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Abstract: Industrial Cyber-Physical Systems (CPSs) require flexible and tolerant communication 
networks to overcome commonly occurring security problems and denial-of-service such as links 
failure and networks congestion that might be due to direct or indirect network attacks. In this work, 
we take advantage of Software-defined networking (SDN) as an important networking paradigm that 
provide real-time fault resilience since it is capable of global network visibility and programmability. 
We consider OpenFlow as an SDN protocol that enables interaction between the SDN controller and 
forwarding plane of network devices. We employ multiple machine learning algorithms to enhance 
the decision making in the SDN controller. Integrating machine learning with network resilience 
solutions can effectively address the challenge of predicting and classifying network traffic and thus, 
providing real-time network resilience and higher security level. The aim is to address network 
resilience by proposing an intelligent recommender system that recommends paths in real-time based 
on predicting link failures and network congestions. We use statistical data of the network such as 
link propagation delay, the number of packets/bytes received and transmitted by each OpenFlow 
switch on a specific port. Different state-of-art machine learning models has been implemented such 
as logistic regression, K-nearest neighbors, support vector machine, and decision tree to train these 
models in normal state, links failure and congestion conditions. The models are evaluated on the 
Mininet emulation testbed and provide accuracies ranging from around 91–99% on the test data. The 
machine learning model with the highest accuracy is utilized in the intelligent recommender system 
of the SDN controller which helps in selecting resilient paths to achieve a better security and 
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quality-of-service in the network. This real-time recommender system helps the controller to take 
reactive measures to improve network resilience and security by avoiding faulty paths during path 
discovery and establishment. 

Keywords: industrial cyber-physical systems; machine learning; software-defined networking; 
network security 

 

1. Introduction 

Cyber-physical system (CPS) is the latest generation of digital systems in which physical 
processes are networked with computer systems where algorithms monitor and control the physical 
processes.  In general, a full-blown CPS is a nexus network of interacting physical elements. 
Recently, Academia and industries have shown huge interest in this new research paradigm as it 
provides diversified advantages such as autonomy, functionality, reliability, and security [1,2]. The 
combination of CPS and Internet-of-Things (IoT) has an immense capability for supporting complex 
processes for directing and controlling industrial systems [3]. Thus, large industrial organizations 
including manufacturing, defense, energy, medical, and many others now adopt CPSs. Such 
organizations have rigid, overloaded infrastructures that are remaining from many years of 
preferential repair and poorly connections that introduce the poor Quality of Service (QoS) and 
reduces the possibility of other service integration leading to a low security level and possible attacks. 
Therefore, data protection and security as well as lack of prioritization by management among many 
others are the challenges and risks in the CPS related to industry 4.0. Among those providing 
network, resilience is a key challenge because better network resilience services also boost security 
by blocking attacks and guarantee excellent robustness. Improved network resilience solves a wide 
range of risks such as, poor resilient networks have RTT delay vary from microsecond to second 
when data size is increased. This is biggest pitfall for time critical application in e-health. 

Recently, Software-Defined Networking (SDN) acts as a considerable problem solver. Generally, 
it is a network architecture approach that separates the control plane from the data plane and adds 
more programmability at the centralized network controller side. The application layer consists of a 
network or a business application. The Control layer is considered as the brain of the network which 
contains a centralized network controller and routing decisions are taken by it. The Data plane 
contains cyber-physical components. Southbound APIs (usually OpenFlow) is interaction mediums 
between the network controller and various components of the cyber-physical system and northbound 
APIs are the link between the applications layer and network controller (refer to Figure 1). 
Software-defined networking reduces logistics efforts and introduces flexibility and orchestration 
with its global view of the overall network. It gives consistent network management which can be a 
part of other complex technology such as the cyber-physical system. Network visibility, optimized 
network device utilization, and service integration are some advantages of software-defined 
networking that facilitate the scope of improving network resilience. One possible way for improving 
network resilience is by implementing smart computer networks with the help of machine learning. 
As software-defined networking has a centralized network controller, machine learning algorithms 
can be applied in cyber-physical systems. With this, the network controller can take optimized traffic 
forwarding decisions and make adaptive routing policies depending upon the stats of the network 
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that improves network resilience. 

