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Abstract: In this paper, we develop two stochastic mussel-algae models: one is autonomous and
the other is periodic. For the autonomous model, we provide sufficient conditions for the extinction,
nonpersistent in the mean and weak persistence, and demonstrate that the model possesses a unique
ergodic stationary distribution by constructing some suitable Lyapunov functions. For the periodic
model, we testify that it has a periodic solution. The theoretical findings are also applied to practice to
dissect the effects of environmental perturbations on the growth of mussel.
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1. Introduction

A nail-cap-sized zebra mussel was first discovered in the US waters in 1988 and has a powerful
reproductive capacity [1]. The invasion of zebra mussel has caused great inconvenience to people, such
as blocking pipes, polluting water sources, crowding out local species and causing serious economic
losses. According to an estimation from the Center for Invasive Species Research at UC Riverside [1],
the US spends as much as 500 million dollars every year to manage mussel in the Great Lakes. As
a result, many biologists, ecologists, and mathematicians have studied the invasion of mussel from
different perspectives.

The growth and survival of mussel depend heavily on the availability of food sources for algae. A
lot of literatures have revealed that the food supply of algae can limit mussel intake [2–4]. In order to
uncover the relationships between mussel and algae, Koppel et al. [5] proposed a diffusive mussel-algae
model, considering the corresponding nondiffusive form:

dM(t)
dt

= βcA(t)M(t) −
µk

k + M(t)
M(t),

dA(t)
dt

= (Aup − A(t)) f −
c
h

A(t)M(t),
(1.1)
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where M(t) and A(t) respectively denote the size of mussel and algae, β represents the conversion rate
of ingested algae to mussel production, c is the consumption constant, µ is the maximal per capita
mussel death rate, k stands for the value of M(t) at which mortality is half maximal, Aup denotes the
concentration of algae in the upper water layer, f describes the rate of exchange between the lower and
upper water layers, h is the height of the lower water layer. All the parameters are positive.

The research on model (1.1) has attracted much attention. For example, based on model (1.1),
Koppel et al. [5] analyzed the scale-dependent feedback and regular spatial patterns of young mussel
beds, and uncovered that the self-organization patterns would affect the emergent properties of
ecosystems in large-scale space. Cangelosi et al. [6] established a mussel-algae model with Turing
patterns and carried out a series of stability analyses. Song et al. [7] dissected Turing-Hopf bifurcation
of model (1.1) with reaction-diffusion. Similar diffusive models to study the spatial dynamics of
mussel-algae can be found in [8–11]. In addition, quite a few researchers pay attention on the control
of mussel-algae. A model describing mussel bed appearance was proposed in [12] to explore the
habitat suitability analysis for littoral mussel beds in the Dutch Wadden Sea. The effects of 19
macroalgal species on the settlement and metamorphosis of the mussel were investigated [13].

Considering that the growth of mussel is affected by intraspecific competition, we transform model
(1.1) into the following model:

dM(t)
dt

= βcA(t)M(t) − aM2(t) −
µk

k + M(t)
M(t),

dA(t)
dt

= (Aup − A(t)) f −
c
h

A(t)M(t),
(1.2)

where a is the intraspecific competition strength of mussel and positive. Other parameters are defined
in the same as in model (1.1).

Note that the above studies are all deterministic models. However, environmental uncertainties are
ubiquitous in aquatic ecosystems, the populations are always inevitably influenced by environmental
noises, which is a momentous element in ecosystems [14]. Environmental stochasticity may involve
water temperature, noise, salinity, depth and predators, which might affect the growth and evolution of
the populations. Accordingly, stochastic models are usually more realistic, and it is essential to bring
environmental stochasticity into model (1.2). Quite a few existing literatures focus on this and obtain
excellent results, e.g., survival analysis [15], asymptotic stability [16], stationary distribution [17],
optimal harvesting [18, 19] and so on. However, as we know, a very little bit of work has been done
with stochastic mussel-algae models, especially the corresponding stochastic version of model (1.2).

For M(t) and A(t) in model (1.2), given ∆t > 0 is a fixed step size. Define Γ∆t(p∆t) = (M∆t(p∆t),
A∆t(p∆t)), p = 0, 1, 2, . . .. Let a normal distribution random variable sequence {Θ∆t

i (p)}∞p=0 satisfy
E[Θ∆t

i (p)] = 0, E[Θ∆t
i (p)]2 = σ2

i ∆t, i = 1, 2, where the constantsσ2
1 andσ2

2 reflect the size of the random
perturbations. In each time period [p∆t, (p + 1)∆t], we hypothesize that Γ∆t grows in the light of the
discrete modification of model (1.2) as well as a stochastic amount (M∆t(p∆t)Θ∆t

1 (p), A∆t(p∆t)Θ∆t
2 (p)),

then we get
M∆t((p + 1)∆t) = M∆t(p∆t) +

[
βcA∆t(p∆t)M∆t(p∆t) − a(M∆t(p∆t))2

−
µk

k + M∆t(p∆t)
M∆t(p∆t)

]
∆t + M∆t(p∆t)Θ∆t

1 (p),

A∆t((p + 1)∆t) = A∆t(p∆t) +

[
(Aup − A∆t(p∆t)) f −

c
h

A∆t(p∆t)M∆t(p∆t)
]
∆t + A∆t(p∆t)Θ∆t

2 (p).
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On the basis of [20] (Theorem 7.1 and Lemma 8.2), as ∆t → 0, Γ∆t converges weakly to the solution
of the following stochastic differential equation:

dM(t) =

[
βcA(t)M(t) − aM2(t) −

µk
k + M(t)

M(t)
]
dt + σ1M(t)dB1(t),

dA(t) =

[
(Aup − A(t)) f −

c
h

A(t)M(t)
]
dt + σ2A(t)dB2(t),

(1.3)

where B1(t) and B2(t) are independent standard Brownian motions defined on a complete probability
space (Ω, F, {F}t≥0, P).

