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Abstract: The motion of the linear dynamic system with given properties is modeled; conditions for
system state at various arbitrarily points in time are given. Simulated movement carried out due to the
calculated input vector function. The method of undefined coefficients is used to construct the input
vector function and the corresponding trajectory. The proposed method consists in the formation of
the state vector function, the trajectory of motion and the input vector function in
exponential-polynomial form, that is, in the form of linear combinations of the powers of the time
parameter with vector coefficients. This linear combination is complemented by a scalar exponential
function with an additional parameter in the exponent to change the type of trajectory. To find the
introduced coefficients, formulas and a linear algebraic system are formed. To find the introduced
coefficients, the formed linear combinations are substituted directly into the equations describing the
dynamic system and into the given multipoint conditions for finding the entered coefficients. All this
leads to obtaining algebraic formulas and linear algebraic systems. Only the matrices included in the
system that describe the dynamics of the model (and similar matrices with higher exponents) are the
coefficients for the unknown parameters of the resulting algebraic system. It is proved that the
fulfillment of the condition Kalman is sufficient for the solvability of the resulting system. To
substantiate the solvability of the system, the properties of finite-dimensional mappings are used:
decomposition of spaces into subspaces, projectors on subspaces, semi-inverse operators. But for the
practical use of the proposed method, it is sufficient to solve the obtained linear algebraic system and
use the obtained linear formulas. The correctness of the obtained model is investigated. Due to the
non-uniqueness of the solution to the problem posed, the trajectory of motion can be unstable. It is
revealed which components of the desired coefficients are arbitrary. It is showed which ones to
choose, to make the movement steady, that is, so that small changes in the given multi-point values, as
well as a small change parameters of the dynamic system corresponded to a small change in the
trajectory of motion. An example is given of constructing trajectories of a material point in a vertical
plane under the action of a reactive force in order to hit a given point with a given speed.
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the implementation of the process

1. Introduction

The system
ẋ(t) = Ax(t) + Bv(t) (1.1)

is considered, where x(t) ∈ Rn, v(t) ∈ Rm, A and B − matrices of appropriate sizes, t ∈ [t0, tk], 6 ∃B−1.
The vector function x(t) is called the state, the trajectory of the system, v(t) − input vector function,
input.

Such systems simulate dynamic processes in biology. (change in the population of animals, etc. [1]),
in medicine (distribution infectious diseases [2], [3], etc.), in the economy (dynamic model of input-
output balance [1], [4] etc.), in electrical engineering [3], etc.); the mechanical motion is described by
the basic laws of dynamics [3], [5] and many others processes are also modeled by such systems.

It is known [6] that the complete condition for the possibility of transferring the state of the system
(1.1) from an arbitrary initial state

x(t0) = x0 (1.2)

to an arbitrary final state
x(tk) = xk (1.3)

for an arbitrary time interval t ∈ [t0, tk], that is, the existence of an input vector-function v(t) such that
the state x(t) of the system with this realized vector-function and with the realized initial state Eq (1.2)
takes at the moment tk exactly the value xk, is the condition

rank(B AB ... An−1B) = n. (1.4)

This condition was used by Acad. Krylov N.N. [7] when calculating shipbuilding systems, acad.
Pontryagin L.D. [8] when constructing optimal control processes. Later, after R. Kalman’s report at
the IFAC congress in 1959, this condition was called the Kalman condition [9].

Since that time (since 1960), a huge number of scientific research works and practical solutions of
the problem Eqs (1.1)–(1.3) of finding the input v(t) for the existence or to find the corresponding state
x(t).

As a rule, the practical solution of the problem is carried out only by approximate methods.
We know of only two methods for constructing v(t) x(t) for the problem Eqs (1.1)–(1.3) in analytical

form:
1) construction [5] by the formulas

W =

∫ t1

0
e−sABB∗esA∗ds, z = W−1

(
e−t1Ax1 − x0

)
,

v(t) = B∗etA∗z, x(t) = etAx0 + etA
∫ t

0
e−sABv(s)ds;

2) the method of cascade decomposition [10–13].
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The disadvantages of the first method are the presence in the formulas of matrix exponentials, that
is, matrix series; narrowness of the class of solutions (these are the series by powers of t); the method
is applicable only for solving a two-point problem (the initial position of the system and the final
one are given). The cascade decomposition method is applicable for solving multi-point problems;
v(t) and x(t) are constructed as linear combinations of linearly independent functions of various types.
For the practical application of the method, a fairly simple solution algorithm was developed in [13];
however, a lot of work is required with the given conditions at each stage of the system decomposition.
Construction of the corresponding v(t) and x(t) in an analytical form remains an urgent task. In this
paper, the following motion model is considered: the trajectory of the system (1.1) leaving the given
point Eq (1.2) must pass at arbitrarily specified times ti, i = 0, 1, , ... , k, ; t0 < t1 < ... < tk, through the
points (ti, xi) with any given values of xi ∈ R

n. That is, the conditions

x(ti) = xi, i = 0, 1, ..., k (1.5)

on x(t) are imposed.
For example, linearized models of the movement of aircraft: airplanes, helicopters, satellites,

including objects moving under the action of reactive forces [3], [5], have the form Eq (1.1). For such
systems, it is important when moving to be at the right time ti in the right place (ti, xi).

