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Abstract: Since multiple studies have reported that small nucleolar RNAs (snoRNAs) can be serve 
as prognostic biomarkers for cancers, however, the prognostic values of snoRNAs in lung 
adenocarcinoma (LUAD) remain unclear. Therefore, the main work of this study is to identify the 
prognostic snoRNAs of LUAD and conduct a comprehensive analysis. The Cancer Genome Atlas 
LUAD cohort whole-genome RNA-sequencing dataset is included in this study, prognostic 
analysis and multiple bioinformatics approaches are used for comprehensive analysis and 
identification of prognostic snoRNAs. There were seven LUAD prognostic snoRNAs were 
screened in current study. We also constructed a novel expression signature containing five LUAD 
prognostic snoRNAs (snoU109, SNORA5A, SNORA70, SNORD104 and U3). Survival analysis 
of this expression signature reveals that LUAD patients with high risk score was significantly 
related to an unfavourable overall survival (adjusted P = 0.01, adjusted hazard ratio = 1.476, 95% 
confidence interval = 1.096‒1.987). Functional analysis indicated that LUAD patients with 
different risk score phenotypes had significant differences in cell cycle, apoptosis, integrin, 
transforming growth factor beta, ErbB, nuclear factor kappa B, mitogen-activated protein kinase, 
phosphatidylinositol-3-kinase and toll like receptor signaling pathway. Immune microenvironment 
analysis also indicated that there were significant differences in immune microenvironment scores 
among LUAD patients with different risk score. In conclusion, this study identified an novel 
expression signature containing five LUAD prognostic snoRNAs, which may be serve as an 
independent prognostic indicator for LUAD patients. 
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1. Introduction 

Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer worldwide and is a 
non-small cell lung cancer. With the rapid development of medical technology and drugs, the diagnosis 
and treatment of LUAD has been greatly improved, but the survival rate of LUAD is still not 
satisfactory. Small nucleolar RNA (snoRNA) is a class of small non-coding RNAs widely found in the 
nucleoli of eukaryotic cells. Among them, Box C/D and Box H/ACA are the main known snoRNA 
types, which mainly guide the dioxymethylation and pseuduracil modification of ribosomal RNA by 
base pairings, respectively [1]. In addition, some studies have reported that snoRNA is involved in the 
post-transcriptional modification of snRNA, tRNA and mRNA [1]. There are also a considerable 
number of snoRNAs whose functions are unknown and are called orphan snoRNAs. In recent years, 
With the advancement of high-throughput sequencing, numerous dataset suggest that snoRNA is 
dysregulation and plays a role in multiple cancers [2,3]. Previous studies have reported that snoRNA 
plays a role in tumorigenesis and progression of cancers, and may become a new prognostic biomarker 
for cancers [4,5]. Since multiple studies have reported that snoRNAs can be serve as prognostic 
biomarkers for cancers, however, the prognostic values of snoRNAs in LUAD remain unclear [6,7]. 
In current study, the prognostic value of snoRNAs were explored based on the RNA sequencing dataset 
of The Cancer Genome Atlas (TCGA) LUAD cohort, and the bioinformatics approaches were further 
used for comprehensive analysis. 

2. Materials and methods 

2.1. Acquisition of RNA sequencing dataset 

The whole genome RNA sequencing dataset of lung adenocarcinoma were downloaded from 
TCGA website (https://portal.gdc.cancer.gov) [8], and the raw dataset were normalized by edgeR. 
SnoRNAs with an average value greater than 0.5 was included in the follow-up analysis, and the rest 
were excluded. Inclusion criteria for patients included in the prognostic analysis: 1) LUAD patients 
have both survival information and RNA sequencing dataset; 2) RNA sequencing sample is the 
primary tumor tissue. Exclusion criteria: 1) Recurrent tumor tissue or duplicate samples of the same 
patient; 2) The patient lacks survival parameters or RNA sequencing dataset. We finally won the 500 
cases LUAD patients included in the subsequent survival analysis [9]. Since all the dataset for the 
present study comes from TCGA database, the authors did not have any experiments involving humans 
or animals in this study. Therefore, the approval of the ethics committee is not required. 