The effects of a periodically varying environment are important as populations evolve influenced
by external effects, for example, seasonal changes, food supply, living habits and other factors, which
changes significantly through the whole life of populations. This idea has found much attention and
is incorporated into dynamical models [21–25]. Till date, to investigate whether these models will
exist period solutions or not is still worth noting. Keeping given this fact, model (1.3) may need to be
extended into the following periodic version:

dM(t) =

[
βc(t)A(t)M(t) − a(t)M2(t) −

µ(t)k(t)
k(t) + M(t)

M(t)
]
dt + σ1(t)M(t)dB1(t),

dA(t) =

[
(Aup(t) − A(t)) f (t) −

c(t)
h

A(t)M(t)
]
dt + σ2(t)A(t)dB2(t),

(1.4)

where the coefficients c(t), a(t), µ(t), k(t), Aup(t), f (t) are positive continuous T-periodic functions.
It is well known that stability is one of the key topics in mathematical biology. For autonomous

stochastic population models, scholars are concerned with the stable “stochastic positive
equilibrium”—stationary distribution. For periodic stochastic population models, positive periodic
solution is an attractive concept. To the best of our knowledge, however, both the stationary
distribution of model (1.3) and the existence of periodic solution of model (1.4) have not been
considered. The objectives of this paper are to test these two issues. The rest arrange of this paper is
as follows. In the next section, the existence and uniqueness of the global positive solution are
testified. In Section 3, the extinction, nonpersistent in the mean and weak persistence of model (1.3)
are probed. Section 4 provides the conditions under which model (1.3) possesses a unique ergodic
stationary distribution. In Section 5, we explore the existence of T-periodic solution of model (1.4).
To illustrate the theoretical findings, some numerical simulations are given in Section 6. A few
biological meanings of conditions and results are discussed to end Section 7.

2. Existence and uniqueness of the global positive solution

Theorem 2.1. For arbitrary initial data (M(0), A(0)) ∈ R2
+, model (1.3) has a unique global positive

solution with probability one.

Proof. Recalling model (1.3), assign M(t) = eM̃(t), we obtain
dM̃(t) =

[
βcA(t) −

σ2
1

2
− aeM̃(t) −

µk

k + eM̃(t)

]
dt + σ1dB1(t),

dA(t) =

[
(Aup − A(t)) f −

c
h

A(t)eM̃(t)
]
dt + σ2A(t)dB2(t)

(2.1)
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with (M̃(0), A(0)) = (ln M(0), A(0)). One can see that the coefficients of model (2.1) obey the locally
Lipschitz continuous conditions, as a result, it possesses a unique solution (M̃(t), A(t)) on [0, τe), where
τe ≤ +∞. Accordingly, model (1.3) possesses a unique positive solution (M(t), A(t)) = (eM̃(t), A(t)) on
[0, τe). To finish the proof, we only need to testify that τe = +∞ a.s. Choose an integer n0 > 0 which
obeys that 1/n0 ≤ M(0), A(0) ≤ n0. For every n ≥ n0, define

τn = inf{t ∈ [0, τe] : min{M(t), A(t)} ≤ 1/n or max{M(t), A(t)} ≥ n}.

Set τ∞ = limn→+∞ τn. As a result, τ∞ ≤ τe. Now we only need to testify that τ∞ = +∞. If it is not true,
then one can find two constants T > 0 and ε ∈ (0, 1) such that P{τ∞ ≤ T } > ε. As a result, one can set
an integer n1 ≥ n0 which satisfies

P{τn ≤ T } ≥ ε. (2.2)

Define
V(M, A) = M + hβA.

Taking advantage of Itô’s formula, one has

dV(M, A) = LV(M, A)dt + Mσ1dB1(t) + hβAσ2dB2(t), (2.3)

where
LV(M, A) =

(
βcAM − aM2 −

µk
k + M

M
)

+ hβ
[
(Aup − A) f −

c
h

AM
]

= βcAM − aM2 −
µk

k + M
M + hβAup f − hβ f A − βcAM

≤ hβAup f = G.
Integrating both sides of Eq (2.3) from 0 to τn ∧ T yields∫ τn∧T

0
dV(M, A) ≤

∫ τn∧T

0
Gdt +

∫ τn∧T

0
Mσ1dB1(t) +

∫ τn∧T

0
hβAσ2dB2(t).

Taking expectation on both sides results in

EV(M(τn ∧ T ), A(τn ∧ T )) ≤ V(M(0), A(0)) + GE(τn ∧ T )
≤ V(M(0), A(0)) + GT.

(2.4)

Set Ωn = {τn ≤ T } for n ≥ n1. According to Eq (2.2), P(Ωn) ≥ ε. For any θ ∈ Ωn, at least one of
M(τn, θ), A(τn, θ) equals to n or 1/n. Thus, we derive

V(M(τn, θ), A(τn, θ)) ≥ (n − 1 − ln n) ∧
(1
n
− 1 − ln

1
n

)
.

Therefore, Eq (2.4) implies that

V(M(0), A(0)) + GT ≥ E[1Ωn(θ)V(M(τn, θ), A(τn, θ))]

≥ ε
[
(n − 1 − ln n) ∧

(1
n
− 1 − ln

1
n

)]
,

where 1Ωn denotes the indicator function of Ωn. Letting n→ +∞ causes the contradiction:

V(M(0), A(0)) + GT > +∞.

This finishes the proof. �

Remark 2.1. Similar to the proof of Theorem 2.1, one can testify that model (1.4) has a unique global
positive solution with probability one, and the details are left out.
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3. Extinction and persistence of model (1.3)

Lemma 3.1. Given (M(0), A(0)) ∈ R2
+, model (1.3) admits lim supt→+∞ [M(t) + βhA(t)] < +∞ and

lim
t→+∞

1
t

∫ t

0
σ1M(s)dB1(s) = 0, lim

t→+∞

1
t

∫ t

0
σ2A(s)dB2(s) = 0 a.s.

Proof. Denote Z(t) = M(t) + βhA(t). From model (1.3), we have

dZ =

(
βcAM − aM2 −

µk
k + M

M + βh
[
(Aup − A) f −

c
h

AM
])

dt

+ σ1M(t)dB1(t) + βhσ2A(t)dB2(t)
≤ [a(−2M + 1) + βhAup f − βh f A]dt + σ1M(t)dB1(t) + βhσ2A(t)dB2(t)
≤ (a + βhAup f − δZ)dt + σ1M(t)dB1(t) + βhσ2A(t)dB2(t),

where δ = min{2a, f } > 0. Consider{
dY = (a + βhAup f − δY)dt + σ1M(t)dB1(t) + βhσ2A(t)dB2(t),
dY(0) = (M(0), A(0)).

