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Abstract: The Far North Region of Cameroon, a high risk cholera endemic region, has been expe-
riencing serious and recurrent cholera outbreaks in recent years. Cholera outbreaks in this region
are associated with cultural practices (traditional and religious beliefs). In this paper, we introduce a
mathematical model of the influence of cultural practices on the dynamics of cholera in the Far North
Region. Our model is an SEIR type model with a pathogen class and multiple susceptible classes
based on traditional and religious beliefs. Using daily reported cholera cases from three health districts
(Kaélé, Kar Hay and Moutourwa) in the Far North Region from June 25, 2019 to August 16, 2019,
we estimate parameter values of our model and use Akaike information criterion (AIC) to demonstrate
that our model gives a good fit for our data on cholera cases. We use sensitivity analysis to study the
impact of each model parameter on the threshold parameter (control reproduction number), R., and the
number of model predicted cholera cases. Finally, we investigate the effect of cultural practices on the
number of cholera cases in the region.
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1. Introduction

According to the World Health Organization (WHO), cholera is an acute intestinal infection caused
by ingestion of food or water contaminated with the bacterium Vibrio cholerae [1]. In many parts of the
world, cholera remains a significant threat to public health [2]. It continues to devastate impoverished
populations with limited access to medication, clean water and proper sanitation amenities [3]. An-
nually, about 1.3—4.0 million cholera cases and 21,000-143,000 cholera-induced deaths are reported
worldwide [1,4]. In recent years, there has been several reports of major cholera outbreaks. For exam-
ple, in Yemen from 2016-2017 cholera outbreak led to more than one million cases. Major outbreaks
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were also reported in Haiti (2010-2012), Sierra Leone (2012), Ghana (2011), Nigeria (2010), Vietnam
(2009), Zimbabwe (2008), and India (2007). Cameroon, a cholera endemic African country experi-
enced large cholera outbreaks in 1991, 1996, 1998, 2004, 2010 and 2011 [5]. In 2017, 1,227,391 cases
and 5654 cholera-related deaths were reported from 34 countries [6].

In recent years, the Far North Region of Cameroon has been experiencing serious recurrent cholera
outbreaks, and these outbreaks are linked to cultural practices (traditional and religious beliefs) of the
people of this region. The impact of traditional and religious practices on the spread of infectious
diseases is a known fact in the literature. For example, in 2015, A. Manguvo and B. Mafuvadze in their
study demonstrated that the transmission of Ebola in West Africa is linked to traditional and religious
practices [7]. In 2017, Ngwa et al. [8] carried out a field study that demonstrate that cultural practices in
the Far North region influence cholera transmission. The high cholera attack rate in mountainous areas
was attributed to cultural practices such as mountain burial. They also noted that many people in the
Far North had limited scientific knowledge about the cholera disease and its transmission. Rich cultural
practices are common in villages and urban areas of the Far North Region of Cameroon. For example,
the tradition of communal eating from the same plate and drinking from the same cup is common
place [9]. In addition to cultural practices, other factors that contribute to cholera cases include the
lack of clean drinking water and poor health facilities.

Transmission of cholera can be indirect, from a water source containing the bacterium to suscepti-
ble humans, or direct, from infectious humans to susceptible humans. Several continuous-time math-
ematical ODE models have been developed in an effort to gain a deeper understanding of cholera
transmission dynamics, see for example [10-14] and the citations therein. In a recent paper, Che et
al. introduced a continuous-time ODE low-high risk structured cholera model and used it to capture
the annual reported cholera infections in Cameroon from 1987 to 2017 [15]. Furthermore, using the
fitted risk structured cholera model, they studied the impact of three intervention strategies (vaccina-
tion, treatment and improved sanitation) on the number of cholera infections in Cameroon from 2004
to 2022.

Education can also serve as a disease intervention strategy. For example, Al-arydah et al. in [16]
formulated and analyzed a mathematical model that includes two essential and affordable control mea-
sures: water chlorination and education. Cholera education includes advising people with symptoms to
seek medical care promptly, and improving sanitation and hygienic practices. In the Far North Region
of Cameroon, even with education, some people still maintain their traditional and religious practices
which are sometimes in conflict with proper cholera hygiene [8].