2.2. Identification of prognostic snoRNAs and signature construction 

The identification of prognostic snoRNAs are calculated by the survival package in the R platform 
through the multivariate Cox proportional hazard regression model. The high- and low-expression 
groups of snoRNAs or genes were grouped according to the median value of expression. The clinical 
adjustment variables in the multivariate Cox model are these variables related to LUAD overall 
survival (OS). We use the step function of the survival package to screen the optimal expression 
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signature for the prognostic-related snoRNAs of LUAD in the R platform. The calculation formula of 
snoRNA expression signature is as follows: Risk score = expression of snoRNA1 × β1 + expression 
of snoRNA2 × β2 + … expression of snoRNAn × βn [9]. The surcivalROC package is used to evaluate 
the prediction accuracy of this snoRNA expression signature. The nomogram was executed by the rms 
package. Joint effect survival analysis was used to evaluate the combination of risk score and 
traditional clinical parameters to classify LUAD patients with different prognosis.  

2.3. Functional enrichment analysis 

In order to further understand the potential functional mechanism of this snoRNA expression 
signature. We conduct a functional enrichment analysis through three ways of snoRNA co-expression 
genes, differentially expressed genes (DEGs) and gene set enrichment analysis (GSEA). The 
acquisition of whole-genome expression profile dataset was derived from the same dataset as snoRNA, 
and the processing method of the original data was also the same. Co-expression genes were defined 
as the absolute value if Pearson correlation coefficient (r) between geneand snoRNA expression in 
LUAD tumor tissues greater than 0.2. DEGs were also identified by edgeR, and DEGs were defined 
as log2|fold change (FC)| > 1, P < 0.05 and false discovery rate (FDR) > 0.05. The GSEA analysis was 
performed by the GSEA desktop application and the reference gene sets were C2 
(c2.all.v7.4.symbols.gmt) and C5 (c5.all.v7.4.symbols.gmt). The criteria for GSEA significance 
results are as follows: |Normalized Enrichment Score (NES)| > 1，FDR < 0.5 and P < 0.05 [10,11]. 
Functional enrichment analysis of DEGs and co-expression genes were performed by Database for 
Annotation, Visualization and Integrated Discovery v6.8 (DAVID v6.8, 
https://david.ncifcrf.gov/home.jsp), and gene ontology (GO) term and kyoto encyclopedia of genes 
and genome (KEGG) pathways were annotated for these genes [12,13]. Subsequently, we also 
investigated the tumor immune microenvironment of LUAD. The ESTIMATE package is used to 
calculate the parameters of the tumor immune microenvironment [14]. 

2.4. Statistical analysis 

The co-expression interaction was evaluated using Pearson’s correlation coefficient r. The 
calculation of FDR is performed according to the Benjamini-Hochberg program [15]. All statistical 
analysis adopts SPSS version 22.0 and R version 3.6.2. P < 0.05 considered significant difference. 

3. Results  

3.1. Identification of prognostic snoRNAs 

The demographics of TCGA LUAD cohort are shown in Table S1. In the patients’ baseline dataset, 
we found that tumor stage is closely related to OS in TCGA LUAD cohort. Therefore, we included 
tumor stage as a correction factor in the multivariate Cox proportional hazards regression model. We 
obtained 940 snoRNAs from the raw RNA sequencing dataset of TCGA LUAD cohort, and finally 
obtained 288 snoRNAs that met the requirements for subsequent survival analysis. Seven snoRNAs 
that are significantly related to LUAD OS were screened out through multivariate Cox proportional 
hazards regression model analysis in the R platform (Table 1 and Figure 1). The seven prognostic 
snoRNAs are snoU109 (ENSG00000238832), U8 (ENSG00000239148), SNORA70 
(ENSG00000206886), U3 (ENSG00000207119), SNORA5A (ENSG00000206838), SNORD7 
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(ENSG00000207297), SNORD104 (ENSG00000199753). The Kaplan-Meier survival curve of 
prognostic snoRNAs are shown in Figure 2A–G.  

Table 1. Multivariate analysis results of snoRNAs related to the prognosis of LUAD patients. 