(3.1)

The solution of model (3.1) is

Y(t) =
a + βhAup f

δ
+

[
Y(0) −

a + βhAup f
δ

]
e−δt + N(t),

where

N(t) = σ1

∫ t

0
e−δ(t−s)M(s)dB1(s) + βhσ2

∫ t

0
e−δ(t−s)A(s)dB2(s)

is a local martingale satisfying N(0) = 0 a.s. Thus

Y(t) = Y(0) + Q(t) − P(t) + N(t),

where

Q(t) =
a + βhAup f

δ
(1 − e−δt), P(t) = Y(0)(1 − e−δt)

with Q(0) = P(0) = 0. Clearly, Q(t) and P(t) are continuous increasing functions. By [26], we have
limt→+∞ Y(t) < +∞ a.s., then by stochastic comparison theorem, one has lim supt→+∞ Z(t) < +∞ a.s.

Let N1 =
∫ t

0
σ1M(s)dB1(s) and N2 =

∫ t

0
σ2A(s)dB2(s). Through calculation, we obtain

〈N1,N1〉(t) = σ2
1

∫ t

0
M2(s)ds,

then

lim
t→+∞

∫ t

0

σ2
1M2(s)ds
(1 + s)2 ≤ σ2

1 sup
t≥0
{M2(t)} < +∞.

In light of [27], limt→+∞ t−1N1(t) = 0 a.s. Similarly, we have limt→+∞ t−1N2(t) = 0. �

Theorem 3.1. If λ0 = βcAup − µ − σ
2
1/2 < 0 and a > µ/k, then M(t) is extinct a.s.
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Proof. We deduce from model (1.3) that

d
(1
h

M + βA
)

=
1
h

(
βcAM − aM2 −

µk
k + M

M
)
dt + β

[
(Aup − A) f −

c
h

AM
]
dt

+
σ1

h
MdB1(t) + βσ2AdB2(t)

=

[
βc
h

AM −
a
h

M2 −
µk

h(k + M)
M + β(Aup − A) f −

βc
h

AM
]
dt

+
σ1

h
MdB1(t) + βσ2AdB2(t)

=

(
βAup f − β f A −

a
h

M2 −
µk

h(k + M)
M

)
dt +

σ1

h
MdB1(t) + βσ2AdB2(t),

which implies that

βAup f −
β f
t

∫ t

0
A(s)ds −

a
ht

∫ t

0
M2(s)ds −

µ

ht

∫ t

0

kM(s)
k + M(s)

ds =
ϕ1(t)

t
, (3.2)

where

ϕ1(t) =
1
h

M(t) −
1
h

M(0) + βA(t) − βA(0) −
1
h

∫ t

0
σ1M(s)dB1(s) − β

∫ t

0
σ2A(s)dB2(s)

satisfying limt→+∞ ϕ1(t)/t = 0. In light of Eq (3.2), we have

1
t

∫ t

0
A(s)ds = Aup −

a
β f ht

∫ t

0
M2(s)ds −

µ

β f ht

∫ t

0

kM(s)
k + M(s)

ds −
ϕ1(t)
β f t

. (3.3)

By the first equation of model (1.3) and using Itô’s formula, we obtain

d ln M(t) =

(
βcA − aM −

µk
k + M

−
1
2
σ2

1

)
dt + σ1dB1(t),

then together with Eq (3.3), one has

1
t

ln
M(t)
M(0)

=
βc
t

∫ t

0
A(s)ds −

a
t

∫ t

0
M(s)ds −

1
2
σ2

1 −
µ

t

∫ t

0

k
k + M(s)

ds +
1
t

∫ t

0
σ1dB1(s)

= βc
(
Aup −

a
β f ht

∫ t

0
M2(s)ds −

µ

β f ht

∫ t

0

kM(s)
k + M(s)

ds −
ϕ1(t)
β f t

)
−

a
t

∫ t

0
M(s)ds −

1
2
σ2

1 − µ +
1
t

∫ t

0

µM(s)
k + M(s)

ds +
1
t

∫ t

0
σ1dB1(s)

= βcAup − µ −
1
2
σ2

1 −
ac
f ht

∫ t

0
M2(s)ds −

µc
f ht

∫ t

0

kM(s)
k + M(s)

ds −
cϕ1(t)

f t

−
1
t

∫ t

0

(
a −

µ

k + M(s)

)
M(s)ds +

1
t

∫ t

0
σ1dB1(s).

(3.4)

Since the strong law of numbers implies that

lim
t→+∞

1
t

∫ t

0
σ1dB1(s) = 0. (3.5)

Thus, it follows from Eqs (3.4) and (3.5) that

lim
t→+∞

t−1 ln M(t) ≤ βcAup − µ −
1
2
σ2

1 < 0,

which implies the required assertion. �
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Theorem 3.2. If λ0 = 0 and a > µ/k, then M(t) is nonpersistent in the mean a.s., namely,
limt→+∞ t−1

∫ t

0
M(s)ds = 0 a.s.

Proof. Let ρ > 0 be a constant which satisfies ρ < a − µ/k. From Eq (3.4), we have

ln M(t) − ln M(0) = λ0t −
ac
f h

∫ t

0
M2(s)ds −

µc
f h

∫ t

0

kM(s)
k + M(s)

ds −
cϕ1(t)

f

−

∫ t

0

(
a −

µ

k + M(s)

)
M(s)ds +

∫ t

0
σ1dB1(s)

≤ −

∫ t

0
ρM(s)ds +

∫ t

0
σ1dB1(s).

(3.6)

Note that for any ε > 0, there is T > 0 such that for t ≥ T ,

t−1 ln M(0) ≤ ε/2, t−1
∫ t

0
σ1dB1(s) ≤ ε/2. (3.7)

Substituting Eq (3.7) into Eq (3.6), we have

ln M(t) ≤ εt − ρ
∫ t

0
M(s)ds, t ≥ T.

Set %(t) =
∫ t

0
M(s)ds, then we get

ln(d%(t)/dt) ≤ εt − ρ%(t).

Hence for t > T , we have
eρ%(t)(d%(t)/dt) ≤ eεt.