In this paper, we formulate a mathematical model of the influence of cultural practices on cholera
infections in the Far North Region of Cameroon. We compute the control reproduction number, R,
and using cumulative reported cholera cases for June 25—-August 16, 2019 from three health districts
(Kaé 1¢, Kar Hay and Moutourwa) in the Far North Region (from the Cameroon Ministry of Public
Health) [17], we estimate model parameter values and demonstrate that our model captures the dy-
namics of the cholera infections. Also, we use sensitivity analysis to study the impact of each model
parameter on the threshold parameter, R., and the number of model predicted cholera cases.

The rest of the paper is organized as follows: In Section 2, we formulate our mathematical model
with different susceptible classes representing cultural practices and with vaccination, and compute
the control reproduction number R.. Also, we study the reduced model without cultural practices and
vaccination. Using the cumulative cholera cases from three health districts in the Far North Region, we
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fit the parameters to the cumulative cases. Using the Akaike information criterion (AIC), we illustrate
that in the Far North Region of Cameroon, our model with cultural practices and with vaccination
(in comparison with the model without cultural practices and vaccination) gives a better fit for the
cumulative cholera cases. In Section 3, we use sensitivity analysis to study the impact of each model
parameter on the threshold parameter, R., and the number of model predicted cholera cases. The
discussion of our results and conclusions are presented in Section 4.

2. Model with culture

Here, we formulate a model that captures the influence of cultural practices on the dynamics of
cholera in the Far North Region, a high risk cholera region [15] of Cameroon. Our model is based on
the schematic diagram shown in Figure 1. The list of the model variables and their descriptions are in
Table 1, while the parameters are in Table 3. In our model, S (¢) represents susceptible humans, E(f)
represents exposed humans, /(7) represents infectious humans and R(?) represents recovered individuals
at time ¢t > 0. Also, B(r) represents the concentration of pathogen in the contaminated water at time .
To investigate the impact of cultural practices on the dynamics of cholera infections in the Far North
Region, we partition the susceptible human subpopulation S into three classes: those who are not
careful in practicing safe cholera intervention measures and not willing to be vaccinated as a result of
their cultural beliefs (S ,), those who are careful in practicing safe cholera intervention measures but
are not willing to be vaccinated (S .) and those who are careful in practicing safe cholera intervention
measures and are willing to be vaccinated (S ,), so that § = §, + S. + §,. The size of the total human
population at time ¢ is

Nt =S,@)+S.()+S,(0)+ E(@)+ 1) + R(®).

Attime ¢t > 0, individuals inthe §,, S and S, classes are recruited (by birth or immigration) at rates
af, aB, a,p respectively, where S is the constant recruitment rate and «, @, and @, are proportional
constants in (0,1), and @ + a. + @, = 1. Individuals in the §,, S. and §, classes become infected
either by contact with infectious individuals (direct transmission) at rates p,, p. and p,, respectively,
or through contact with contaminated water (indirect transmission) at rates ,, 8. and f3,, respectively.
We assume that individuals in the S, class have higher direct transmission rates than those in the S,
and S, classes, and that susceptible individuals in the S, class are vaccinated at rate v. The vacci-
nated individuals progress to the recovered class. Following contact with infectious individuals or
contaminated water, the susceptible individuals may become exposed to the infection. The time pe-
riod from cholera pathogen exposure to the development of symptoms (incubation period) is relatively
short, varying from about 12 hours to five days [1]. During the pathogen incubation period, exposed
individuals are not infectious and do not shed pathogen into the water compartment. However, sur-
viving exposed individuals may progress to the infectious class after the pathogen incubation period
at rate 0. Infectious individuals can contaminate the water by shedding the cholera pathogen at rate
&. An infectious individual can thus generate secondary infections in two ways: through direct contact
with susceptible individuals, and by first shedding the pathogen into the water compartment, where
it can eventually infect susceptible individuals. We assume that in Cameroon, the number of cholera
infections from cholera infected corpses is very small and can thus be ignored. Cholera is a treatable
disease. In Cameroon cholera is usually treated with oral rehydration salt solutions and antibiotics. In
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our model, infectious individuals can progress to the recovered class at rate y. However, recovered
individuals do not have permanent immunity, and can progress back to the S ,, S, and §, classes at rate
7(1 — (. + 1)), ™. and 77,. The parameter ¢ represents natural death rate in each component and u
is the disease-related death rate. For the pathogen compartment, the concentration of cholera pathogen
grows at rate g and decays at rate d. We let 4 = d — g. From the schematic diagram in Figure 1, with

