
1−ρ2y

)2Y2(x, t)dx

−

∫
Γ

Y2(x, t)dx]Ñ(dt, dy) +
∫
Y

[
∫
Γ

(
1 − ρ3y

)2Z2(x, t)dx −
∫
Γ

Z2(x, t)dx]Ñ(dt, dy)

+

∫
Y

[
∫
Γ

(
1 − ρ1y

)2X(x, t)2dx −
∫
Γ

X(x, t)2dx +
∫
Γ

2X(x, t)dxρ1yX(x, t)]λ(dy)dtdx

+

∫
Γ

∫
Y

[
∫
Γ

(
1 − ρ2y

)2Y(x, t)2dx −
∫
Γ

Y(x, t)2dx +
∫
Γ

2Y(x, t)dxρ2yY(x, t)]λ(dy)dtdx

+

∫
Γ

∫
Y

[
∫
Γ

(
1 − ρ3y

)2Z(x, t)2dx −
∫
Γ

Z(x, t)2dx +
∫
Γ

2Z(x, t)dxρ3yZ(x, t)]λ(dy)dtdx.

Through some simple calculations and Holder inequality, we can get

dV(t)

= 2
∫
Γ

X(x, t)
((

du∆X(x, t)+
Av(t)Y(x, t)

Av(t)Y(x, t) + 1
X(x, t) − (l1−Au(t) ln(1+Iku))X(x, t)

)
dt

− ρ1σ1X(x, t)dB1(t)
)
dx + 2

∫
Γ

Y(x, t)
((

dv∆Y(x, t)+αAv(t)−1 Au(t)X(x, t) + f
Au(t)X(x, t) + 1

×

Aw(t − τ(t))Z(x, t − τ(t))−(l2−Av(t) ln(1+Ikv))Y(x, t) − γAv(t)−1 Av(t)Y(x, t)
Av(t)Y(x, t) + 1

×

Au(t)X(x, t)
)
dt − ρ2σ2Y(x, t)dB2(t)

)
dx + 2

∫
Γ

Z(x, t)
((

dw∆Z(x, t)+RAw(t)−1

−α
Aw(t − τ(t))

Aw(t)
Au(t)X(x, t) + f
Au(t)X(x, t) + 1

Z(x, t − τ(t))−(l3−Aw(t) ln(1+Ikw))Z(x, t)
)
dt

− ρ3σ3Z(x, t)dB3(t)
)
dx +

∫
Γ

(
ρ2

1σ
2
1X2(x, t) + ρ2

2σ
2
2Y2(x, t) + ρ2

3σ
2
3Z2(x, t)

)
dtdx

+

∫
Γ

∫
Y

ρ1y(ρ1y − 2)Ñ(dt, dy)X2(x, t)dx +
∫
Γ

∫
Y

ρ2y(ρ2y − 2)Ñ(dt, dy)Y2(x, t)dx

+

∫
Γ

∫
Y

ρ3y(ρ3y − 2)Ñ(dt, dy)Z2(x, t)dx +
∫
Γ

∫
Y

ρ1y(ρ1y + 2m(Γ) − 2)λ(dy)X(x, t)2dtdx

+

∫
Γ

∫
Y

ρ2y(ρ2y + 2m(Γ) − 2)λ(dy)Y(x, t)2dtdx +
∫
Γ

∫
Y

ρ3y(ρ3y + 2m(Γ) − 2)λ(dy)Z(x, t)2dtdx.
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Assign

LV(t) =
∫
Γ

X(x, t)
(
du∆X(x, t)+ Av(t)Y(x,t)

Av(t)Y(x,t)+1 X(x, t) − (l1−Au(t) ln(1+Iku))X(x, t)
)
dx

+

∫
Γ

Y(x, t)
(
dv∆Y(x, t)+αAv(t)−1 Au(t)X(x, t) + f

Au(t)X(x, t) + 1
Aw(t − τ(t))Z(x, t − τ(t))

−(l2−Av(t) ln(1+Ikv))Y(x, t) −
γAv(t)−1Av(t)Y(x, t)

Av(t)Y(x, t) + 1
Au(t)X(x, t)

)
dx

+

∫
Γ

Z(x, t)
(
dw∆Z(x, t)+RAw(t)−1−α

Aw(t − τ(t))
Aw(t)

Au(t)X(x, t) + f
Au(t)X(x, t) + 1

Z(x, t − τ(t))

−(l3−Aw(t) ln(1+Ikw))Z(x, t)
)
dx +

∫
Γ

(
ρ2

1σ
2
1X2(x, t) + ρ2

2σ
2
2Y2(x, t) + ρ2

3σ
2
3Z2(x, t)

)
dx

+

∫
Γ

∫
Y

ρ1y(ρ1y + 2m(Γ) − 2)λ(dy)X(x, t)2dx +
∫
Γ

∫
Y

ρ2y(ρ2y + 2m(Γ) − 2)λ(dy)Y(x, t)2dx

+

∫
Γ

∫
Y

ρ3y(ρ3y + 2m(Γ) − 2)λ(dy)Z(x, t)2dx.