Integrating this inequality from T to t, one can derive that

ρ−1(eρ%(t) − eρ%(T )) ≤ ε−1(eεt − eεT ).

That is,
eρ%(t) ≤ eρ%(T ) + ρε−1eεt − ρε−1eεT . (3.8)

Taking the logarithm of both sides of Eq (3.8) results in

%(t) ≤ ρ−1 ln(eρ%(T ) + ρε−1eεt − ρε−1eεT ).

Note that %(t) =
∫ t

0
M(s)ds, then one can obtain that

lim sup
t→+∞

t−1
∫ t

0
M(s)ds ≤ ρ−1 lim sup

t→+∞

t−1 ln
{
eρ%(T ) + ρε−1eεt − ρε−1eεT

}
.

Applying L’Hospital’s rule leads to

lim sup
t→+∞

t−1
∫ t

0
M(s)ds ≤ ε/ρ.

It then follows from the arbitrariness of ε that lim supt→+∞ t−1
∫ t

0
M(s)ds ≤ 0. This proof is complete.

�
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Theorem 3.3. If λ0 > 0, then M(t) is weakly persistent a.s., namely, lim supt→+∞ M(t) > 0 a.s.

Proof. We first testify that
lim sup

t→+∞

t−1 ln M(t) ≤ 0 a.s. (3.9)

By Itô’s formula,

d(et ln M) = et ln Mdt + etd ln M

= et
{[

ln M + βcA − aM −
µk

k + M
−

1
2
σ2

1

]
dt + σ1dB1(t)

}
.

Integrating the both sides from 0 to t, we have

et ln M(t) − ln M(0) =

∫ t

0
es

[
ln M(s) + βcA(s) − aM(s) −

µk
k + M(s)

−
1
2
σ2

1

]
ds + W(t), (3.10)

where W(t) =
∫ t

0
esσ1dB1(s) is a local martingale with the quadratic form

〈W(t),W(t)〉 = σ2
1

∫ t

0
e2sds.

By the exponential martingale inequality (see [26] on page 44), for arbitrary positive constants T0, ι
and ν , one has

P
{

sup
0≤t≤T0

[
W(t) −

ι

2
〈W(t),W(t)〉

]
> ν

}
≤ e−ιν.

Choose T0 = ϑr, ι = e−ϑr and ν = $eϑr ln r, then we obtain

P
{

sup
0≤t≤ϑr

[
W(t) − 0.5e−ϑr〈W(t),W(t)〉

]
> $eϑr ln r

}
≤ r−$,

where $ > 1, ϑ > 0. By the Borel-Cantalli lemma (see [26] on page 7), for almost all ζ ∈ Ω, there
exists a r0(ζ) such that for r ≥ r0(ζ),

W(t) ≤ 0.5e−ϑr〈W(t),W(t)〉 +$eϑr ln r, 0 ≤ t ≤ ϑr. (3.11)

Combining Eq (3.10) with Eq (3.11), we obtain

et ln M(t) − ln M(0) ≤
∫ t

0
es

[
ln M(s) + βcA(s) − aM(s) −

1
2
σ2

1

]
ds

+ 0.5e−ϑrσ2
1

∫ t

0
e2sds +$eϑr ln r

=

∫ t

0
es

[
ln M(s) + βcA(s) − aM(s) −

1
2
σ2

1 + 0.5es−ϑrσ2
1

]
ds

+$eϑr ln r.

(3.12)

Since ln M(t) + βcA(t) − aM(t) − 1
2σ

2
1 + 0.5et−ϑrσ2

1 is bounded, for any 0 ≤ s ≤ ϑr, there is a constant
C independent of r such that

ln M(t) + βcA(t) − aM(t) −
1
2
σ2

1 + 0.5et−ϑrσ2
1 ≤ C. (3.13)
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Substituting Eq (3.13) into Eq (3.12), we obtain

et ln M(t) − ln M(0) ≤ C[et − 1] +$eϑr ln r. (3.14)

Dividing the both sides of Eq (3.14) by et leads to

ln M(t) ≤ e−t ln M(0) + C[1 − e−t] +$e−teϑr ln r.

Consequently, if ϑ(r − 1) ≤ t ≤ ϑr and r ≥ r0(ζ), then one can observe that

t−1 ln M(t) ≤ e−tt−1 ln M(0) + Ct−1[1 − e−t] +$e−ϑ(r−1)eϑrt−1 ln r,

which is the needed assertion Eq (3.9) by letting r → +∞.
Now let us testify lim supt→+∞ M(t) > 0 a.s. If not, then we denote S = {lim supt→+∞ M(t) = 0},

P(S ) > 0. In light of Eq (3.4), one has

1
t

ln
M(t)
M(0)

= λ0 −
ac
f ht

∫ t

0
M2(s)ds −

µc
f ht

∫ t

0

kM(s)
k + M(s)

ds −
cϕ1(t)

f t

−
1
t

∫ t

0

(
a −

µ

k + M(s)

)
M(s)ds +

1
t

∫ t

0
σ1dB1(s).

For all ζ ∈ S , we have limt→+∞ M(t, ζ) = 0, and the law of large numbers for local martingales
indicates that limt→+∞

1
t

∫ t

0
σ1dB1(s) = 0. Thus we have lim supt→+∞ t−1 ln M(t, ζ) = λ0 > 0. By Eq

(3.9), a contradiction arises. �

4. Ergodic stationary distribution (ESD) of model (1.3)

Now we dissect the stationary distribution for model (1.3) by taking advantage of Has’minskii’s
results [28]. Denote by X(t) a time-homogeneous Markov process in Rn which obeys

dX(t) = b(X)dt +

m∑
r=1

σr(X)dBr(t).

Let I(x) = (ai j(x)) be the diffusion matrix of X(t), where

ai j(x) =

m∑
r=1

σi
r(x)σ j

r(x).

For any C2- function V1(x), define

LV1 =

l∑
i=1

bi(x)
∂V1(x)
∂xi

+
1
2

l∑
i, j=1

ai j(x)
∂2V1(x)
∂xi∂x j

.

Lemma 4.1. If there is a bounded domain U ⊂ Rd with regular boundary such that ( [28])

• there is a positive number Λ which obeys

2∑
i, j=1

ai j(x)ξiξ j ≥ Λ|ξ|2, x ∈ U, ξ = (ξ1, ξ2) ∈ Rd,
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• there is a nonnegative C2- function V2 such that LV2(x) < −1 for any x ∈ Rd \ U,

then X(t) admits a unique ESD.