@(t) = p (1) + B,B(1), oc(1) = pcI(1) + BB(1), ¢u(1) = pyI(1) + B,B(1),

we obtain the following cholera model with cultural practices and vaccination:

55,

S

X OTH

|
mULS’U mcch

| | QO}U/(]‘/)’Si

Figure 1. Flow diagram for the cholera model. Solid lines represent flow between com-
partments, the straight dashed line represents the infected class shedding pathogen into the
environment, and the curved dashed line represents the source of new infections resulting
from susceptible individuals interacting with the pathogen. All other arrows represent natu-
ral deaths, birth or growth of pathogen.
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dB
dt
with initial conditions:

S.0)>0,5.0)>0,5,0)>0,E(0)>0,1(0) > 0,R(0) > 0,B(0) > 0.

= &I- B,

Table 1. Model variables, descriptions and units.

Variable Description Unit

S Susceptible individuals individuals
S, Susceptible individuals who are not careful and not willing to be vaccinated individuals
Se Susceptible individuals who are careful but not willing to be vaccinated individuals
Sy Susceptible individuals who are careful and willing to be vaccinated individuals
E Exposed individuals individuals
1 Infectious individuals individuals
R Recovered individuals individuals
B Pathogen concentration in water environment cells ml™!
N Total population individuals

From the B equation, when there is no shedding and A < 0, we see that the pathogen maintains itself
in the environment. In our application, g — d = —0.33 [18]. Consequently, we assume throughout that
A=d-g>0.

To obtain the feasible region of solutions to model (2.1), we add the equations for S,, S, S,, E, I and
R to obtain

dN
— = B—-0N-ul
7 B H
and noting that I(¢) > 0 for all ¢, we get
dN
— < B-06N.
dt F
Thus
) B
limsupN(z) < 5= Ne.
>0
Consequently, the B equation implies
dB < éN,—AB
a - °° ’
and
Neo
limsup B(t) < 67 = B..
—o0

Assuming 0 < B(0) < B, we have B(f) < B, for all t > 0. Then the feasible region of solutions of
Model (2.1) is the compact set

Q={((55.5.ELRB)€R]0<S5,5.,S,,E.LR<Ny, 0<B<B.}.

From the structure of our system of differential equations, with non-negative initial conditions the
solutions can be shown to remain non-negative, and we have that the upper bounds in the feasible
region are valid [19].
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2.1. Model without culture and vaccination

When there are no cultural practices and no vaccination, and there is only one susceptible class S,
Model (2.1) reduces to the following system of ordinary differential equations:

ds

E = B—(ps] +BB)S +TR-06S
dE

il (os] + BsB)S — (0 +0)E
dl

= = CE-(+u+l (2.2)
dR - (5 +7)R

—_— = i T

dt Y

B _ &I — AB

dr ’

with initial conditions:
S0)=8S0>0,E0)=Ey,>0,I100)=1,>0,R(0) =Ry >0,B0) =By > 0.

In Model (2.1), p, and S, are the direct and indirect transmission rates, respectively. The disease-free
equilibrium (DFE) for model (2.2) is

Py =% E’I° R, B°) = (B8/6,0,0,0,0).

We use the next generation matrix (NGM) method to compute the basic reproduction number, Ry
[13,20-22]. Assuming that Ai in the B differential equation is not a new infection, then by the NGM
method,

Ry = R)+RS, (2.3)

where
! op sS 0

EoB,S°
Rl = d RB
T otoytute O

O Mo+ )y +u+o)

The basic reproduction number, Ry, is the sum of two terms, R) and R{, with R accounting for
the infections from the infectious class, and Rg accounting for the infections from the contaminated
environment. Consequently, if Ry < 1 then the DFE, Py, is locally asymptotically stable, there is
no cholera invasion, and the number of cholera infections eventually decrease. If Ry > 1, then P,
is unstable, cholera invades the Far North Region of Cameroon and the number of cholera infections
increases. We note that if R > 1 or R} > 1, then Ry > 1. Furthermore, it is possible for R} < 1,
RS < 1but Ry > 1.