In [10–13], it was proved that the condition Eq (1.4) is a complete condition for the existence
of the input v(t), under the realization of which the trajectory of the system (1.1) has the properties
Eq (1.5). It is established that under the condition Eq (1.4) there exist x(t) and v(t) in the form of
linear combinations of some linearly independent scalar functions with vector coefficients. The results
of these works make it possible to simulate multi-point motion for stationary systems by a simpler
method of indefinite coefficients, which is proposed below.

In this paper, we propose to calculate x(t) and v(t) in the form

x(t) =

r−1∑
j=0

α jϕ j(t), (1.6)

v(t) =

r−1∑
j=0

β jϕ j(t), (1.7)

ϕ j(t) = e−at ·
t j

j!
, a > 0, with undefined vector coefficients α j ∈ R

n, β j ∈ R
m. The number r depends

on the number of control points k and on the number p such, that

rank(B AB ... ApB) = n, p ≤ n − 1. (1.8)

It follows from the results of [10–13] that

r = (p + 1)(k + 1). (1.9)

t0 = 0 is assumed.
The idea of searching for v(t) and x(t) in the form of linear combinations of linearly independent

functions is not new.
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In the monograph [14] (with reference to other primary sources for particular dynamical systems)
are constructed v(t) in the form of feedback, if x(t) − is a linear combination of functions ϕi(t), where
ϕi(t) = ti or ϕi(t) = eλi t. In monograph [5], when solving a boundary value problem for a nonstationary
system (1) with one-dimensional v(t) in the case of known linearly independent impulse transition
functions of the object hi(t, τ), i = 0, n, the function v(t) is constructed as a linear combination of these
functions.

In [15], the existence of v(t) in polynomial form in the problem of constructing for system (1.1) the
trajectory x(t) with properties Eq (1.5).

In some cases, decreasing functions of t are more preferable than polynomial functions. If the
system fails (the switch did not work at the time tk, the technological modes were not switched, ...)
the system control and, accordingly, the state of the system tend to zero in this case at t −→ ∞, in
contrast from polynomial vector functions tending at t −→ ∞ to ∞. Therefore, in this work, we use
exponential-polynomial functions with a negative exponent at the exponent.

The proposed method consists in the substitution of Eqs (1.6) and (1.7) directly into the Eq (1.1)
and the given conditions Eq (1.5), and the determination of the coefficients α j and β j from the obtained
relations. The system obtained as a result of these substitutions can be underdetermined, the ”extra”
components can be set equal to zero or used to obtain v(t) and x(t) with additional properties. For this
purpose, the number of terms in Eqs (1.6) and (1.7) can be increased.

Wherein, to calculate vector coefficients, it is important to obtain linear algebraic systems in which
the coefficients are only matrices AiB, i = 0, 1, ..., ,in contrast to works by other authors, for example
[15], where other matrix coefficients are used to prove the existence of the corresponding v(t).

The advantage of the proposed method over the cascade method developed in [10–13] is that it
does not require the derivation of multipoint conditions for the vector functions of the last step
decomposition, and also in the fact that in the resulting formulas and systems for finding the
coefficients there are no derivatives of functions, which leads to a minimum calculation inaccuracies.

2. Exponential-polynomial model of multi-point motion

For a dynamical system Eq (1.1) with conditions Eq (1.5) the problem of constructing the trajectory
of motion in the exponential-polynomial form

x(t) = e−at
r−1∑
j=0

α j
t j

j!
, a > 0 (2.1)

is set, for which the input vector function is sought in the form

v(t) = e−at
r−1∑
j=0

β j
t j

j!
. (2.2)

To find the vector coefficients α j ∈ R
n, β j ∈ R

m, Eqs (2.1) and (2.2) are substituted directly into the Eq
(1.1). Reducing the received expression on e−at and comparing the coefficients at the same degrees of
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t, we obtain the system 

α1 = (A + aI)α0 + Bβ0,

α2 = (A + aI)α1 + Bβ1,

α3 = (A + aI)α2 + Bβ2,

.....................

αr−1 = (A + aI)αr−2 + Bβr−2,

0 = (A + aI)αr−1 + Bβr−1.