ID Adjusted Pƛ HR Low 95% CI High 95% CI 
snoU109|ENSG00000238832 0.009846 1.482519 1.099398 1.999151 
U8|ENSG00000239148 0.010419 0.677437 0.502876 0.91259 
SNORA70|ENSG00000206886 0.017174 0.697903 0.51918 0.93815 
U3|ENSG00000207119 0.030339 0.720103 0.534974 0.969297 
SNORA5A|ENSG00000206838 0.036391 1.369859 1.020138 1.83947 
SNORD7|ENSG00000207297 0.037603 0.73046 0.543267 0.982155 
SNORD104|ENSG00000199753 0.044011 0.736418 0.546781 0.991827 

Notes: ƛ adjusted for tumor stage. Abbreviation: HR, hazard ratio; CI, confidence interval. 

 

Figure 1. Volcano plot of prognostic-related snoRNAs in the TCGA LUAD cohort. 
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Figure 2. Kaplan Meier curve of prognostic snoRNAs. (A) Kaplan Meier curve of 
snoU109; (B) Kaplan Meier curve of U8; (C) Kaplan Meier curve of SNORA70; (D) 
Kaplan Meier curve of U3; (E) Kaplan Meier curve of SNORA5A; (F) Kaplan Meier curve 
of SNORD7; (G) Kaplan Meier curve of SNORD104. 

3.2. Comprehensive survival analysis of snoRNA expression signature 

Then we get the optimal combination signature through the step function in R platform. The 
formula of expression signature is as follows: Risk score = expression of snoU109 × (0.1293) + 
expression of SNORA5A × (0.1046) + expression of SNORA70 × (‒0.2012) + expression of 
SNORD104 × (‒0.1005) + expression of U3 × (‒0.1155). Through survival analysis, we found that in 
this snoRNA expression signature, the OS of LUAD patients with high risk was significantly reduced 
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(adjusted P = 0.01, adjusted hazard ratio = 1.476, 95% confidence interval = 1.096‒1.987, Figure 3A,B). 
Subsequent time-dependent receiver operator characteristic curve (ROC) analysis found that this 
snoRNA expression signature has a certain application value in predicting LUAD OS. The area under 
curve (AUC) is 0.618 in 5-year OS, and the highest is 0.666 in 9-year OS (Figure 3C). Joint effect 
survival analysis suggests that the combination of risk score model and tumor stage can more 
accurately classify LUAD patients into subgroups with significant differences in prognosis (Table 2 
and Figure 4A,B). The nomogram suggested that the contribution of risk score in the TCGA LUAD 
cohort was second only to the tumor stage (Figure 4C).  

 

Figure 3. SnoRNA expression signature for LUAD OS. (A) Scatter plot of patients’ 
survival time distribution and risk score; (B) Time dependent ROC curve of risk score; (C) 
Kaplan Meier curve of risk score. 
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Figure 4. Joint effect survival analysis curve and nomogram of risk score and tumor stage. 
(A-B) Kaplan Meier curve of Joint effect analysis of risk score and tumor stage; (C) 
Nomogram of risk score and clinical parameters.  
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Table 2. Joint effect survival analysis of the prognostic signature and tumor stage. 

Group Risk 
score 

Tumor stage b Patients 
(n = 
488) 

MST 
(days) 

Crude HR (95% CI) Crude P Adjusted HR (95% CI) Adjusted Pƛ 

1 Low risk I 142 3361 1 1 
2 Low risk II 55 1516 2.834 (1.592-5.044) 0.0004 2.834 (1.592-5.044) 0.0004 
3 Low risk III 10 879 4.043 (2.267-7.212) < 0.0001 4.043 (2.267-7.212) < 0.0001 
4 Low risk IV 9 976 4.458 (1.943-10.351) 0.0004 4.458 (1.943-10.351) 0.0004 
5 High risk I 126 1622 1.749 (1.065-2.874) 0.027 1.749 (1.065-2.874) 0.027 
6 High risk II 64 1046 3.761 (2.239-6.316) < 0.0001 3.761 (2.239-6.316) < 0.0001 
7 High risk III 40 624 5.518 (3.162-9.628) < 0.0001 5.518 (3.162-9.628) < 0.0001 
8 High risk IV 16 697 5.839 (2.712-12.571) < 0.0001 5.839 (2.712-12.571) < 0.0001 

A Low risk I + II 197 2617 1 1 
B Low risk III + IV 49 879 2.913 (1.820-4.662) < 0.0001 4.099 (2.120-7.922) < 0.0001 
C High risk I + II 190 1454 1.639 (1.134-2.369) 0.009 1.548 (1.070-2.240) 0.020 
D High risk III + IV 56 697 3.940 (2.517-6.167) < 0.0001 5.524 (2.941-10.379) < 0.0001 

Notes: b Information of tumor stage was unavailable in 8 patients; ƛ adjusted for tumor stage. Abbreviation: MST, median survival time; HR, 
hazard ratio; CI, confidence interval; NA, not available. 