To compute R, for the Far North Region of Cameroon, in Section 2.2, we use the daily reported
cholera cases from the three health districts (Kaélé, Kar Hay and Moutourwa) in the Far North Region
from June 25 to August 16, 2019, from the Cameroon Ministry of Public Health [17] to estimate the
remaining Model (2.2) parameter values. We will use model (2.2) to illustrate that in the Far North
Region of Cameroon, Ry > 1 and cholera is an endemic infectious disease.
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2.2. Model without culture and vaccination: parameter estimation

Some model parameters are known from the literature and some are estimated from our data. The
mean exposed period of cholera, 1/0, is between 12 hours to 5 days [1]. In our simulation 1/0 = 1.4
days, the estimated value for the median exposed period of toxigenic cholera [23]. For the immune
period, 1/7 = 10° days [24], for the net decay rate of pathogen, A = 0.33 day™', and for the shedding
rate &£ = 10 cells ml~!' day~! individuals~' [18]. For the mean infectious period, 1/y = 5 days [14,25].
For the cholera-related death rate, 4 = 5.5329 x 10~* per day [15]. We estimate the remaining model
parameters using the multistart algorithm with the fimincon function in the MATLAB optimization
toolbox. The fmincon function takes an iterative approach to solving an optimization problem that
includes our parameter values as unknowns with the scalar value to be minimized being the relative
error,

IY1I(m) - YI"||>

, (2.4)
Yzl

Relative error

where Y1(m) is the vector of the cumulative number of daily infections given by the Model (2.2) with
parameter vector m = (p,,[;), and YI* is the corresponding vector of the values of the cumulative
daily reported cholera cases [17]. At time ¢ > 0, the cumulative cases are computed by integrating the
term o E in the I-equation of Model (2.2), from O to ¢, using the MATLAB solver ODE45. The total
population of the three health districts in Far North Region as of August 17, 2019 is 89884 [17]. The
time period of our simulation is 53 days (June 25, 2019 to August 16, 2019,), so N(53) = 89884. Here,
t > 0 is in days and ¢ = O corresponds to June 25, 2019 and ¢ = 53 corresponds to August 16, 2019.

We let

B/0 = No = N(53) = 89884,

so that B = & x 89884. From Table 2, § = 21" day~!. Consequently, § = $74I07 gay-1  We
choose N(0) so that N(0) < N(53). So we let N(0) = 89548. For the other initial conditions, we choose
E©)=0,10)=1,R0) =0,5(0) = NO)—-(E) + I(0) + R(0)). Similar initial conditions give similar
results. As in [15], we take the total initial cholera bacteria concentration B(0) = 1000. Table 2 gives
estimates for the remaining Model (2.2) parameter values, p, = 2.1737 x 107 and 8, = 1.8694 x 1073,
Using these values and the known parameter values on Table 2, we obtain that R, = 1.2279 > 1.
That is, Model (2.1) predicts that cholera is endemic in the three health district Far North Region of

Cameroon.

In Figure 2, we illustrate the daily cumulative number of new cholera infections predicted by Model
(2.2) in comparison to the actual cumulative daily cholera reported cases in the three health districts
(Kaélé, Kar Hay and Moutourwa) of the Far North Region of Cameroon from June 25 to August
16, 2019. From Figure 2, we see that with relative error 0.1623, Model (2.2) appears to predict an
increasing trend in the cumulative number of daily cholera infections in the three health districts of the
Far North Region of Cameroon, as in the actual reported cumulative cholera cases per day.
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Table 2. Model without culture (Model (2.2)) parameters, descriptions and values.

Parameter Description Value Source

B constant recruitment rate %645“073 day~! estimated
1) natural death rate % day‘1 [26]

Ps direct transmission rate between S and 2.1737 x 107%day~! estimated
Bs indirect transmission rate between S and I 1.8694 x 1078 day~! estimated
1/t immune period 10° days [24]

/o mean exposed period 1.4 days [23]

1/y mean infectious period 5 days [14,25]

U cholera-related death rate 5.5329 x 10~ days [15]

£ shedding rate of pathogens by / 10 cells ml~'day~'individual™'  [18]

A net decay rate of pathogen 0.33 day™! [18]

Model without culture
120 T T . ;

#  Actual Cumulative Daily Data E
Predicted Cumulative Daily Data M*

100

BO

60

40

Cumulative Cholera Cases

20

0 10 20 30 40 50 80

Days
Figure 2. Scatterplot of the cumulative values of cholera disease cases in the three health
districts (Kaélé, Kar Hay and Moutourwa) of the Far North Region of Cameroon per day
for June 25 to August 16, 2019 from [17] plotted against simulation output using estimated
parameters.