(2.3)

Here α0 = x0 is determined from the condition Eq (1.5) x(t0) = x(0) = x0 and this makes it possible to
express the coefficients α j through x0 and β j using the relations Eq (2.3).

From the first relation in system (2.3) we have:

α1 = Bβ0 + (A + aI)x0.

From the second relation of the system (2.3), taking into account the first relation, we obtain:

α2 = Bβ1 + (A + aI)Bβ0 + (A + aI)2x0.

The third equality in system (2.3) leads to the expression

α3 = Bβ2 + (A + aI)Bβ1 + (A + aI)2Bβ0 + (A + aI)3x0

etc ... .

α j =

j−1∑
s=0

(A + aI)sBβ j−s−1 + (A + aI) jx0. (2.4)

Substituting the last expression into the last equality of the system (2.3), we obtain one of the equations
for finding the coefficients β j:

Bβr−1 + (A + aI)Bβr−2 + ... , (A + aI)r−1Bβ0 = −(A + aI)r x0. (2.5)

Relations Eqs (2.1) and (2.4) are substituted into conditions Eq (1.5):

r−2∑
s=0

(A + aI)sB
r−s−2∑

j=0

ts+ j+1
i

(s + j + 1)!
β j = eati xi −

r−1∑
j=0

t j
i

j!
(A + aI) jx0, (2.6)

i = 1, 2, ... , k.
So, to construct the multipoint motion of the dynamic system (1.1) , it is proposed to search for the

input vector function v(t) in the form Eq (2.2) with coefficients β j, for finding which a system (2.5) and
(2.6) of linear algebraic equations with coefficients (A + aI)sB, s = 0, 1, ... , r − 1 has been compiled.
In this case, the trajectory x(t) of motion of the system (1.1) has the form Eq (2.1) with coefficients α j,
determined by the Eq (2.4).

3. On the solvability of the systems (2.5) and (2.6)

3.1. About the systems (2.5) and (2.6)

The systems (2.5) and (2.6) consists of (k + 1)n scalar equations for the rm sought components βs
j

of vectors β j = (β1
j , β

2
j , ... , β

m
j ) ∈ Rm, s = 1, 2, ... ,m.
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Lemma 1. There are no more scalar equations in the systems (2.5) and (2.6) than the number of scalar
unknowns: (k + 1)n ≤ r · m.

Since r = (k + 1)(p + 1), it should be proved that (k + 1)n ≤ (k + 1)(p + 1)m, or n ≤ (p + 1)m.
Matrix W = (B AB ... ApB) of the condition (1.8) consists of n rows and (p + 1)m columns , and

since rank W=n, then n ≤ (p + 1)m.
Lemma 1 is proved.

To prove the solvability of systems (2.5) and (2.6) we use the mapping property B : Rm → Rn [16]
(the mappings and the corresponding matrices are denoted in the same way):

Rm = CoimB+̇KerB, Rn = ImB+̇CokerB, (3.1)

where Ker B − is the kernel B, Im B − is the image of B; Coker B − defect subspace, Coim B −
direct complement to subspace Ker B in Rm. The restriction of B̃ onto Coim B has the inverse mapping
B̃−1. By P we denote the projector onto Ker B, by Q − the projector onto Coker B, corresponding to
the decompositions (3.1). By I we denote the unit operator at any space. Through B− − we denote a
semi-inverse operator to B, that is B− = B̃−(I − Q). The following lemma is known [11].

Lemma 2. Equality
Bz = h, z ∈ Rm, h ∈ Rn

equivalent to the system {
Qh = 0,
z = B−h + ϕ, ∀ϕ ∈ KerB (ϕ = Pz).

Systems (2.5) and (2.6) is considered under condition Eq (1.8), which means that equation

Bu1 + ABu2 + ... + ApBup+1 = w

has a solution u1, u2, ... , up+1 ∈ R
m for all w ∈ Rn. The equation is considered for a simple case p = 1:

Bu1 + ABu2 = w. (3.2)

It’s solution u1, u2 will be given as it will be needed later.

3.2. The solution of Eq (3.2)

By Lemma 2, the Eq (3.2) is equivalent to the system{
QABu2 = Qw,
u1 = −B−ABu2 + B−w + ϕ1, ∀ϕ1 ∈ KerB (ϕ1 = Pu1).