3.3. Functional enrichment analysis 

We also screened co-expression genes for the five snoRNAs in the risk score signature by Pearson 
correlation coefficient. A total of 917 SNORA5A co-expressed genes were screened (Figure 5 and 
Table S3). 158 co-expressed genes for SNORA70 (Figure 6 and Table S3). 1048 co-expressed genes 
for SNORD104 (Figure 7 and Table S3). 987 co-expressed genes for snoU109 (Figure 8 and Table 
S3). 303 co-expressed genes for U3 (Figure 9 and Table S3). Through merging, we found that a total 
of 3031 snoRNA co-expressed genes were obtained. Functional enrichment analysis revealed that 
these genes were significantly involved in the following biological functions: DNA replication-
dependent nucleosome assembly, ubiquitin-protein transferase activity, cell cell adhesion, DNA repair, 
regulation of cell cycle, integrin binding, I-kappaB kinase/NF-kappaB signaling, negative regulation 
of TOR signaling, hippo signaling, and regulation of ubiquitin-protein ligase activity involved in mitotic 
cell cycle (Table S4). KEGG analysis revealed that these snoRNA co-expressed genes may be involved in 
the following signaling pathways: focal adhesion, ubiquitin mediated proteolysis, proteoglycans in cancer, 
transcriptional misregulation in cancer, and Ras signaling pathway (Table S4). A total of 319 LUAD 
prognostic related genes were identified, including 169 low risk genes [hazard rate (HR) < 1] and 150 
high risk genes (HR > 1) (Figure 10A and Table S5). The top three significant genes are transmembrane 
protein 125 (TMEM125, Figure 10B), phosphatidylglycerophosphate synthase 1 (PGS1, Figure 10C), 
and myozenin 1 (MYOZ1, Figure 10D). 

 

Figure 5. Gene-snoRNA co-expression interaction network of SNORA5A in LUAD tumor tissues. 
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Figure 6. Gene-snoRNA co-expression interaction network of SNORA70 in LUAD tumor tissues. 

 

Figure 7. Gene-snoRNA co-expression interaction network of SNORD104 in LUAD tumor tissues. 
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Figure 8. Gene-snoRNA co-expression interaction network of snoU109 in LUAD tumor tissues. 

 

Figure 9. Gene-snoRNA co-expression interaction network of U3 in LUAD tumor tissues. 
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Figure 10. Survival analysis results of co-expression genes of snoRNA expression 
signature. (A) Volcano plot of prognostic analysis results of co-expressed genes; (B) 
Kaplan Meier curve of TMEM125; (C) Kaplan Meier curve of PGS1; (D) Kaplan Meier 
curve of MYOZ1. 

We further screened DEGs for LUAD patients between low- and high-risk phenotypes. A 
total of 772 DEGs were obtained, of which 394 DEGs were significantly down-regulated and 378 
DEGs were significantly up-regulated (Figure 11 and Table S6). Functional enrichment analysis 
revealed that these genes were significantly involved in the following biological functions: DNA 
replication-dependent nucleosome assembly, DNA replication-independent nucleosome assembly, 
positive regulation of cell proliferation, positive regulation of mitotic nuclear division, positive 
regulation of cell division, cell surface receptor signaling pathway, and fibroblast growth factor 
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receptor binding (Table S7). KEGG analysis revealed that these DEGs may be involved in the 
following signaling pathways: drug metabolism-cytochrome P450, PPAR signaling pathway, 
transcriptional misregulation in cancer, and chemical carcinogenesis (Table S7). Through the survival 
analysis of these DEGs, we obtained a total of 88 LUAD prognostic-related DEGs (Figure 12A and 
Table S7). The top three significant DEGs are protein arginine methyltransferase 8 (PRMT8, 
Figure 12B), keratin 9 (KRT9, Figure 12C) and growth factor independent 1B transcriptional 
repressor (GFI1B, Figure 12D). In addition, we also constructed the co-expression interaction 
network of these DEGs through the weighted gene co-expression network analysis (WGCNA) 
approach. We have obtained three DEGs modules through WGCNA (Figure 13A–D). The 
WGCNA co-expression interaction network is displayed in Figure 14. In this WGCNA co-
expression interaction network, there are two hub DEGs with the highest degree, which are histone 
cluster 1 H3b (HIST1H3B) and histone cluster 1 H1b (HIST1H1B) respectively, and both with the 
degree of 38 in turquoise module (Figure 14).  