2.3. Model with culture: DFE and R,

In order to compute the disease-free equilibrium (DFE) of the structured model with cultural prac-
tices, we introduce the following notation:

A = 0+my, C=1(1-m.+n,)), D=06+m.,+m.,
F = 6+me+v, J=0+1, K=0ap,
L = af, M=«apB, P=JF-1ny,
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Sy = Jmem. M —JImomg K —AJDM — AJm,, L
Sp

AJme,m,. + mg(me P + m.,Cv) + Am.,tn.v — ADP

Thus, the DFE of model (2.1) is

PC = (SiaSgaS€7ECa]CaRCaBC) = (SiaS57S$’050aRca0)a

where
S
s¢ = 2N
Sp
ge = K m M mesP + m.,Cv g
A Amg, AJm,, v
P M
st = (o2)si- 2L
Jmcv mCV
R = Is¢
J

As in the model without culture, using the next generation matrix (NGM) method, we compute R,
the control reproduction number. Assuming that Ai is not a new infection,

R, = R +RE (2.5)
where
; 0OST+pSc+puSy) and RE = o&BrS; +BSc+BuSTY)
T (C+0)y+u+06) C Ao+ +u+6)

Again, as in the Model without cultural practices, the control reproduction number, R,, is the sum of
two terms, R/ and RZ. R’ accounts for the infections from the infectious class, and R? accounts for the
infections from the contaminated environment.

In Section 2.4, we compute R, for the Far North Region of Cameroon using the daily reported
cholera cases from the three health districts (Kaélé, Kar Hay and Moutourwa) in the Far North Region
from June 25, 2019 to August 16, 2019 [17], and estimate the remaining parameter values of model
(2.1). Again, we will use model (2.1) to illustrate that in the Far North Region of Cameroon, R, < 1
and with vaccination, cholera can be eradicated. Moreover, we will use AIC to illustrate that model
(2.1) better captures the impact of cultural practices on the dynamics of cholera infections in the three
health districts (Kaélé, Kar Hay and Moutourwa) in the Far North Region, which is in agreement with
the results of the field work in [8].

2.4. Parameter Estimation

As in model (2.2), we estimate the remaining model parameters using the multistart algorithm with
the fimincon built-in function in the MATLAB optimization toolbox. In equation (2.4), YI(m) is the
vector of the cumulative number of daily infections given by model (2.1) with parameter vector m,
and YI* is the corresponding vector of the values of the cumulative daily reported cholera cases [17].
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Again, as in Model (2.2),at time ¢ > 0, the cumulative cases are computed by integrating the term o E
in the /-equation of Model (2.1), from O to ¢, using the MATLAB solver ODE45. Also, as in Model
(2.2) N(0) = 89548. For the other initial conditions, we choose the initial susceptible population so
that §,(0) > S§.(0) > S,(0). Consequently, we start with S.(0) = 4500, §,(0) = 2100 E0) = 0,
1(0) =1, R(0) =0, 5,(0) = NWO) - (S.(0)+ S ,(0) + I(0) + E(0) + R(0)). Similar initial conditions give
similar results. As in [15], we take the total initial cholera bacteria concentration B(0) = 1000.

In our simulations, to capture the fact that susceptible individuals in the S, class (who because of
their cultural beliefs are not careful in practicing safe cholera intervention measures and not willing to
be vaccinated) have higher direct transmission rates than those in the S . and §, classes, we let p. < p,
and p, < p,.