(3.3)

The first equality in Eq (3.3) − is QA((I − Q) + Q)Bu2 = Qw, but QB = 0, and QA(I − Q), denoted
by B1, (here B1 :Im B→Coker B), splits Im B and Coker B into direct sums:

ImB = CoimB1+̇KerB1, CokerB = ImB1+̇CokerB1,

with the corresponding projectors Q1 and P1, and semi-inverse operator B−1 : Im B1 →Coim B1.
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Now the first equality in Eq (3.3): B1Bu2 = Qw, due to Lemma 2, it is equivalent to the system{
Q1Qw = 0,
Bu2 = B−1 Qw + ϕ2, ∀ϕ2 ∈ KerB1.

(3.4)

If Q1 , (0), then the system (3.1) is solvable not ∀w ∈ Rn, rank (B AB) < n.
If Q1 = (0), then the second equation in Eq (3.4) has decision

u2 = B−B−1 Qw + B−ϕ2 + ϕ3, ∀ϕ3 ∈ KerB,

due to the fact that B1Qw + ϕ2 ∈Im B.
Thus, rank (B AB) = n if and only if Q1 = (0), i.e., B1 − is surjection. In this case the Eq (3.2) has

a solution
u2 = B−B−1 Qw + B−ϕ2 + ϕ3, ∀ϕ2 ∈ KerB1, ∀ϕ3 ∈ KerB;

u1 = −B−ABu2 + B−w + ϕ1, ∀ϕ1 ∈ KerB. (3.5)

Thus, the following result is obtained.

Lemma 3. If rank(B AB) = n then equation

Bu1 + ABu2 = w

has solution u1, u2 of the form Eq (3.5) for all w ∈ Rn.

Remark 1. System
Bu1 + (A + aI)Bu2 = w, u1, u2 ∈ R

m, w ∈ Rn, (3.6)

or, equivalently,
B(u1 + au2) + ABu2 = w,

has solution
u1 = −(aI + B−AB)u2 + B−w + ϕ1, ∀ϕ1 ∈ KerB,

u2 = B−B−1 Qw + B−ϕ2 + ϕ3, ∀ϕ2 ∈ KerB1, ∀ϕ3 ∈ KerB.

3.3. The solvability of the systems (2.5) and (2.6)

The following theorem holds.

Theorem 1. The systems (2.5) and (2.6) is solvable with respect to the vectors β j, j = 0, 1, ... , r − 1
for any xi, i = 0, 1, ... , k.

In view of the cumbersomeness of the system under consideration, we present a detailed proof in
two special cases. In the next case (and in the general case) the proof is schematic, since the basic
principles of the proof are given in the previous cases.
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3.3.1. Case k = 1, p = 1

Such a motion is considered further in example 1 - this is the motion of a material point moving in
vertical plane under the action of a reactive force from the initial position to the final position.

For k = 1, p = 1, systems (2.5) and (2.6) is this:

Bβ3 + (A + aI)Bβ2 + (A + aI)2Bβ1 + (A + aI)3Bβ0 = −(A + aI)4x0, (3.7)

B(t1β0 +
t2
1

2!
β1 +

t3
1

3!
β2) + (A + aI)B(

t2
1

2!
β0 +

t3
1

3!
β1) + (A + aI)2B(

t3
1

3!
β0) = f1, (3.8)

where

f1 = eat1 x1 −

3∑
j=0

t j
1

j!
(A + aI) jx0.

The Eq (3.7) should be converted to the form Eq (3.2), for which from the Eq (3.7), multiplied by
t3
1

3!
,

subtract Eq (3.8), left multiplied by (A + aI):

B(
t3
1

3!
β3) + (A + aI)B(−t1β0 −

t2
1

2!
β1) + (A + aI)2B(−

t2
1

2!
β0) = f2, (3.9)

(hereinafter, for brevity, the right-hand sides of the obtained relations denote by fi). Further to the Eq

(3.8) we add Eq (3.9) multiplied by
t1

3
:

B(
t4
1

3 · 3!
β3 +

t3
1

3!
β2 +

t2
1

2!
β1 + t1β0) + (A + aI)B(

t3
1

3!
β0) = f4. (3.10)

Hence, by Remark 1:
t3
1

3!
β0 = B−B−1 Q f4 + B−ψ2 + ψ3, ∀ψ2 ∈ KerB1, (3.11)

∀ψ3 ∈ KerB,

t4
1

3 · 3!
β3 +

t3
1

3!
β2 +

t2
1

2!
β1 + t1β0 = −(a · I + B−AB)(

t3
1

3!
β0) + B−w + ψ1, ∀ψ1 ∈ KerB. (3.12)

Substituting the value β0 found in Eq (3.11) into Eq (3.8), we get:

B(
t2
1

2!
β1 +

t3
1

3!
β2) + (A + aI)B(

t3
1

3!
β1) = f6, (3.13)

whence, by Remark 1, the values of β1 and β2 are found. Then β3 is defined from Eq (3.12). For the
case p = 1 and k = 1 Theorem 1 is proved.