 

Figure 1. A generic conceptual model of the SDN architecture. 

Nowadays, smart IoT systems are involving in health sector at a big scale. Such infrastructure 
has legacy networks which are not resilient. Also in current pandemic, the traffic in e-health 
networks is increasing as more positive corona cases arrived. Such traffic creates congestion and 
sometimes fails the links of e-health networks. Thus, it is necessary to make e-health network more 
resilient towards this problem. In [4] introduces bunch of papers for reliable and secure e-health 
networks from that Pandey et al. [5] presents a technique for securing the e-health networks from 
counterfeit medicine using block chain. Khamparia et al. [6] detects and classify cervical cells using 
transfer learning. For high-end functionality with QoS assurance, Aujla et al. [7] presents integrating 
Cloud and Edge computing with SDN. This composite framework has three features: a) offloading 
scheme to support Edge-Cloud interplay, b) an SDN assisted virtualized flow management scheme, 
and c) a secure Lattice-based cryptosystem. A secured framework for SDN based edge computing in 
healthcare is introduced in [8]. The proposed framework has better edge collaboration and resource 
utilization that results low ligancy and higher throughput. Baktir et al. [9] introduces SDN based 
multi-tier computing and communication architecture. Based on type of health service and demand, 
the tasks are done externally behalf of end points. Meng et al. [10] presents security enforcement 
framework for data sharing system of healthcare based on SDN. In that they introduce SRM (service 
releasing model) that helps service provider for regulating the data services based on authorization of 
consumer. They also present getaway in the framework that contains information flow model (IFM) 
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and IFM-based virtual machine access control algorithm. 
In this paper, we build an intelligent recommender system that recommends routing paths 

depending on the current state of the network. The advantage is for a secure communication to 
prevent possible denial-of-service and assure deliverability without any loss of important information 
allowing for a better task completion. We use OpenFlow as a southbound API to fetch traffic 
information and network information such as packet size, the number of packets, delays for traveling 
packets through each link and sends it to the network controller. LLDP (link layer discovery protocol) 
is commonly used for network discovery and measuring latency for links. LLMP (link-layer 
measurement protocol) [11] is a prototype proposed for latency estimation which is based on LLDP. 
The aforementioned traffic information shows non-identical behavior from healthy conditions when 
different links of the network are congested or failed. These unfortunate conditions compromise the 
resilience of the network along with QoS. Each attribute of data plays a unique role in the 
identification of hidden knowledge. We apply different machine learning algorithms that predict 
failure and congested links and, based on that recommender system of the SDN controller can assist 
in reactively establishing new paths in real-time by avoiding the faulty links. Thus, the SDN 
controller can establish a more resilient path. We evaluate the following machine learning algorithms 
for the proposed intelligent recommender system: (1) decision tree, (2) nearest neighbors, (3) logistic 
regression, and (4) support vector machine (SVM). Moreover, we compare the accuracy and 
predicting speed measurements for each of these algorithms. The predicting speed of the algorithms 
is vital as the intelligent recommender system needs to react in real-time. We extract and visualize 
performance of machine learning algorithms by different matrices such as macro, micro, and 
weighted precision-recall-F1 score. 

The remaining of the paper is divided into the following parts: Section 2 reviews related work. 
Section 3 presents the proposed model architecture asa recommender system. Experimental setup and 
results are discussed in Section 4. Finally, we conclude our research in Section 5 along with the 
future work. 