In view of the partial integral formula, some basic inequalities and hypothesis (H1), we deduce that

LV(t)
≤ −
∫
Γ

du(∇X(x, t))2dx +
∫
Γ

X(x, t) Av(t)Y(x,t)
Av(t)Y(x,t)+1 X(x, t)dx +

∫
Γ

Au(t) ln(1+Iku)X2(x, t)dx

−

∫
Γ

Y(x, t)dv(∇Y(x, t))2dx +
∫
Γ

Y(x, t)αAv(t)−1 Au(t)X(x, t) + f
Au(t)X(x, t) + 1

Aw(t − τ(t))Z(x, t − τ(t))dx

+

∫
Γ

γAv(t)−1 Av(t)Y(x, t)
Av(t)Y(x, t) + 1

Au(t)X(x, t)Y(x, t)dx +
∫
Γ

Av(t) ln(1+IkvY2(x, t)dx

−

∫
Γ

dw(∇Z(x, t))2dx +
∫
Γ

RAw(t)−1Z(x, t)dx +
∫
Γ

α
Au(t)X(x, t) + f
Au(t)X(x, t) + 1

Aw(t − τ(t))
Aw(t)

Z(x, t − τ(t))

Z(t)dx +
∫
Γ

Aw(t) ln(1+Ikw)Z2(x, t)dx +
∫
Γ

(
ρ2

1σ
2
1X2(x, t) + ρ2

2σ
2
2Y2(x, t) + ρ2

3σ
2
3Z2(x, t)

)
dx

+

∫
Γ

∫
Y

ρ1y(ρ1y + 2m(Γ) − 2)λ(dy)X(x, t)2dx +
∫
Γ

∫
Y

ρ2y(ρ2y + 2m(Γ) − 2)λ(dy)Y(x, t)2dx

+

∫
Γ

∫
Y

ρ3y(ρ3y + 2m(Γ) − 2)λ(dy)Z(x, t)2dx

≤

∫
Γ

(1 + Au(t) ln(1 + Iku) + γAv(t)−1Au(t) + ρ2
1σ

2
1)X2(x, t)dtdx + RAw(t)−1m(Γ)

+

∫
Γ

α(Av(t)−1(1 + f )Aw(t − τ(t)) + Av(t) ln(1+Ikv) + γAv(t)−1Au(t) + ρ2
2σ

2
2)Y2(x, t)dtdx

+

∫
Γ

(αAv(t)−1(1 + f )Aw(t − τ(t)) + α(1 + f )Aw(t − τ(t))A−1
w (t))Z2(x, t − τ(t))dtdx

+

∫
Γ

(1 + Aw(t) ln(1+Ikw) + α(1 + f )Aw(t − τ(t))A−1
w (t))Z2(x, t − τ(t) + ρ2

3σ
2
3)Z2(x, t)dtdx

+

∫
Γ

∫
Y

ρ1y(ρ1y + 2m(Γ) − 2)λ(dy)X(x, t)2dx +
∫
Γ

∫
Y

ρ2y(ρ2y + 2m(Γ) − 2)λ(dy)Y(x, t)2dx

+

∫
Γ

∫
Y

ρ3y(ρ3y + 2m(Γ) − 2)λ(dy)Z(x, t)2dx

≤ K0(1 +
∫
Γ

X2(x, t)dx +
∫
Γ

Y2(x, t)dx +
∫
Γ

Z2(x, t)dx +
∫
Γ

Z2(x, t − τ(t))dx)
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where

K0 = max
{

sup
t∈[0,τk∧T )

(
1 + Au(t) ln(1 + Iku) + ρ2

1σ
2
1 + γAv(t)−1Au(t) + L1

)
,

sup
t∈[0,τk∧T )

(
Av(t)−1(1 + f )Aw(t − τ(t)) + α(1 + f ) + ρ2

2σ
2
2 + γAv(t)−1Au(t) + L2

)
,

sup
t∈[0,τk∧T )

(
1 + Aw(t) ln(1+Ikw) + α(1 + f )Aw(t − τ(t))A−1

w (t)) + ρ2
3σ

2
3 + L3

)
,

sup
t∈[0,τk∧T )

(
αAv(t)−1(1 + f )Aw(t − τ(t)) + α(1 + f )Aw(t − τ(t))A−1

w (t)
)
,

sup
t∈[0,τk∧T )

(
RAw(t)−1m(Γ)

)
.
}
.