3.3.2. The case of arbitrary k and p = 1

In the systems (2.5) and (2.6) now there are k + 1 equations and 2(k + 1) unknown vectors β j:

2k+1∑
j=0

(A + aI) jBβ2k− j+1 = −(A + aI)2(k+1)x0, (3.14)
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2k∑
s=0

(A + aI)sB
2k−s∑
j=0

ts+ j+1
i

(s + j + 1)!
β j = eati xi −

2(k+1)∑
j=0

t j
i

j!
(A + aI) jx0, (3.15)

i = 1, 2, ... , k.
Each equation contains blocks Bu1 + (A + aI)Bu2 with unknowns u1, u2, and from each Eq (3.6)

two required u1, u2, are defined, therefore the systems (3.14) and (3.15) is solvable with respect to β j,
j = 0, 1, ... , 2k + 1.

3.3.3. Case k = 1, p = 2

System (2.5) and (2.6) is a system

Bβ5 + (A + aI)Bβ4 + (A + aI)2Bβ3 + (A + aI)3Bβ2 + (A + aI)4Bβ1+

+(A + aI)5Bβ0 = −(A + aI)6x0,
(3.16)

B(t1β0 +
t2
1

2!
β1 + ... +

t5
1

5!
β4) + (A + aI)B(

t2
1

2!
β0 +

t3
1

3!
β1 +

t4
1

4!
β2 +

t5
1

5!
β3)+

+(A + aI)2B(
t3
1

3!
β0 +

t4
1

4!
β1 +

t5
1

5!
β2) + (A + aI)3B(

t4
1

4!
β0 +

t5
1

5!
β1)+

+(A + aI)4B(
t5
1

5!
β0) = f1,

(3.17)

where f1 = eat1 x1 −
∑5

j=0

t j
1

j!
(A + aI) jx0.

The system contains terms
Bu1 + (A + aI)Bu2 + (A + aI)2Bu3, and if p = 2, then the equation

Bu1 + ABu2 + A2Bu3 = w, u1, u2, u3 ∈ R
m, w ∈ Rn

is also solvable with respect to u1, u2, u3, since rank(B AB A2B) = n. Then the equation

Bu + (A + aI)Bu2 + (A + aI)2Bu3 = w

is also solvable with respect to u1, u2, u3, hence the systems (3.16) and (3.17) is solvable with respect
to β j, j = 0, 1, ... 5.

3.3.4. The case of arbitrary k and arbitrary p < n

In this case, the systems (2.5) and (2.6) consists of k + 1 equation and contains r = (p + 1)(k + 1)
unknown vectors b j.

The equations contain terms of the form Bu1 + (A + aI)Bu2 + ... + (A + aI)pBup+1. The system is
solvable due to the fact that rank(B AB ... ApB) = n.

4. About the correctness of the model

It is required to prove that the presented model of motion of a dynamic system is correct, that is,
with small changes in the parameters of the system, the trajectory x(t), calculated by Eqs (2.1) and
(2.4), also changes little; where β j, j = 0, 1, ..., r − 1 is determined from system (2.5) and (2.6).

The parameters of the model are the coefficients A, B of system (1.1) and the specified values of xi

in condition Eq (1.5).
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4.1. On the continuous dependence of the trajectory on multipoint values

The continuous dependence of the trajectory of the simulated motion on the specified values of
xi, i = 0, 1, ..., k, is obvious, since xi are contained in the right-hand sides of linear algebraic Eqs (2.5)
and (2.6).

Small changes of xi will entail small changes of the coefficients β j. From Eq (2.4) it follows that α j,
j = 0, 1, ..., r − 1 changes little in this case; Eq (2.1) shows that x(t) changes little.

4.2. On a small change in the input vector function under small perturbations A and B

The coefficients β j(t) with some j in the Eq (2.2) for v(t) are defined as solutions of equations of the
form

Bu1 + ABu2 + ... + ApBup+1 = w1,

therefore, we study the change in the coefficients β j(t) (due to cumbersomeness) for the particular case
p = 1, k = 1.