2. Related works 

In this section, we discuss existing work for improving network resilience with different 
approaches. The various metric of graph robustness for improving network resilience is evaluated 
and compared in [12]. The proposed work enhances three real-world physical-level networks by 
introducing a collection of connections to strengthen a given robustness metric. As a result, adding 
links to balance link betweenness indicates the highest consistency in delivering the best network 
durability against centrality-based attacks of all studied robustness functions. Improvement of 
resiliency with the self-healing approach is discussed in [13] where the availability of redundant 
links allows the network compatibility to be restored. The proposed work model introduces a cavity 
equation and contrasts an empirical approximation with numerical simulation for the average values 
of connectivity under random failures. However, these approaches introduce extra links that are not 
an optimal solution. Mauthe et al. [14] present a range of resilience concepts that will guide the 
ongoing study in the large community and more importantly, the action's operations. The author 
discusses studies on structural and operational forms of architectural resilience that should be 
considered while engineering the networks. But it may need to change those forms in the future for 
business policies or partial repairs of network and, also gives some rigidity constraints to the 
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networks. For the resilient controller positioning issue, Tanha et al. [15] suggest a new formulation 
that considers the capability of the controllers as well as the requirement of the switches. This model 
also minimizes the latency involved in propagation, total incurred cost including the cost of 
deployment and the number of required controllers achieved while considering different resilience 
levels to enhance the resilience of the controller plane. An SDN-based microgrid network 
architecture is proposed in [16] to improve microgrid resilience. In the testbed, three SDN controller 
functions are proposed which are based on microgrid connectivity specifications, including 
latency-guaranteed communication, failover recovery and QoS support to achieve the objective. To 
improve the resilience of networks, Modarresi et al. [17] designed a new architecture that includes 
fog nodes and integrates with SDN. The fog nodes are connected to OpenFlow switches and can 
inspect the passing data packets. Maziku et al. [18] developed a quantitatively assess security risks 
technique in smart grid and suggest a safety score model in the IEC 61850 network. The above 
works propose a software-defined networking approach for enhancing network resilience. Machine 
learning technique can effectively improve resilience based on previous network data that 
implemented by software-defined networking and advances above study objectives solution. In the 
paper [19], anomaly detection and attack identification are done using different machine learning 
algorithms to improve resilience.  

In an SDN-based network, Jhaveri et al. [20] presented a contract-based resilient mechanism, 
SDN-RM, for time-critical CPS which proposes an end-to-end delay estimation mechanism. Firstly, 
it presents the experiments to demonstrate the accuracy given by the mechanism in estimating 
end-to-end delay, and then it demonstrates the resilience of SDN-RM. Experiments depict that 
SDN-RM performs better than other approaches under different events, detects faults, and recovers 
quickly from multiple faults by seeking an alternative route. The problem of QoS routing in 
delay-constrained cyber-physical robotic systems is addressed in [21] where the proposed framework 
dynamically finds a QoS efficient route with minimum overhead while constantly tracking 
multi-dimensional cost metric network connections. The machine responds to the irregular network 
situation to provide resilience in the network by following a plan to move the flows to more reliable 
alternate routes. The survey of state-of-art methods where ML is more efficiently applicable to 
satisfy existing security standards is presented in [22]. The authors present the taxonomy of threats 
that define the overall functionality, composition, forms, and delivery mechanisms of various types 
of malwares. Past studies introduced the emergence of machine learning within the SDN model to 
provide resilience [23–26]. This paper, however, takes previous work to an advanced level where 
multiple alternate paths are suggested to the network controller but if some alternate paths violate 
any business policies, then the network controller can avoid suggestions. This introduces some 
flexibility to the network controller. 

After reviewing the past briefly discussed approaches, it becomes clear that recommender 
system has immense potential in providing real-time resilience in SDN-networks as it is not bound 
the controller forcefully to follow the suggested route. Thus, this provides flexibility. 

3. Model architecture 

We examine security in a communication network of a CPS which is based on the SDN 
framework. The network uses OpenFlow protocol for programming the OpenFlow switches. The end 
system elements called hosts generate the traffic flows, which travels through different switches. 
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Switch forwards packets flow according to the forwarding table. The controller can fetch various 
network statistics by querying OpenFlow enabled switches. Our model aims to make the network 
more resilient by suggesting routes based on link failure and link congestion. For the prediction of 
link failure and congestion, the controller fetches several network state data periodically with the 
help of the LLDP protocol. LLDP is a layer-2 protocol used to advertise device capabilities and 
identities. In our model, it induces control overhead to measure the network statistics. As presented 
in [16], estimation of link delays is done using LLDP by calculating the difference between the 
timestamp of received and transmission of LLDP packets. The SDN controller uses the shortest hop 
path as the default routing algorithm.  