Table 3 gives estimates for the remaining parameter values of model (2.1). Using these parameter
values and equation (2.5), we estimate that R, = 0.0873 < 1. That is, model (2.1) predicts that with
vaccination, cholera can be eradicated in the three health district Far North Region of Cameroon. In
Figure 3, we illustrate the daily cumulative number of new cholera infections predicted by Model (2.1)
in comparison to the actual cumulative daily cholera reported cases in the three health districts (Kaélé,
Kar Hay and Moutourwa) of the Far North Region of Cameroon for June 25 to August 16, 2019.

Model with culture versus Data
140 T T T T

#  Actual Cumulative Daily Data
= Predicted Cumulative Daily Data

120

100

80

60

40

Cumulative Cholera Cases Per Day

20

0 10 20 30 40 50 60
Days

Figure 3. Scatterplot of the cumulative values of cholera disease cases in the three health
districts (Kaélé, Kar Hay and Moutourwa) of the Far North Region of Cameroon per day
for June 25 to August 16, 2019 from [17] plotted against simulation output using estimated
parameters. With the relative error 0.0676 and R, = 0.0873 < 1, model (2.1) is predicting
an increasing trend in the daily number of cumulative cholera infections, like in the observed
cumulative number of cholera infections.
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Table 3. Model with culture (Model (2.1)) parameters, descriptions and values.

Parameter Description Value Source

B constant recruitment rate % day~! day~! estimated
) natural death rate % day‘l [26]

Or direct transmission rate between S, and / 3.0043 x 10-8day~! estimated
Pec direct transmission rate between S . and / 2.9990 x 1078 day™! estimated
Oy direct transmission rate between S, and / 1.3225 x 107° day‘1 estimated
Br indirect transmission rate between S, and I 1.0023 x 107! day‘1 estimated
Be indirect transmission rate between S.and I 1.0002 x 10~'° day™! estimated
By indirect transmission rate between S, and I 1.0 x 1076 day~! estimated
1/7 immune period 10° days [24]

1/o mean exposed period 1.4 days [23]

1/y mean infectious period 5 days [14,25]
u cholera-related death rate 5.5329 x 107* days [15]

£ shedding rate of pathogens by I 10 cells ml~'day~'individual™'  [18]

A net decay rate of pathogen 0.33 day™! [18]

My, transition rate from S, to S, 0.1538day™! estimated
Mg transition rate from S, to S, 0.0001day! estimated
Mey transition rate from S, to S, 0.03 day‘l estimated
My transition rate from S, to S, 0.0001 day’1 estimated
¢ fraction of waning immunity fromRto S,  0.0523 estimated
s fraction of waning immunity fromRto S,  0.70004 estimated
a fraction of recruitment rate into S , 0.9546 estimated
a, fraction of recruitment rate into S . 0.0321 estimated
a, fraction of recruitment rate into S, 0.0133 estimated
Y vaccination rate of S, 0.1568 estimated

To compare our model without culture to the model with culture, in addition to their relative errors,
we compute correct Akaike information criterion (AIC),

S (YIG) - YI3))?

n

AIC = nlog + 2k,

where 7 is the number of days of the cholera infection, and for i = 1,...,n, YI"(i) is of the actual
cumulative number of daily reported cholera cases [17] and Y1(i) is the cumulative number of daily
infections given by our model, and k is the number of estimated parameters [27]. Table 4 summarizes
the relative and AIC values for the model without culture and the model with culture.

From Table 4, we see that in comparison to the Model without culture, our Model with culture gives
us a smaller relative error and AIC value.

From Figures 2 and 3, we see that as in the actual reported cumulative cholera cases, both models
without culture and with culture appear to predict an increasing trend in the cumulative number of
daily cholera infections in the three health districts of the Far North Region of Cameroon. However,
the model with culture (model (2.1)) gives us a better fit than the model without culture (model (2.2)),
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Table 4. Comparative model fit for the two models.

Model without culture Model with culture

n 53 53
k 2 16
Relative error 0.1623 0.0676
AIC 109.9247 97.6018

with a smaller relative error 0.0676 and smaller AIC=97.6018. Thus, our model (2.1) captures the
influence of cultural practices on the spread of cholera infections in the Far North Region as reported
in [8].

3. Sensitivity analysis and the effects of cultural practices on the spread of cAholera

In this section, we use sensitivity analysis to study the impact of each model parameter on the
threshold parameter, R., and the number of model predicted cholera cases. We also explore the effect
of cultural practices on the spread of cholera by generating contour plots of the basic reproduction
number (R.) with respect to two of the parameters in Table 3.