Let’s show that the solutions u1 and u2, obtained in the system (3.2), differ little from the solution
ũ1 and ũ2 of the perturbed system

(B + G2)̃u1 + (A + G1)(B + G2)̃u2 = w + g, (4.1)

G1 : Rn → Rn, G2 : Rm → Rn, g ∈ Rn, if G1, G2 and g are small in norms.
Equation (4.1)

(B + G2)̃u1 + ABũ2 + (AG2 + G1(B + G2))̃u2 = w + g,

by Lemma 2, it is equivalent to the system

QG2ũ1 + B1Bũ2 + Q(AG2 + G1(B + G2))̃u2 = Q(w + g), (4.2)

(I + B−G2)̃u1 + B−ABũ2 + B−(AG2 + G1(B + G2))̃u2 = B−(w + g) (4.3)

(see notation in Section 3.2).
From Eq (4.3) we find ũ1:

ũ1 = (I + B−G2)−1(−B−AB − B−G3)̃u2 + B−(w + g) + ψ1, ∀ψ1 ∈ KerB,

where G3 = B−AG2 + G1(B + G2) − is small due to the smallness of G1 G2. And since (I + B−G2)−1 =

I − B−G2(I + B−G2)−1,then

ũ1 = −B−ABũ2 + B−(w + g) + ψ1 + G4ũ2 (4.4)

with small G4.
From the relation Eq (4.2) we find

ũ2 = B−B−1 Q(w + g) − B−B−1 QG2ũ1 − B−B−1 QG3ũ2 + B−ψ2 + ψ3,

∀ψ2 ∈ KerB1, ∀ψ1 ∈ KerB, i.e.,

(I + B−B−1 QG3)̃u2 = B−B−1 Q(w + g) − B−B−1 QG2ũ1 + B−ψ2 + ψ3,
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from where
ũ2 = (I + B−B−1 QG3)−1(B−B−1 Q(w + g) − B−B−1 QG2ũ1 + B−ψ2 + ψ3), (4.5)

if ‖B−B−1 QG3‖ < 1 due to the smallness of G3.
Replacing (I + B−B−1 QG3)−1 with I − B−B−1 QG3(I + B−B−1 QG3)−1, or with I −G4, where G4 is small

due to the smallness of G3, we get:

ũ2 = B−B−1 Q(w + g) + B−ψ2 + ψ3 + G5ũ1 −G4(B−ψ2 + ψ3) + G6Qw, (4.6)

with small G6.
Substituting Eq (4.6) in Eq (4.4), inverting the matrix (I + B−ABG5) and replacing (I + B−ABG5)−1

with I − B−ABG5(I + B−ABG5)−1, that is, with I −G7, where G7 is small, we get:

ũ1 = −B−AB(B−B−1 Q(w + g) + B−ψ2 + ψ3) + B−(w + g) + ψ1 + G8ψ2 + G9ψ3,

where G8 and G9 are small.
The vector functions ϕi(t) and ψi(t), i = 1, 2, 3, − are arbitrary from the kernels of the corresponding

mappings, and if we choose ϕi(t) = ψi(t), then ‖u1(t) − ũ1(t)‖ and ‖u2(t) − ũ2(t)‖ are small.
Thus, the solutions β j of the system (2.5) and (2.6) react little to small perturbations of the

parameters A and B, therefore, the input vector function changes little for small change in the
coefficients A and B of the system (1.1).

4.3. On the continuous dependence of the trajectory motion from the perturbation of the parameters
A and B

Small change of the parameters A and B of the system (1.1) there corresponds a small change of the
trajectory of movement. That is, the trajectory x̃(t) of the system

˙̃x(t) = (A + G1)x̃(t) + (B + G2)̃v(t), (4.7)

˙̃x(ti) = xi,

where ‖G1‖, ‖G2‖ − are small and ṽ(t) differs little from the input vector function v(t) of the unperturbed
system (1.1), differs little from the trajectory x(t).

Indeed, subtracting the relation Eq (1.1) from Eq (4.7), we obtain

d
dt

(x̃(t) − x(t)) = (A + G1)(x̃(t) − x(t)) + B(̃v(t) − v(t)) −G1x(t) + G2̃v(t),

whence, due to the uniqueness of the solution to the initial problem and the notation G2̃v(t) −G1x(t) =

h(t) follows:

x̃(t) − x(t) =

∫ t

0
e(t − s)(A + G1) (B(̃v(s) − v(s)) + h(s)) ds.

i.e.,

‖x̃(t) − x(t)‖ ≤
∫ t

0
e(t − s)‖A + G1‖ · (‖B‖‖̃v(s) − v(s)‖ + ‖h(s)‖) ds

for t ∈ [0, tk], tk < ∞. Due to the smallness of G1, G2, h(t) and the difference ṽ(t) − v(t), the trajectory
of the perturbed system differs little from the trajectory of the unperturbed dynamical system.

Thus, the simulated movement is correct.
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5. Example

It is required to carry out the movement of the rocket in the vertical plane from point A0 to point A1;
with given speeds at points A0 and A1.