Network resilience that leads to higher security measure is improved through an introduction of 
an intelligent recommender system based on network link conditions (refer to Figure 2) in the control 
plane. The architecture of SDN consists of the network controller and OpenFlow enabled forwarding 
devices in the data plane. The functions of the control plane are to provide signaling, security, load 
balancing, etc. The components of the data plane follow the instructions transmitted by the SDN 
controller. In this work, we propose a recommender system for the SDN controller which is divided 
into two parts: 1) Probabilistic machine learning model and 2) Hypothesis function. The probabilistic 
machine learning model provides probabilities of getting links congested or failed in the network. 
This model is a multi-class classifier trained on network statistics provided by the controller. There 
may exist multiple paths with the same number of hops in the shortest hop routing. Recommender 
system prioritizes multiple paths with the help of the hypothesis function and suggests to the 
controller. In the proposed way, the controller gets suggestions of alternative path links that contain a 
lower probability of getting congested or failed. 

 

Figure 2. The infusion of the proposed model into the SDN architecture. 
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The hypothesis function converts link failure or congestion probabilities into a single value that 
represents path safety. The path is considered safer which has a high hypothesis value. Suppose there 
are m alternative paths that all have the same number of hops, then the simplest form of hypothesis 
function designed as follows: 

𝐻 ൌ 1 െ  ଵ

௡
∑ 𝑃௜

௡
௜ୀ଴          (1) 

where 𝑃௜ represents congestion or failure probability of 𝑖௧௛ link of alternate path among links. 

3.1. Model learning 

We consider the prediction of congestion and link failure as a multiclass classification problem. 
Each congestion or a link failure is defined as a separate class and one extra class that represents an 
ideal condition. Therefore, if there are links then it becomes a + 1 class classification problem. To 
successfully predict congestion and link failure, we need to create this situation artificially by 
manually disabling links and sending more traffic than the capacity of any link. Simultaneously, we 
also generate random traffic flow between any two host systems that represent communication 
between elements of a CPS. We consider the following measurements for the network (refer to 
Table 1). A link has two ports and three remaining attributes (LC, PL, LD) and each port has four 
attributes (Rx-pkts, Rx-bytes, Tx-pkts, Tx-bytes). Thus, the total dimensions of the dataset are 
*[(2*4) + 3] or *11. We split data into two parts with a ratio of 0.25 for training and testing. We scale 
the data before applying non-tree-based algorithms. For regularization, we perform appropriate 
hyperparameter tuning in KNN, LR, SVM algorithms with grid search and post pruning in the 
decision tree algorithm. 

Table 1. Features and conventions. 

Features Conventions 

No. of received packets at a particular port of the switch Rx-pkts 

No. of received bytes at a particular port of the switch Rx-bytes 

No. of transmitted packets at a particular port of the switch Tx-pkts 

No. of transmitted bytes at a particular port of the switch Tx-bytes 

Link capacity LC 

Packet loss PL 

Link delay LD 

3.2. Knowledge discovery from features 

The features such as LC, PL, and LD can help to identify abnormal behavior of links in the 
network. There are two types of packets that travel in the network. (i) LLDP packets for 
measurements of network states and (ii) data packets forwarded by end systems of the CPS. It is 
necessary to distinguish these packets. The combination of Rx-pkts, Rx-bytes, Tx-pkts, and Tx-bytes 
can differentiate these packets. A global view of the network can be obtained by the SDN controller 
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and, it can help to recognize the change in the forwarding flow after congestion or link failure. In 
normal conditions, switch C forwards the packets flow through the C-A link (refer to Figure 3). 
There are two possibilities (C-B-A and C-D-A) for routing the packets from C to A after the C-A link 
gets congested or fails according to the shortest hop path algorithm. Machine learning algorithms can 
detect these changes in flow by parametric coupling of Rx-pkts, Rx-bytes, Tx-pkts, Tx-bytes of the 
respected ports of (i) C, B and A or (ii) C, D and A. The recommender system prioritizes both paths 
based on hypothesis function values and gives recommendations to the controller. 