Therefore, we can know that

dV(t) = LV(t)dt − 2
∫
Γ

ρ1σ1X(x, t)2dB1(t) + ρ2σ2Y(x, t)2dB2(t) + ρ3σ3Z(x, t)2dB3(t)dx

+

∫
Y

ρ1y(ρ1y − 2)Ñ(dt, dy)X2(x, t) +
∫
Y

ρ2y(ρ2y − 2)Ñ(dt, dy)Y2(x, t)

+

∫
Y

ρ3y(ρ3y − 2)Ñ(dt, dy)Z2(x, t)

(6.5)

Integrating bosh sides of (6.5) from 0 to t1 ∧ τk and taking expectations gives that

EV(t1 ∧ τK) = V(0) + E
∫ t1∧τk

0

(
K0(1 + V(s) +

∫
Γ

Z2(x, s − τ(s))dx)
)
ds

≤ V(0)+E
∫ t1∧τk

0
K0ds+E

∫ t1∧τk

0

K0

1 − η

∫
Γ

Z2(x, s − τ(s))dxd(s − τ(s))+E
∫ t1∧τk

0
K0V(s)ds

≤ V(0) + E
∫ 0

−τ̄

K0

1 − η
(
∫
Γ

Z2(x, s)dx)ds + E
∫ t1∧τk

0

K0

1 − η
(
∫
Γ

Z2(x, s)dx)ds

+ K0T + E
∫ t1∧τk

0
K0V(s)ds

≤ C1 + E
∫ t1∧τk

0

∫
Γ

K0X2(x, s)dx +
∫
Γ

K0Y2(x, s)dx +
∫
Γ

K0(1 +
1

1 − η
)Z2(x, s)dxds

≤ C1 + K1

∫ t1∧τk

0
V(s)ds

where C1 = V(0) + E
∫ 0

−τ̄
K

1−η (
∫
Γ

Z2(x, s)dx)ds + KT < ∞, K1 = max{K,K + K
1−η }. Further, we can drive

that

EV(t1 ∧ τk) ≤ C1 + K1E
∫ t1∧τk

0
V(t)dt ≤ C1 + K1E

∫ t1

0
V(t ∧ τk)dt ≤ C1 + K1

∫ t1

0
EV(t ∧ τk)dt.

(6.6)
For ∀ t1 ∈ [0,T ], (6.6) holds, then, it follows from Gronwall inequalities [43] that

EV(t1 ∧ τk) ≤ C1eK1T , 0 ≤ t1 ≤ T, (6.7)

for any k ≥ k0. Particularly,
EV(T ∧ τk) ≤ C1eK1T , ∀ k ≥ k0. (6.8)
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Define

β(k) = inf
min{u(x,t),v(x,t),v(x,t)}≥k, 0≤t≤∞

V(t), ∀ k ≥ k0.

Thus, (6.8) implies that

β(k)P(τk ≤ T ) ≤ E(V(τk)Iτk≤T ) ≤ EV(τk ∧ T ) ≤ C1eK1T . (6.9)

However, we can easily see that

lim
k→∞

β(k) = ∞.

Letting k → ∞ in (6.9), one can deduce that P(τ∞ ≤ T ) = 0, that is

P(τ∞ ≥ T ) = 1. (6.10)

For the arbitrariness of T , we must have τ∞ = ∞. Then, the system (6.1) has a unique global positive
solution. Therefore, we complete the proof.
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Algorithm