We neglect the size of the projectile. The movement of a material point with mass m under the
action of a reactive force (arising as a result of the separation of particles with elementary mass dm1

from the material point) is considered. The monograph [5] contains a system describing such a motion.
If we neglect the force of gravity of the Earth, then the system has the form

ẋ1 = x2,

ẋ2 = v1,

ẋ3 = x4,

ẋ4 = v2,

(5.1)

where x1(t) is the horizontal component of the matherial point position (we will use the notation MP
for a material point), x3(t) − vertical component of MT , x2(t) x4(t) are components of the MP velocity;

v1 = σ · cosα ·
ṁ
m

, v2 = σ · cos β ·
ṁ
m

, σ = |a|, a(t) = s(t) − v(t) − the vector of the relative velocity
of the separating particle; s(t) − the velocity vector of the particle dm1 at the moment t + dt after its
separation; v − vector of absolute speed of MT ; m = m(t) = m0 + m1(t), m0 = const − constant part of
the MT mass; m1(t) − the reactive mass of the MT ; α and β − are the angles of the vector a with the
axes OX and OY .

The starting position and starting speed of MP are given: xi(0) = x0i.
It is required to get to the point (x1(t1), x3(t1)) in time t1 with speed (x2(t1), x4(t1)) .
The system (5.1) consists of two identical subsystems, so it is enough to consider the solution of the

problem for one subsystem
ẋ1 = x2,

ẋ2 = v,
(5.2)

with the conditions
x1(0) = x01, x1(t1) = x11,

x2(0) = x02, x2(t1) = x12.
(5.3)

The system (5.2) is the system (1.1) with A =

(
0 1
0 0

)
, B =

(
0
1

)
, n = 2, m = 1; rank (B AB) = rank(

0 1
1 0

)
= 2, therefore, p = 1 and r = 4. The trajectory of movement is constructed in the form Eq

(2.1): (
x1(t)
x2(t)

)
= e−at

3∑
j=0

(
α j1

α j2

)
·

t j

j!
, (5.4)

the input function is constructed in the form

v(t) = e−at
3∑

j=0

β j ·
t j

j!
, a > 0, β j ∈ R

1. (5.5)
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The coefficients β j are found from the system (2.5) and (2.6), where (A + aI)B =

(
1
a

)
,

(A + aI)2B =

(
2a
a2

)
, (A + aI)3B =

(
3a2

a3

)
.

The system (2.5) and (2.6) is as follows:

1 a a2 a3

0 1 2a 3a2

0
t3
1

3!
(

t2
1

2!
+ a

t3
1

3!
) (t1 + a

t2
1

2!
+ a2 t3

1

3!
)

0 0
t3
1

3!
(

t2
1

2!
+ 2a

t3
1

3!
)




β3

β2

β1

β0

 =


g1

g2

g3

g4

 , (5.6)

where g1 = −a4x02, g2 = −a4x01 − 4a3x02, g3 = eat1 x12 − x02(1 + at1 +
a2t2

1

2!
+

a3t3
1

3!
),

g4 = eat1 x11 − x01(1 + at1 +
a2t2

1

2!
+

a3t3
1

3!
) − x02(t1 + 2a

t2
1

2!
+ 3a2 t3

1

3!
).

The main determinant of the system (5.6) after some transformations takes the form

4 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 a a2 a3

0 1 2a 3a2

0 0
t2
1

2!
(t1 + at2

1)

0 0 0
t2
1

2!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

And since 4 =
t4
1

4
, 0, the system (5.6) has a unique solution β j, j = 3, 2, 1, 0. The uniqueness

of the solution is due to the fact that KerD = 0, KerD1 = 0, since Q =

(
1 0
0 0

)
, I − Q =

(
0 0
0 1

)
,

D1 = QB(I − Q) =

(
0 1
0 0

)
, D1 acts one-to-one from Im D =

{(
0
c

)}
to Coker D =

{(
d
0

)}
,

c, d ∈ R1.
Next, substitution of β j values into Eq (2.4), then into Eq (2.1) produces the result:

x1(t) = e−at(x01 +
t

1!
(ax01 + x02) +

t2

2!
(β0 + a2x01 + 2ax02) +

t3

3!
(β1 + 2aβ0 + a3x01 + 3a2x02

)
),

x3(t) = e−at(x03 +
t

1!
(ax03 + x04) +

t2

2!
(γ0 + a2x03 + 2ax04) +

t3

3!
(γ1 + 2aγ0 + a3x03 + 3a2x04)),

where γ0, γ1 are found from the system (5.6) with x01 replaced by x03; x02 replaced by x04; x11 replaced
by x13; x12 replaced by x14; with β j replaced by γ j; with g j replaced by h j; where h1 = g1, h2 = g2,
h3 = g3 − eat1 × x14, h4 = g4 + eat1 × x11.