 

Figure 11. Volcano plot of fold change of DEGs between low- and high-risk score phenotypes. 
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Figure 12. Survival analysis results of DEGs between low- and high-risk score phenotypes. 
(A) Volcano plot of prognostic analysis results of DEGs; (B) Kaplan Meier curve of 
PRMT8; (C) Kaplan Meier curve of KRT9; (D) Kaplan Meier curve of GFI1B. 
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Figure 13. Results of WGCNA analysis. (A) Soft threshold (β value) distribution map; (B) 
Soft threshold correlation scatter plot; (C) Cluster dendrogram of WGCNA modules; (D) 
Tom plot of WGCNA modules. 
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Figure 14. WGCNA co-expression interaction network. 

We also use GSEA to explore the mechanism of this snoRNA expression signature. GSEA using 
the c5 reference gene set suggested that LUAD patients with high-risk score phenotypes are markedly 
different from low-risk score phenotypes in the following biological processes: ErbB signaling 
pathway, toll like receptor signaling pathway, regulation of cell cell adhesion, nuclear factor (NF)-
kappaB-Inducing Kinase (NIK)/NF kappa B signaling, non canonical Wnt signaling pathway, cell cell 
G1/S phase transition, integrin mediated signaling pathway, extrinsic apoptotic signaling pathway, 
epidermal growth factor receptor signaling pathway, platelet derived growth factor receptor signaling 
pathway, transforming growth factor beta receptor signaling pathway, positive regulation of Wnt 
signaling pathway, receptor signaling pathway via signal transducers and activators of transcription 
(STAT), regulation of apoptotic signaling pathway, regulation of mitogen-activated protein kinase 
(MAPK) activity and phosphatidylinositol 3 kinase (PI3K) binding (Figure 15A–P). GSEA using the 
c2 reference gene set suggested that LUAD patients with high-risk score phenotypes are markedly 
different from low-risk score phenotypes in the following pathways: epidermal growth factor receptor 
(ErbB1) receptor proximal pathway, p38/MAPK pathway, toll like receptor signaling pathway, 
metastasis epithelial-to-mesenchymal transition (EMT) up, PI3KCI/AKT pathway, NFκB signaling, 
signaling by the B cell receptor (BCR), Notch pathway, apoptosis, cell cycle pathway, p53 signaling 
pathway, hypoxia-inducible factor (HIF) pathway, tumorigenesis up, tumor angiogenesis up, TGFB 
signaling pathway and integrin pathway (Figure 16A–P). 
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Figure 15. GSEA results between high-risk and low-risk phenotypes by using C5 
reference gene set. (A) ErbB signaling pathway; (B) toll like receptor signaling 
pathway; (C) regulation of cell cell adhesion; (D) NIK/NF kappa B signaling; (E) non 
canonical Wnt signaling pathway; (F) cell cell G1/S phase transition; (G) integrin 
mediated signaling pathway; (H) extrinsic apoptotic signaling pathway; (I) epidermal 
growth factor receptor signaling pathway; (J) platelet derived growth factor receptor 
signaling pathway; (K) transforming growth factor beta receptor signaling pathway; (L) 
positive regulation of Wnt signaling pathway; (M)receptor signaling pathway via 
signal transducers and activators of transcription (STAT); (N)regulation of apoptotic 
signaling pathway; (O)regulation of mitogen-activated protein kinase (MAPK) activity; 
(P)phosphatidylinositol 3 kinase (PI3K) binding. 
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Figure 16. GSEA results between high-risk and low-risk phenotypes by using C2 
reference gene set. (A) epidermal growth factor receptor (ErbB1) receptor proximal 
pathway; (B) p38/MAPK pathway; (C) toll like receptor signaling pathway;(D) 
metastasis epithelial-to-mesenchymal transition (EMT) up; (E) PI3KCI/AKT 
pathway;(F) NFκB signaling; (G) signaling by the B cell receptor (BCR); (H) Notch 
pathway; (I) apoptosis; (J) cell cycle pathway; (K) p53 signaling pathway; (L) hypoxia-
inducible factor (HIF) pathway; (M) tumorigenesis up; (N) tumor angiogenesis up; (O) 
TGFB signaling pathway; (P) integrin pathway. 
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3.4. Investigation of tumor immune microenvironment 