 

Figure 3. Link failure and alternate paths. 

3.3. Selected machine learning algorithms at glance 

1) Decision tree: 

A decision tree is a supervised machine learning algorithm that can be used for solving 
regression and classification problems. The accuracy of the tree is greatly impacted by strategic 
divisions made. The decision criteria are distinct for classification and regression trees. It uses 
different algorithms to determine if a node can be divided into two or more sub-nodes. Sub node 
formation increases the uniformity of the subsequent sub-nodes. The decision tree partitions the 
nodes into all available variables and then chooses the split that results in most of the sub-nodes 
being uniform. A complex step in a decision tree algorithm helps to determine which attribute to be 
put as internal nodes at the root or various tree levels. Researchers have worked and devised several 
approaches to solving this attribute selection problem such as Entropy, Information gain, Gini-index, 
etc. Pruning is the method for carrying out regularization tasks in a decision tree algorithm. There are 
two types of pruning as follows 1) pre-pruning, 2) post-pruning. By restricting growing parameters 
of the tree, such as max splits and max depth, pre pruning is achieved. In Post pruning, a leaf node 
takes the place of the subtree, whose label is specified by the most frequent class of the sub-tree. 

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦ሺ𝑇ሻ ൌ  ∑ െ𝑃 ∙ logଶ 𝑃௜
௡
௜ୀଵ         (2) 

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦ሺ𝑇, 𝑋ሻ ൌ  ∑ 𝑃ሺ𝑐ሻ ∙ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦ሺ𝑐ሻ௡
௖∈௑      (3) 

 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐺𝑎𝑖𝑛ሺ𝑇, 𝑋ሻ ൌ  𝐸𝑛𝑡𝑟𝑜𝑝𝑦ሺ𝑇ሻ െ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦ሺ𝑇, 𝑋ሻ   (4) 

Equation (2) presents Entropy for a single attribute. Where 𝑇 is the current state, 𝑃௜ represents 
the percentage of class 𝑖 in a node of state 𝑇, and 𝑛 is the total number of samples. Equation (3) 
presents Entropy for multiple attributes where 𝑇 is the current state, 𝑋 is the selected attribute, 𝑐 
is a unique category in 𝑋 the attribute. 𝑃ሺ𝑐ሻ represents the probability of occurring 𝑐 category 
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in𝑋the attribute. 
2) Logistic regression: 
Logistic Regression is a supervised algorithm for classification that is omnipresent and 

commonly used. It is very simple to use and its output in a linearly separable class. This is based on a 
sample's probability of belonging to one class. A judgment function called Sigmoid or Logistic is 
used as a threshold function. To reduce the effect of overfitting, ridge, and lasso regularization are 
used. They shrink the coefficients in the resulting regression by adding some new entity in the cost 
function. We can categorize logistic regression into three different types based on the behavior of 
prediction (a) Binomial logistic regression: when there are two classes (b) multinomial logistic 
regression: when there are more than two classes (c) Ordinal logistic regression: prediction attribute 
contains order. Depending upon the type of logistic regression cost function and regularization 
methodology are used. 

𝑜𝑑𝑑𝑠 𝑅𝑎𝑡𝑖𝑜 ൌ  ௉

ଵି௉
          (5) 

𝑙𝑜𝑔𝑖𝑡ሺ𝑃ሻ ൌ log ቀ ௉

ଵି௉
ቁ          (6) 

𝜎ሺ𝑧ሻ ൌ ଵ

ଵା௘ష೥ , where  𝑧 ൌ ∑ 𝑤௜ ∙ 𝑥௜ ൅ 𝑤଴
௠
௜ୀଵ      (7) 

𝑙𝑜𝑔𝑙𝑜𝑠𝑠 ൌ ∑ ቂ𝑦ሺ௜ሻ log൫𝜎ሺ𝑧ሺ௜ሻሻ൯ ൅ ൫1 െ 𝑦ሺ௜ሻ൯ log ቀ1 െ 𝜎൫𝑧ሺ௜ሻ൯ቁቃ௡
௜ୀଵ    (8) 