Define

R0 =
Aup fβc

(µ + 1
2σ

2
1)( f + 1

2σ
2
2)
.

Theorem 4.1. If λ0 > 0 and σ2
2 is sufficiently small such that

σ2
2 < min

{ 2λ0 f
µ + 1

2σ
2
1

, hβ f
}
,

then model (1.3) admits a unique ESD.

Proof. Considering the function V3(M, A) = −m1 ln M − m2 ln A, and m1, m2 are positive constants to
be chosen later, we obtain

LV3(M, A) = −
m1

M

(
βcAM − aM2 −

µk
k + M

M
)
−

m2

A

[
(Aup − A) f −

c
h

AM
]

+
m1

2
σ2

1 +
m2

2
σ2

2

= −m1βcA + am1M +
µkm1

k + M
−

Aup

A
m2 f + m2 f +

c
h

m2M +
m1

2
σ2

1 +
m2

2
σ2

2

≤ −m1βcA −
Aup

A
m2 f + am1M + µm1 + m2 f +

c
h

m2M +
m1

2
σ2

1 +
m2

2
σ2

2

≤ −2
√

m1m2βcAup f + (µ + σ2
1/2)m1 + ( f + σ2

2/2)m2 +

(
am1 +

c
h

m2

)
M

= −2

√
βcAup f

(µ + σ2
1/2)( f + σ2

2/2)
+ 2 +

(
am1 +

c
h

m2

)
M

= −2
(√ βcAup f

(µ + σ2
1/2)( f + σ2

2/2)
− 1

)
+

(
am1 +

c
h

m2

)
M

= −2
( √

R0 − 1
)

+

(
am1 +

c
h

m2

)
M

= −D1 +

(
am1 +

c
h

m2

)
M,

where

m1 =
1

µ + σ2
1/2

, m2 =
1

f + σ2
2/2

, D1 = 2
( √

R0 − 1
)
> 0.

Define

V4(M, A) =
1
2

(
M + hβA

)2

− ln A,
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we have

L
(1
2

(M + hβA)2
)

= (M + hβA)
(
βcAM − aM2 −

µk
k + M

M + hβ
[
(Aup − A) f −

c
h

AM
])

+
σ2

1

2
M2 +

hβ
2
σ2

2A2

≤ (M + hβA)(−aM2 + hβAup f − hβ f A) +
σ2

1

2
M2 +

hβ
2
σ2

2A2

= −aM3 + hβAup f M − hβ f AM − ahβAM2 + h2β2Aup f A − h2β2 f A2

+
σ2

1

2
M2 +

hβ
2
σ2

2A2

≤ −aM3 + hβAup f M + h2β2Aup f A − h2β2 f A2 +
σ2

1

2
M2 +

hβ
2
σ2

2A2

≤ −
a
2

M3 −
h2β2 f

2
A2 + D2.

Notice that h2β2 f − hβσ2
2 > 0, hence

D2 = sup
(M,A)∈R2

+

{
−

a
2

M3 +
σ2

1

2
M2 + hβAup f M −

h2β2 f
2

A2 +
hβ
2
σ2

2A2 + h2β2Aup f A
}
< +∞.

In addition,

L(− ln A) = −
1
A

[
(Aup − A) f −

c
h

AM
]

+
σ2

2

2

= −
Aup f

A
+ f +

c
h

M +
σ2

2

2
= −

Aup f
A

+
c
h

M + D3,

where D3 = f + σ2
2/2.

Therefore,

LV4(M, A) = L
(1
2

(M + hβA)2
)

+ L(− ln A)

≤ −
a
2

M3 −
h2β2 f

2
A2 −

Aup f
A

+
c
h

M + D2 + D3.

Now define V5(M, A) = λV3(M, A) + V4(M, A), where λ > 0 is sufficiently large. Hence,

lim inf
q1→+∞,(M,A)∈R2

+\Uq1

V5(M, A) = +∞,

where Uq1 = ( 1
q1
, q1) × ( 1

q1
, q1), q1 is a sufficiently large number. Notice that V5(M, A) is continuous.

Thus V5(M, A) has a minimum point (M0, A0) in R2
+. Define

V6(M, A) = V5(M, A) − V5(M0, A0).

Thus, we can get

LV6(M, A) ≤ λ
(
− D1 +

(
am1 +

c
h

m2

)
M

)
+

(
−

a
2

M3 −
h2β2 f

2
A2 −

Aup f
A

+
c
h

M + D2 + D3

)
≤ −λD1 −

a
2

M3 −
h2β2 f

2
A2 −

Aup f
A

+

[
λ
(
am1 +

c
h

m2

)
+

c
h

]
M + D2 + D3.
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Define a bounded close set:
U = {ε ≤ M ≤ 1/ε, ε ≤ A ≤ 1/ε},

where 0 < ε < 1 is sufficient small. We can split R2
+ \ U into the following four ranges,

U1 = {M < ε}, U2 = {A < ε}, U3 = {M > 1/ε}, U4 = {A > 1/ε}.

Case 1. If (M, A) ∈ U1, then we have

LV6(M, A) ≤ −λD1 −
h2β2 f

2
A2 −

a
2

M3 −
Aup f

A
+

[
λ
(
am1 +

c
h

m2

)
+

c
h

]
ε + D2 + D3

≤ −λD1 +

[
λ
(
am1 +

c
h

m2

)
+

c
h

]
ε + D2 + D3.

(4.1)

Case 2. If (M, A) ∈ U2, then one can see that

LV6(M, A) ≤ −
Aup f
ε
−

a
2

M3 +

[
λ
(
am1 +

c
h

m2

)
+

c
h

]
M + D2 + D3

≤ −
Aup f
ε

+ F1 + D2 + D3,
(4.2)

where
F1 = sup

M∈R+

{
−

a
2

M3 +

[
λ
(
am1 +

c
h

m2

)
+

c
h

]
M

}
.