3.1. Relative Sensitivity Indices of R,
For a variable v and a parameter p, the relative sensitivity index to the parameter p is defined as

av p

v —

T = op v

This index gives the proportional rate of change of v as p changes [28]. We compute the relative

sensitivity indices for R, with respect to each of the parameters of Table 3. Most of the relative

sensitivity indices are complicated algebraic expressions with no obvious structure. As in [28], we

evaluate the relative sensitivity indices at the baseline parameter values given in Table 3. Table 5

summarizes our results, with the parameters ordered from the most sensitive 5 to the least sensitive

B,. From Table 5, T?" = +1.000. Thus, decreasing (or increasing) the most sensitive parameter [,

the constant recruitment rate, by 10% decreases (or increases) R. by 10.0000%. The least sensitive
parameter is 3,, the indirect transmission rate between the S, and I classes. Because

‘r§ =+2.7131 x 107°,

decreasing (or increasing) 8, by 10% decreases (or increases) R. by +2.7131 x 107°%.

3.2. Global sensitivity analysis

We perform a global sensitivity analysis for our model using Latin Hypercube Sampling (LHS) to
sample the parameter space and Partial Rank Correlation Coefficients (PRCC) to evaluate the sensitiv-
ity of the outcome variable, the total number of model predicted cholera cases, to uncertainty in the
input variables [29-31]. For parameter intervals, we chose to go 50% above and below the values in
Table 3. Uniform probability distributions were used for each parameter interval. From the recom-
mendation in [32], we take N > 4M/3 draws of the LHS design, where M is the number of input
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parameters and N is the number of LHS draws. In our case, M = 24 and N = 80. Table 6 gives the
PRCCs and the p-values for each model parameter while Figure 4 show p-values of the sensitivity of
the number of cholera cases to changes in parameters in Table 6 as computed by the Latin Hypercube
Sampling-Partial Rank Correlation Coeflicient (LHS-PRCC) index. Based on the p-values, we observe
that PRCC values for 8,, 0.5956; o, 0.8981; &, 0.5172; A, —0.9749 and v, 0.5769 are statistically sig-
nificant. The parameters £3,, o, £ and v show a significant positive correlation with the total number of
cholera cases while A shows a significant negative correlation with the total number of cholera cases.
This is in agreement with our model predictions.

Table 5. Sensitivity indices of R, with respect to the parameters of Model (2.1), evaluated at
the baseline parameter values given in Table 3.

Parameter Sensitivity Index

8 +1.0000

& +9.9805 x 107!
A —-9.9805 x 107!
B, +9.9788 x 107!
y ~9.9712 x 10"
% -9.9149 x 107!
0 —9.7684 x 107!
T +9.5790 x 107!
lo4 +9.5459 x 107!
a, +3.2084 x 1072
nv +2.2814 x 1072
a, +1.3321 x 1072
Mgy +8.8344 x 1073
U ~2.7585 x 107
00 +1.6370 x 107
Mg, +1.4683 x 1073
e +2.8175 x 10~
or +2.6835 x 1074
B +1.6544 x 1074
0 +4.3551 x 1075
o +3.4903 x 107
m,. -1.8273 x 107
Mg —-5.9587 x 1076
B +2.7131 x 1076
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Table 6. Model parameters, corresponding PRCC and corresponding p-values resulting from
the sensitivity analysis. Significant p-values (p < 0.01) are bold-faced.

Parameter PRCC  P-value

B Z0.1709 0.2037
5 0.07418  0.5837
or ~0.0469  0.7289
e ~0.0689 0.6101
o 0.0371  0.7839
B, ~0.0117 0.9311
B. ~0.0184 0.8920
B, 0.5956  0.0000
T ~0.0594  0.6607
o 0.8981  0.0000
y ~0.1973  0.1413
L 0.1574  0.2422
£ 0.5172  0.0000
2 ~0.9749  0.0000
My 0.1983  0.1392
Mes 0.0366  0.7867

Mgy 0.1186  0.3794
My, 0.1864 0.1649

e -0.2564  0.8499
ny -0.0269 0.8426
o -0.1351 0.3163
a; -0.0159 0.9061
a, —-0.0095 0.9438
v 0.5769  0.0000

3.3. Effects of Cultural Beliefs on cholera

In this section, we explore the effects of cultural practices on the spread of cholera by generating a
contour plot of the control reproduction number (R.) with respect to the two parameters, m.,; and m,,,
in Table 3.