Equation (5) represents the odds ratio that is the odds in favor of a particular event. It is a 
measure of association between exposure and outcome. Here, 𝑃 is the probability of events. 
Equation (6) represents the logit function as the odd ratio logarithm, which takes input values in the 
0 to 1 range and then transforms them to values over the whole range of real numbers. The reverse of 
the logit function is called the Sigmoid or logistic function represented in Eq (7) where z is 
dimensional hyperplane, 𝑤represents weights, and𝑥 is the input value. Because of its characteristic 
form, it is called the sigmoid feature. Sigmoid function mapped real value into the range [0,1] with 
intercept 0.5 that considers as a threshold. Equation (8) measures the difference between two 
probability distributions called cross-entropy that commonly act as cost function where 𝑛 is total 
samples and 𝑦௜ is an actual target value of the 𝑖௧௛ sample. 

3) K-Nearest Neighbors (KNN): 
KNN is considered as the supervised machine learning algorithm. For a given K algorithm value, 

the K nearest neighbor of the unseen data point will be identified, and then the class will be allocated 
to the unseen data point by making the class that has the maximum number of data points out of all K 
neighbor classes. The algorithm assumes that similar things are near to each other and predict those 
data as one class. KNN is very sensitive about the distance between data points. Thus, the scaling of 
input data vectors is necessary before applying the KNN algorithm. The parameter K defines the 
complexity of the model. As the value of the parameter K is increases, the complexity of the model 
also increases, and the model introduces more overfitting. 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒ሺ𝑥, 𝑥ᇱሻ ൌ  ඥ∑ ሺ𝑥௜ െ 𝑥௜
ᇱሻଶ௠

௜ୀଵ        (9) 
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𝑃ሺ𝑦 ൌ 𝑗|𝑋 ൌ 𝑥ሻ ൌ ଵ

௄
∑ 𝐼ሺ𝑦ሺ௜ሻ ൌ 𝑗ሻ௜∈஺        (10) 

Equation (9) represents the Euclidean distance formula where 𝑥and𝑥′ are two data points in 𝑚 
dimensional space and 𝑥௜𝑥௜′ are Euclidean vectors, starting from the origin of the space. The input 
belongs to the class with a higher probability calculated as in Eq (10) where 𝐾 is number neighbors. 

4) Support vector machine: 
There are many hyperplanes possible that can separate two classes. SVM performs classification 

by locating the hyperplane that separates them with a high margin. To solve the issues of 
classification and regression, a supervised machine learning algorithm SVM can be used. Support 
vectors are data points that are closer to the hyperplane and influence the position and orientation of 
the hyperplane and the margin is the perpendicular distance between two support vectors. Support 
vectors which are a small subset of training samples fully specify the decision functions. Simple 
SVM can classify data linearly where kernel SVM can separate data non-linearly. It follows the 
hypothesis for the classification mentioned in Eq (11). Here, 𝑊. 𝑋 ൅ 𝑏 represents hyperplane where 
𝑊 is weight vector, 𝑏 is bias, and 𝑋 is input data vector. 1 and -1 are the integer values that each 
represent one class. 

ℎሺ𝑥௜ሻ ൌ  ൜
െ1, 𝑊. 𝑋 ൅ 𝑏 ൏ 0

    1, 𝑊. 𝑋 ൅ 𝑏 ൒ 0       (11) 

4. Emulation results 

In the following section, we discuss emulation set up and the outcomes we get. 

4.1. Emulation setup and tools 

Table 2 summarizes the tools and techniques used in our experimental elevation. 

Table 2. Tools and technologies. 

Ubuntu (20.0.4) Operating system 
Mininet (2.2.2) Network emulator 
Ryu (4.34) Network controller 
OpenFlow (1.3) Southbound API 
Python (2.7) Programming language 
Iperf (3.1.3) Traffic generator 
Scikit-learn (0.23.2) Machine learning tool 
Pandas (1.1.4) Data manipulation tool 
Numpy (1.19) Tool for Multidimensional Array operation 
Matplotlib (3.3.3) Visualization module 

We follow the topology of the OpenFlow switch present in Figure 4. The generation of more 
traffic than a bandwidth stimulates congestion while link failures are made manually. 
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Figure 4. Mininet testbed. 