Step 1: for i = 1 : Nx

for j = −Ntau : 0
ui, j = u0; vi, j = v0; wi, j = w0;

end
for j = Nt + 1 : Nt + Ntau

p1
i, j = 0; p2

i, j = 0; p3
i, j = 0;

end
end
o = [o1, o2, o3, · · · ] τ( j) = tau

Step 2: for i = 1 : Nx − 1
for j = 0 : Nt − 1

ui, j+1 = ui, j + S tate1; vi, j+1 = vi, j + S tate2; wi, j+1 = wi, j + S tate3;
for k = Nt − j + 1

p1
i,k−1 = p1

i,k − Ad joint1; p2
i,k−1 = p2

i,k+1 − Ad joint2; p3
i,k−1 = p3

i,k − Ad joint3;
for m = 1 : length(o)

if j + 1 = o(m)
ui, j+1 = (1 + Ikuπ

4
i, j)ui, j+1; vi, j+1 = (1 + Ikvπ

5
i, j)vi, j+1; wi, j+1 = (1 + Ikwπ

6
i, j)wi, j+1;

else
ui, j+1 = ui, j+1; vi, j+1 = vi, j+1; wi, j+1 = wi, j+1;

end
end

if k − 1 = o(m)
p1

i,k−1 = (1 − Ikuπ
4
i, j)p1

i,k−1 + P̄1; p2
i,k−1 = (1 − Ikvπ

5
i, j)p2

i,k−1 + P̄2;
p3

i,k−1 = (1 − Ikwπ
6
i, j)p3

i,k−1 + P̄3;
else

p1
i,k−1 = p1

i,k−1; p1
i,k−1 = p1

i,k−1; p1
i,k−1 = p1

i,k−1;
end

end
π1

i, j =
−p1

i,kui, j

Q1
; π2

i, j =
−p2

i,kvi, j

Q2
; π3

i, j =
−p3

i,kwi, j

Q3
;

π4
i, j =

−p4
i,k Ikuui, j

Q4
; π5

i, j =
−p5

i,k Ikvvi, j

Q5
; π6

i, j =
−p6

i,k Ikwwi, j

Q6
;

end
u1, j = u2, j; v1, j = v2, j; w1, j = w2, j; uNx, j = uNx−1, j; vNx, j = vNx−1, j; wNx, j = wNx−1, j;
p1

1, j = p1
2, j; p2

1, j = p2
2, j; p3

1, j = p3
2, j; p1

Nx, j = p1
Nx−1, j; p2

Nx, j = p2
Nx−1, j; p3

Nx, j
= p3

Nx−1, j;
end
end

where

S tate1 =
[
du

ui+1, j − 2ui, j + ui−1, j

∆2
x

+ π1ui, j +
vi, jui, j

vi, j + 1
− l1ui, j

]
∆t
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− ρ1σ1ui, jrand
√
∆t −

ρ2
1

2
σ1u2

i, j(rand2 − 1)∆t − Z(n)

S tate2 =
[
dv

vi+1, j − 2vi, j + vi−1, j

∆2
x

+ α
ui, j + f
ui, j + 1

wi, j−τ( j) − γ
vi, j

vi, j + 1
ui, j − (l2 − π2)vi, j

]
∆t

− ρ2σ2vi, jrand
√
∆t −

ρ2
2

2
σ2v2

i, j(rand2 − 1)∆t − Z(n)

S tate3 =
[
dw

wi+1, j − 2wi, j + wi−1, j

∆2
x

+ R − α
ui, j + f
ui, j + 1

wi, j−τ( j) − (l3 − π3)wi, j
]
∆t

− ρ3σ3wi, jrand
√
∆t −

ρ2
3

2
σ3w2

i, j(rand2 − 1)∆t − Z(n)

Ad joint1 =
[
du

p1
i+1,k − 2p1

i,k + p1
i−1,k

∆2
x

+ (π1 − l1)p1
i,k +

vi, j

vi, j + 1
(p1i, k − γp2

i,k)

+ α
1 − f

(ui, j + 1)2 wi, j−τ( j)(p2
i,k − p3

i,k) − ρ1σ1q1 − ρ1r1 − P1
]
∆t + q1rand

√
∆t − Z(n)

Ad joint2 =
[
dv

p2
i+1,k − 2p2

i,k + p2
i−1,k

∆2
x

+ (l2 − π2)p2
i,k +

ui, j

(vi, j + 1)2 (p1i, k − γp2
i,k) − ρ2σ2q2 − ρ2r2 − P2

]
∆t

+ q2rand
√
∆t − Z(n)

Ad joint3 =
[
dw

p3
i+1,k − 2p3

i,k + p3
i−1,k

∆2
x

+ χ[0,Nt−τ(Nt)](p2
i,k+τ − p3

i,k+τ)α
ui, j + f
ui, j + 1

+ (π3
i, j − l3)p3

i,k − ρ3σ3q3

− ρ3r3 − P3
]
∆t + q3rand

√
∆t − Z(n)
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