A contour plot of the reproduction number, R, as a function of the transition rates m., (from S to
S,) and m,, (from S to §,) is depicted in Figure 5. Using the parameter values in Table 3, our contour
plot indicates that an increase in the transition rate of susceptible individuals from being careful in
practicing safe cholera intervention measures but unwilling to be vaccinated (S ) to those who are not
careful in practicing safe cholera intervention measures and not willing to be vaccinated (S,), and a
decrease in the transition rate of susceptible individuals from being careful in practicing safe cholera
intervention measures but unwilling to be vaccinated (S .) to those who are careful in practicing safe
cholera intervention measures and are willing to be vaccinated (S,) results in a control reproduction
number of R. = 0.09 < 1. Even though there seem to be an increase in the control reproduction
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number, R, is smaller than 0.1, which corroborates with our data.

Sensitivity of Number of Cholera Cases by PRCCs Index

PRCC

F =6V LA 6 )\mS(!J’nCSrnC\FnVCnC 7’}V & G{C aV v

-1

Figure 4. Sensitivity of the number of cholera cases to changes in parameters in Table 3

as computed by the Latin Hypercube Sampling-Partial Rank Correlation Coefficient (LHS-
PRCC) index.
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Figure 5. Contour plot of R, as a red function of m., and m,.,.
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4. Conclusions

We introduced a model for the dynamics of cholera in the Far North Region of Cameroon that cap-
tures cultural practices and vaccination of cholera in the Far North Region. Our model incorporates
direct (human-to-human) and indirect (contaminated water-to-human) infection pathways. We use our
model to capture the reported cholera cases in the three health districts (Kaélé, Kar Hay and Mou-
tourwa) of the Far North Region of Cameroon from June 25 to August 16, 2019. Using our model
parameters we obtain that the control reproduction number R, < 1, and our model with cultural prac-
tices and vaccination predicts that cholera can be eradicated. The AIC shows that our model with
cultural practices and vaccination appears to be a better fit to cumulative number of daily cholera in-
fections in the three health districts of the Far North Region of Cameroon. Consequently, we use model
(2.1) to study the effect of cultural practices on cholera cases [8].

We perform sensitivity analysis to determine the impact of each model parameter on the threshold
parameter, R, and on the total number of model predicted cholera cases in in the three health districts
(Kaélé, Kar Hay and Moutourwa) of the Far North Region of Cameroon for June 25 to August 16,
2019. For R., the most sensitive parameter is 8 (constant recruitment rate), and the least sensitive
parameter f3,, the indirect transmission rate between the S, and 7 classes. The statistically significant
parameters to the number of model predicted cholera cases are §,, o, &, A and v. The parameters 3,, o,
¢ and v show a significant positive correlation with the total number of cholera cases while A shows a
significant negative correlation with the total number of cholera cases. This is in agreement with our
model predictions.

A contour plot for the control reproduction number as a function of transition rates between different
compartments of susceptible individuals suggests that as humans transition from a class of susceptible
individuals who are careful in practicing safe cholera intervention measures but unwilling to be vacci-
nated (S .) to those who are not careful in practicing safe cholera intervention measures and not willing
to be vaccinated (S ,), the control reproduction number is below one. Thus, our work suggests that
in the Far North Region of Cameroon, while implementing intervention schemes such as education
and vaccination, public health officials should take into account cultural practices in the region. Since
some of the cultural practices stem from religious beliefs of the populace, public health officials should
consider working with local chiefs and religious priests when designing the intervention schemes for
the control of cholera in the region.

Our models do not take into account the impact of the cost of intervention strategies on the number
of cholera infections. In addition to demonstrating that cultural practices in the Far North region
influence cholera transmission, Ngwa et al. in [8] also noted that many people in the Far North had
limited scientific knowledge about the cholera disease and its transmission. As more data becomes
available, a study of a cholera model that captures education and cultural practices, and cost analysis
of intervention strategies in the Far North Region of Cameroon will be an interesting extension of this
work.
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