In Figure 4, the “𝑠” represents OpenFlow switches and “ℎ” represents end systems of network. 
The “𝑐” represents controller of the network. 

4.2. Results and performance analysis 

We visualize the accuracy and performance of the machine learning algorithm in this part. Also, 
we campier the predicting speed of each algorithm and discuss feasibility. 

 

Figure 5. Train and test accuracy measured in certain link capacity scenario. 

The performance of the decision tree is higher than all algorithms as it separates the classes 
nonlinearly. KNNs have the low test and train accuracy and support vector machine and logistic 
regression has almost same and moderate accuracy (refer to Figure 5). The above situation is 
maintained in every link capacity. 

As Figure 6 shows, KNNs have a higher time required for prediction than all algorithms for 
each link capacity as it considers all positions of data points while predicting. Decision tree and 
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support vector machine has low prediction time that shows the best performance in real-time path 
prediction. Logistic regression has moderate time prediction. 

 

Figure 6. Time instances at the different prediction algorithms. 

 

Figure 7. PRF at 1 Mbps link capacity. 

The behavior of F1 score, precision, and recall is the same as test accuracy (refer to Figures 7–10). 
Here precision quantifies number of predicted fault links that are fault links, recall quantifies how 
many links fault predicted among total fault links and F-score is metric that balances both 
precision-recall. Macro represents matric by considering total true positives, false negatives, and 
false positives. For each label, and to find the unrated mean micro is used as an evaluation matric. 
However, it does not consider the label imbalance. To find the average weight by support (the 
number of true instances for each label) for each label weighted is used as an evaluating metric. This 



8310 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 8298–8313. 

alters ‘macro’ to account for label imbalance. KNN has lower accuracies and PRF at all link 
capacities as it only considers the positions of data points and classifies based on majority vote 
system that may avoid similarities among data points. On other hand decision tree can separates data 
non-linearly that may cause high accuracies and PRF. From the results of simulation, decision tree is 
the best fit for the recommender system as it has lowest time prediction and highest accuracy, and it 
also lies in the category of white box algorithms (the algorithms that justifies why it takes decision). 
These properties are very crucial in the application of healthcare [27,28]. 

 

Figure 8. PRF at 10 Mbps link capacity. 

 

Figure 9. PRF at 100 Mbps link capacity. 



8311 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 8298–8313. 

 

Figure 10. PRF at 1000 Mbps link capacity. 

5. Conclusions and future work 

The article presents a security architecture that predict path quality based on link failure and 
congestion to overcome possible denial-of-service and assure deliverability of information within the 
network. The proposed intelligent system along with SDN architecture recommends the path for 
packet routing to the network controller. Link failure and congestion are considered as two important 
security factors for best path prioritization. As a result, network controller only takes those routes 
which has lower probability of getting links failed or congested, i.e., communication avoids faulty 
paths during path discovery. Thus, network architecture becomes more resilient towards congestion 
and link failure and leads to higher security level. The proposed architecture introduces low time 
delay and better Quality of Service which is very crucial in e-health and current pandemic where 
network needs to face more traffic and scalability in a secure environment. To predict the probability 
of quality path, we applied four machine learning algorithms namely, 1) Decision tree 2) K-nearest 
neighbors 3) Logistic regression 4) Support vector machine. We discuss the feature's importance for 
the prediction of link failure and congestion. We mathematically elaborate all these machine learning 
algorithms. We also measure the test accuracy for applied algorithms and F1 score, precision, recall 
for classification. Then we visualize the prediction speed of each algorithm. The future work should 
consider exploiting different complexity levels in the business policy and examine more security 
issues affecting path routing and communication. More complex machine learning algorithms can 
also be exemplified for comparisons such as artificial neural networks, gradient boosting, and 
assemble models which are unforeseen at the moment. 
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