Case 3. If (M, A) ∈ U3, then one has

LV6(M, A) ≤ −
a
4

M3 −
a
4

M3 +

[
λ
(
am1 +

c
h

m2

)
+

c
h

]
M + D2 + D3

≤ −
a

4ε3 + F2 + D2 + D3,
(4.3)

where
F2 = sup

M∈R+

{
−

a
4

M3 +

[
λ
(
am1 +

c
h

m2

)
+

c
h

]
M

}
.

Case 4. If (M, A) ∈ U4, then we obtain

LV6(M, A) ≤ −
h2β2 f
2ε2 −

a
2

M3 +

[
λ
(
am1 +

c
h

m2

)
+

c
h

]
M + D2 + D3

≤ −
h2β2 f
2ε2 + F1 + D2 + D3.

(4.4)

In R2
+ \ U, let ε be sufficiently small which satisfies

−λD1 +

[
λ
(
am1 +

c
h

m2

)
+

c
h

]
ε + D2 + D3 < −1,

−
Aup f
ε

+ F1 + D2 + D3 < −1,

−
a

4ε3 + F2 + D2 + D3 < −1,

−
h2β2 f
2ε2 + F1 + D2 + D3 < −1.

(4.5)
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It follows from Eqs (4.1)–(4.5) that

sup
(M,A)∈R2

+\U
LV6(M, A) < −1. (4.6)

The diffusion matrix of model (1.3) has the form

I(M, A) =

(
σ2

1M2 0
0 σ2

2A2

)
.

Choosing Λ = min(M,A)∈Uq{σ
2
1M2, σ2

2A2} > 0, we have

2∑
i, j=1

ai j(M, A)ξiξ j = σ2
1M2ξ2

1 + σ2
2A2ξ2

2 ≥ Λ|ξ|2, ξ = (ξ1, ξ2) ∈ R2
+. (4.7)

According to Eqs (4.6), (4.7) and Lemma 4.1 that we complete the proof. �

5. Existence of T-periodic solution of model (1.4)

Consider the stochastic periodic equation

dx(t) = v(t, x(t))dt + g(t, x(t))dB(t), (5.1)

where v(t) and g(t) are T-periodic functions in t.

Lemma 5.1. If there exists a function V7(t, x) ∈ C2 which is T-periodic and satisfies the conditions
( [28])

• inf |x|>Θ V7(t, x)→ ∞ as Θ→ ∞,
• LV7(t, x) ≤ −1 on the outside of some compact set,

then there exists a periodic solution to Eq (5.1).

Define

R1 =
〈(Aup fβc)

1
2 〉T

(〈µ + σ2
1/2〉T〈 f + σ2

2/2〉T)
1
2

.

Define 〈g〉T =
1
T

∫ T

0
g(s)ds, where g(t) ∈ [0,∞) is an integrable function.

Define gu = maxt∈[0,+∞) g(t), gl = mint∈[0,+∞) g(t), where g(t) ∈ [0,+∞) is a bounded function.

Theorem 5.1. If R1 > 1 and (σ2
2)u < hβ f l, then model (1.4) admits a positive T-periodic solution.

Proof. Define
V8(t,M, A) = −b1 ln M − b2 ln A,
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and b1, b2 are positive constants to be chosen later. By Itô’s formula, we have

LV8(t,M, A) = −
b1

M

(
βc(t)AM − a(t)M2 −

µ(t)k(t)
k(t) + M

M
)
−

b2

A

[
(Aup(t) − A) f (t) −

c(t)
h

AM
]

+
σ2

1(t)
2

b1 +
σ2

2(t)
2

b2

= −b1βc(t)A + a(t)b1M +
µ(t)k(t)b1

k(t) + M
−

Aup(t)
A

b2 f (t) + b2 f (t) +
c(t)
h

b2M

+
σ2

1(t)
2

b1 +
σ2

2(t)
2

b2

≤ −b1βc(t)A −
Aup(t)

A
b2 f (t) +

(
µ(t) +

σ2
1(t)
2

)
b1 +

(
f (t) +

σ2
2(t)
2

)
b2

+

(
a(t)b1 +

c(t)
h

b2

)
M

≤ −2
√

b1b2βc(t)Aup(t) f (t) +

(
µ(t) +

σ2
1(t)
2

)
b1 +

(
f (t) +

σ2
2(t)
2

)
b2

+

(
aub1 +

cu

h
b2

)
M

= R(t) +

(
aub1 +

cu

hl b2

)
M,

(5.2)

where

R(t) = −2
√

b1b2βc(t)Aup(t) f (t) +

(
µ(t) +

σ2
1(t)
2

)
b1 +

(
f (t) +

σ2
2(t)
2

)
b2,

b1 =
1

〈µ + σ2
1/2〉T

, b2 =
1

〈 f + σ2
2/2〉T

.

Let ω̄(t) be the solution of the following equation

ω̄′(t) = 〈R(t)〉T − R(t). (5.3)

Then ω̄(t) is a T-periodic function. On the basis of Eqs (5.2) and (5.3), we can obtain

L(V8 + ω̄(t)) ≤ 〈R(t)〉T +

(
aub1 +

cu

h
b2

)
M

= −2
〈(Aup fβc)

1
2 〉T

(〈µ + σ2
1/2〉T〈 f + σ2

2/2〉T)
1
2

+ 2 +

(
aub1 +

cu

h
b2

)
M

= −2(R1 − 1) +

(
aub1 +

cu

h
b2

)
M

= −α1 +

(
aub1 +

cu

h
b2

)
M,

(5.4)

where α1 = 2(R1 − 1) > 0.
Define

V9(t,M, A) =
1
2

(M + hβA)2 − ln A.
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Applying Itô’s formula, one has

L
(1
2

(M + hβA)2
)

= (M + hβA)
(
βc(t)AM − a(t)M2 −

µ(t)k(t)
k(t) + M

M

+ hβ
[
(Aup(t) − A) f (t) −

c(t)
h

AM
])

+
σ2

1(t)
2

M2 +
hβ
2
σ2

2(t)A2

≤ (M + hβA)
(
− a(t)M2 + hβAup(t) f (t) − hβ f (t)A

)
+
σ2

1(t)
2

M2 +
hβ
2
σ2

2(t)A2

= −a(t)M3 + hβAup(t) f (t)M − hβ f (t)AM − a(t)hβAM2

+ h2β2Aup(t) f (t)A − h2β2 f (t)A2 +
σ2

1(t)
2

M2 +
hβ
2
σ2

2(t)A2

≤ −a(t)M3 + hβAup(t) f (t)M + h2β2Aup(t) f (t)A

− h2β2 f (t)A2 +
σ2

1(t)
2

M2 +
hβ
2
σ2

2(t)A2

≤ −
al

2
M3 −

h2β2 f l

2
A2 + α2,

(5.5)

where

α2 = sup
(M,A)∈R2

+

{
−

al

2
M3 +

(σ2
1)u

2
M2 + hβAu

up f uM −
h2β2 f l

2
A2

+
hβ
2

(σ2
2)uA2 + h2β2Au

up f uA
}
< +∞.