The collection of points {
(
x1(t), x3(t)

)
} the required trajectory of the system (5.1) with the conditions

xi(0) = x0i, xi(t1) = x1i, i = 1 − 4.
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The speed of movement of MP (x2(t), x4(t)) is calculated by the formulas

x2(t) = e−at(x02 + t(β0 + ax02) +
t2

2!
(β1 + aβ0 + a2x02) +

t3

3!
(β2 + aβ1 + a2β0 + a3x02)

)
,

x4(t) = e−at(x04 + t(γ0 + ax04) +
t2

2!
(γ1 + aγ0 + a2x04) +

t3

3!
(γ2 + aγ1 + a2γ0 + a3x04)

)
.

The movement of of MP is carried out due to action of (v1, v2) , where

v1 = e−at
3∑

j=0

β j ·
t j

j!
, v2 = e−at

3∑
j=0

γ j ·
t j

j!
.

In particular, for values
x01 = 0 m, x11 = 3000 m,
x02 = 500 m/sec, x12 = 0 m/sec,
x03 = 0 m, x13 = 0 m,
x04 = 500 m/sec, x14 = 500 m/sec,
t = 3 sec;

(5.7)

and for a = −0, 9; a = −1; a = −1, 1; a = −1, 2, the calculations made in the program of the
MathCad show the following.

For a = −0, 9 MT reaches the ground approximately at the point (2, 955; 0); therefore the value
a = −0, 9 is excluded.

For a = −1 an exact hit on the target is achieved; the values x1i, i = 1, 2, 3, 4 given in Eq (5.7) are
realized without error.

For a = −1, 1 MT will hit the point (3000 + 0, 2 × 10−13; 0, 3 × e−14) with the speed (−0, 5 ×
e−14; 500 + 0, 1 × 10−13) at the moment t = 3 sec .

With a = −1.2 at the moment t = 3 sec, MT will hit the point (3000 + 0, 5× 10−13; 0, 4× e−14) with
a speed (2, 4 × 10−11; 500 + 0, 4 × 10−14).

In this case, the trajectories of the MP are different (of different types):
for a = −1 maximum height of the trajectory ≈ 873, 7 m is reached at t ≈ 1, 7 sec and x1 ≈

1508, 7 m;
for a = −1, 1 maximum height of the trajectory ≈ 985, 6 m is reached at t ≈ 1, 7 sec and x1 ≈

1795, 6 m;
for a = −1, 2 maximum height of the trajectory ≈ 1197, 5 m m is reached at t ≈ 1, 8 sec and

x1 ≈ 2077 m.
Thus, the task is completely fulfilled for a = −1; and it is fulfilled with a subtle error for a = −1, 1

and for a = −1, 2.

6. Conclusions

In this paper, for the first time, the method of indefinite coefficients is applied to simulate the
multipoint motion of a linear dynamic system. This method is as follows.

1). The type of the modeled trajectory (state) of the system is selected; the type of the input
vector-function is also selected, under the influence of which the movement is carried out. In this
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paper, the exponential-polynomial form is chosen from the following considerations. Polynomial
vector functions are easy to calculate, but they have large amplitudes and grow rapidly over time. To
neutralize these shortcomings, an exponential function with an arbitrary negative exponent was
introduced into these vector functions.

This indicator can be selected based on the characteristics of a specific practical task. To determine
the number of terms in the formulated expressions, the information obtained earlier in [10–12] is used.

2). The generated state and input vector functions are substituted directly into the equations of the
dynamic system and the specified multipoint conditions. As a result, the following are displayed:
− system of linear algebraic equations for finding vector coefficients, with the help of which the

input vector function is then constructed;
− formulas for determining the vector coefficients involved in the construction of the trajectory of

the system.
Both the algebraic system and the named formulas are simple, the coefficients in them are only the

products of the matrix coefficients of the dynamical system under consideration. But the proof of the
existence of a solution to the obtained algebraic system has certain difficulties. For the proof, we use
the properties of finite-dimensional mappings: split spaces into subspaces, projection onto subspaces,
semi-inversion of mappings, ....

In view of the cumbersomeness of the proof, here we give a complete proof in a particular case and
outline ideas for evidence in other cases.

The correctness of the obtained motion model is proved when some parameters of the coefficients
are fixed. The need to fix the parameters is due to the nonuniqueness of the trajectory of motion of the
dynamic system under given multipoint conditions.

In the case of non-uniqueness of the solution of the obtained algebraic system, the ”extra” undefined
coefficients can be used solving additional problems, for example, for constructing a suboptimal input
vector function or for performing some other properties of the system state.

An example of obtaining formulas for constructing a trajectory in the vertical plane of a material
point under the action of a reactive force is given.

Calculations for a specific task performed in the MathCad system show the high efficiency of the
proposed method for modeling the trajectory of a linear dynamic system.
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