Similarly, one deduces

L(− ln A) = −
1
A

[
(Aup(t) − A) f (t) −

c(t)
h

AM
]

+
1
2
σ2

2(t)

= −
Aup(t)

A
f (t) + f (t) +

c(t)
h

M +
1
2
σ2

2(t)

≤ −
Al

up f l

A
+

cu

h
M + f u +

1
2

(σ2
2)u.

(5.6)

According to Eqs (5.5) and (5.6) one can get

LV9(t,M, A) ≤ −
h2β2 f l

2
A2 −

al

2
M3 −

Al
up f l

A
+

cu

h
M + α2 + f u +

(σ2
2)u

2
. (5.7)

Define
V10(t,M, A) = H(V8 + ω̄) + V9,

where H is positive constant. Clearly,

lim inf
q2→+∞, (M,A)∈R2

+\Uq2

V10(t,M, A)→ +∞,

where Uq2 = ( 1
q2
, q2) × ( 1

q2
, q2), q2 is a sufficiently large number. Combining with Eqs (5.4) and (5.7),
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we have

LV10 ≤ −Hα1 +

(
aub1 +

cu

h
b2

)
HM −

h2β2 f l

2
A2 −

al

2
M3 −

Al
up f l

A
+

cu

h
M

+ α2 + f u +
(σ2

2)u

2

= −Hα1 −
h2β2 f l

2
A2 −

al

2
M3 −

Al
up f l

A
+

[
H

(
aub1 +

cu

h
b2

)
+

cu

h

]
M

+ α2 + f u +
(σ2

2)u

2
.

Define a bounded close set:

K = {(M, A) ∈ R2
+ : ε ≤ M ≤ 1/ε, ε ≤ A ≤ 1/ε},

where 0 < ε < 1 is a sufficient small number. We divide R2
+ \ K into the following four ranges

K1 = {M < ε}, K2 = {A < ε}, K3 = {M > 1/ε}, K4 = {A > 1/ε}.

Case 1’. If (M, A) ∈ K1, then we get

LV10(t,M, A) ≤ −Hα1 −
h2β2 f l

2
A2 −

al

2
M3 −

Al
up f l

A
+

[
H

(
aub1 +

cu

h
b2

)
+

cu

h

]
ε

+ α2 + f u + (σ2
2)u/2

≤ −Hα1 +

[
H

(
aub1 +

cu

h
b2

)
+

cu

h

]
ε + α2 + f u + (σ2

2)u/2.

(5.8)

Case 2’. If (M, A) ∈ K2, then we have

LV10(t,M, A) ≤ −
Al

up f l

ε
−

al

2
M3 +

[
H

(
aub1 +

cu

h
b2

)
+

cu

h

]
M + α2 + f u + (σ2

2)u/2

≤ −
Al

up f l

ε
+ J1 + α2 + f u + (σ2

2)u/2,
(5.9)

where

J1 = sup
M∈R+

{
−

al

2
M3 +

[
H

(
aub1 +

cu

h
b2

)
+

cu

h

]
M

}
.

Case 3’. If (M, A) ∈ K3, then we derive

LV10(t,M, A) ≤ −
al

4
M3 −

al

4
M3 +

[
H

(
aub1 +

cu

h
b2

)
+

cu

h

]
M + α2 + f u + (σ2

2)u/2

≤ −
al

4ε3 + J2 + α2 + f u + (σ2
2)u/2,

(5.10)

where

J2 = sup
M∈R+

{
−

al

4
M3 +

[
H

(
aub1 +

cu

h
b2

)
+

cu

h

]
M

}
.

Case 4’. If (M, A) ∈ K4, then one has

LV10(t,M, A) ≤ −
h2β2 f l

2ε2 −
al

2
M3 +

[
H

(
aub1 +

cu

h
b2

)
+

cu

h

]
M + α2 + f u + (σ2

2)u/2

≤ −
h2β2 f l

2ε2 + J1 + α2 + f u + (σ2
2)u/2.

(5.11)
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In the set R2
+ \ K , we choose ε sufficiently small such that

− Hα1 +

[
H

(
aub1 +

cu

h
b2

)
+

cu

h

]
ε + α2 + f u + (σ2

2)u/2 < −1, (5.12)

−
Al

up f l

ε
+ J1 + α2 + f u + (σ2

2)u/2 < −1, (5.13)

−
al

4ε3 + J2 + α2 + f u + (σ2
2)u/2 < −1, (5.14)

−
h2β2 f l

2ε2 + J1 + α2 + f u + (σ2
2)u/2 < −1. (5.15)

It then follows from Eqs (5.8)–(5.15) that LV10(t,M, A) < −1 for all (M, A) ∈ R2
+ \ K . �

6. Discussion and simulations

In this section, we take advantage of some real data (see Table 1) and the Euler-Maruyama method
[34] to illustrate the above results. For model (1.3), we pay attention to the discretization equation:



Mn+1 = Mn +

[
βcAnMn − aM2

n −
µk

k + Mn
Mn

]
∆t + σ1Mnζ1n

√
∆t

+
1
2
σ2

1M2
n(ζ2

1n − 1)∆t,

An+1 = An +

[
(Aup − An) f − c

h AnMn

]
∆t + σ2Anζ2n

√
∆t

+
1
2
σ2

2A2
n(ζ2

2n − 1)∆t,

where ζ1n, ζ2n mean independent Gaussian random variable.

Table 1. Parameter values used in the simulation.

Symbol Value Unit Source
a 0.01 g/g/h Estimated
f 0.4 m3/m3/h Estimated
µ 0.015 g/g/h Estimated
Aup 1 g/m3 [29]
h 0.1 m [2, 30]
c 0.1 m3/g/h [31, 32]
β 0.2 g/g [33]
k 150 g/m2 [5]
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Figure 1. (a) The mussel species of model (1.3) dies out; (b) the mussel species of
model (1.3) is nonpersistent in the mean; (c) the mussel species of model (1.3) is weakly
persistent.

From Theorems 3.1–3.3, one can find out that under the assumption a > µ/k, λ0 is sufficient
conditions determining the persistence and extinction of the mussel species. More precisely, under the
assumption a > µ/k, if λ0 < 0, then the mussel species dies out; if λ0 = 0, then the mussel species is
nonpersistent in the mean. If λ0 > 0, then the mussel species is weakly persistent. Note that
λ0 = βcAup − µ −

1
2σ

2
1, which suggests that white noise can greatly influence the survival of mussel:

when the intensity of the noise is large enough, it could make mussel become extinct.
Theorem 4.1 suggests that if λ0 > 0 and σ2

2 is sufficiently small such that

σ2
2 < min

{ 2λ0 f
µ + 1

2σ
2
1

, hβ f
}
,

then model (1.3) possesses a unique ESD on R2
+. This ESD can be used to estimate the outbreak

possibility of mussel.
Figure 1(a)–(c) characterize the persistence and extinction of the mussel species in model (1.3) with

different σ1. We choose σ2 = 0.3, initial value M(0) = 0.1 and A(0) = 0.12. Figure 1(a) is with
σ1 = 0.3, which reflects that the mussel species dies out with probability one; Figure 1(b) is with
σ1 = 0.1, which suggests that the mussel species is nonpersistent in the mean; Figure 1(c) is with
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σ1 = 0.01, which shows that the mussel species is weakly persistent. Comparing Figure 1(c) with
Figure 1(a), one can observe that with the increasing value of σ1, the mussel species tends to go to
extinction. In other words, large noise could lead to the extinction of mussel.

Figure 2 plots the probability density function (PDF) of the stationary distribution of model (1.3)
with σ1 = 0.005 and σ2 = 0.0048.

For model (1.4), we focus on the following discretization equation:

Mn+1 = Mn +

[
βc(n ∆t)AnMn − a(n ∆t)M2

n −
µ(n ∆t)k(n ∆t)
k(n ∆t) + Mn

Mn

]
∆t

+ σ1(n ∆t)Mnζ1n

√
∆t +

1
2
σ2

1(n ∆t)Mn(ζ2
1n − 1)∆t,

An+1 = An +

[
(Au p(n ∆t) − An) f (n ∆t) −

c(n ∆t)
h

AnMn

]
∆t

+ σ2(n ∆t)Anζ2n

√
∆t +

1
2
σ2

2(n ∆t)An(ζ2
2n − 1)∆t,

where ζ1n, ζ2n mean independent Gaussian random variable.
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Figure 2. Probability density function of the stationary distribution of model (1.3).

Theorem 5.1 provides sufficient conditions (i.e., R1 > 1 and (σ2
2)u < hβ f l) under which model (1.4)

admits a positive periodic solution. This offers some insightful understanding on how environmental
fluctuations affect the survival of mussel and algae.

The initial values M(0) = 0.1 and A(0) = 0.12 are kept the same as in Fig.1, and we choose β = 0.2,
h = 1, Aup(t) = 10 + 0.1 sin(πt), a(t) = 0.2 + 0.1 sin(πt), f (t) = 1 + 0.1 sin(πt), c(t) = 0.5 + 0.1 sin(πt),
µ(t) = 0.1 + 0.1 sin(πt), k(t) = 10 + 0.1 sin(πt), σ1(t) = 0.03 + 0.01 sin(πt), σ2(t) = 0.04 + 0.01 sin(πt).
It follows from Theorem 5.1 that model (1.4) has a T-periodic solution, see Figsure 3(a),(c). Moreover,
Figsure 3(a),(b) show that M(t) and A(t) fluctuate periodically, that is, mussel and algae will not die
out. In particular, the effect of environmental noises can be easily found by comparing Figsure 3(a),(c)
with Figsure 3(b),(d).

7. Conclusions

Understanding the effect of random perturbations on the evolution of the mussel is useful for
managing this species. This paper proposed two stochastic mussel-algae models (one is autonomous,
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and the other is non-autonomous) to test the effect of environmental fluctuations on the evolution of
mussel. For the autonomous model, the critical value between extinction and weak persistence was
obtained. In addition, sufficient conditions for the existence of an ESD were established. For the
non-autonomous model, the existence of a positive periodic solution was examined. Some vital
impacts of environmental fluctuations on the evolution of mussel were uncovered.
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Figure 3. (a) Periodic solution of model (1.4); (b) periodic solution of model (1.4) with
σ1(t) = σ2(t) ≡ 0; (c) the phase portrait of (a); (d) the phase portrait of (b).

In comparison with the existing papers, this research has the following contributions:

• Our models consider the environmental fluctuations which are more reasonable. Actually, to the
best of our knowledge, this research is the first attempt to dissect the stochastic mussel-algae
models.
• We obtain the critical value between extinction and weak persistence for the mussel, and uncover

that environmental fluctuations can significantly affect the extinction/persistence of the mussel.
• We give some conditions under which model (1.3) has an ESD. This ESD is useful to estimate

the outbreak probability of the mussel.
• We provide sufficient conditions for existence of a positive periodic solution of model (1.4). This

positive periodic solution is helpful for the understanding how environmental fluctuations affects
the survival of mussel and algae.
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Some studies on mussel-algal models are worth further investigations. Actually, Theorem 3.1 and
Theorem 3.2 have an assumption a > µ/k, what happens when a < µ/k is still unclear. In addition,
Theorem 4.1 testifies that if λ0 > 0 and

σ2
2 < min

{ 2λ0 f
µ + 1

2σ
2
1

, hβ f
}
,

then model (1.3) possesses a unique ESD on R2
+. It is interesting to relax the restriction on σ2

2. Finally,
one may put forward some more realistic and meaningful models, such as considering the effects of
Lévy jump [35, 36], impulsive perturbations [37, 38], time delay [39, 40] or fractional order [41, 42].
We will leave these for future works.
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