We also used whole-genome RNA sequencing data to score the immune microenvironment in 
TCGA Luad patients. Stromal score was significantly increased in LUAD patients with high risk and 
high snoU109 (Figure 17A). Stromal score was markedly reduced in LUAD patients with high 
expression of SNORD104 (Figure 17A). Immune score was markedly increased in LUAD patients 
with high risk (Figure 17B). ESTIMATE score was markedly increased in LUAD patients with high 
risk and high snoU109, and was markedly reduced in LUAD patients with high expression of 
SNORD104 (Figure 17C).  

 

Figure 17. SnoRNA expression signature immune microenvironment score results. (A) 
Stromal score of risk score and its snoRNAs in LUAD tumor tissues; (B) Immune score of 
risk score and its snoRNAs in LUAD tumor tissues; (C) ESTIMATE score of risk score 
and its snoRNAs in LUAD tumor tissues. 
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4. Discussion 

With the wide application of next-generation sequencing technology in tumors, more and more 
non-coding RNAs have been found to be abnormally expressed in tumor tissues, and their biological 
functions play a certain role in tumorigenesis, development and prognosis [16,17]. SNORNA belongs 
to a class of non-coding RNAs. Recently, increasing evidences have shown that SNORNA plays an 
important role in the tumorigenesis, development, diagnosis and prognosis of cancers [18]. Previous 
studies have mined the high-throughput sequencing data of TCGA and constructed a snoRNA-related 
online analysis tool to explore the prognosis and drug response for snoRNA in TCGA pan-cancer 
cohort [2,3,19]. Shuwen et al. reviewed snoRNAs related to hepatocellular carcinoma (HCC). Multiple 
snoRNAs have been reported to be closely related to EMT and Wnt/β-catenin signaling pathways [4]. 
Dsouza et al. also reviewed the breast-cancer-related snoRNA and gave a comprehensive overview of 
the role of snoRNA in breast cancer. In addition, the regulation, biological function, signaling pathway 
and clinical efficacy of the abnormal expression of snoRNAs in breast cancer were summarized [5]. 
Previous studies have also identified cancer prognostic related snoRNAs and constructed prognostic 
snoRNAs expression signature based on the TCGA RNA sequencing dataset. Deng et al. used the 
TCGA lower grade glioma (LGG) patient RNA sequencing data set to screen for prognostic-related 
snoRNA, and initially constructed an prognostic expression signature based on eleven prognostic 
snoRNAs, and initially identified the potential biological function mechanisms and targeted drugs of 
this expression signature in LGG [7]. Cao et al. used the TCGA bladder cancer patient RNA 
sequencing data set to screen prognostic-related snoRNA, and then used the least absolute shrinkage 
and selection operator cox regression model to construct an expression signature based on five 
prognostic snoRNAs. And constructed a bladder cancer prognostic nomogram based on the risk score 
model. SuivivalROC is used to evaluate the accuracy of this risk score model to predict the 5-year 
survival of bladder cancer patients, and the AUC is greater than 0.7 [20]. Liu et al. also identified 15 
prognostic-related snoRNAs by analyzing TCGA sarcoma cohort dataset, and constructed a expression 
signature based on four prognostic snoRNAs [6]. Pan et al. built an incremental feature selection based 
on the TCGA pan-cancer database and using the monte carlo feature selection approach to predict the 
prognosis of cancer patients [21]. Zhao et al. confirmed that snoRNA is a diagnostic indicator of clear 
cell renal cell carcinoma through TCGA data and the serum samples of the validation cohort, and also 
constructed a six-snoRNA signature that can be used as an independent prognostic indicator of clear 
cell renal cell carcinoma [22]. In this study, a prognostic expression signature of five-snoRNA was 
constructed based on the multivariate Cox proportional hazard regression model by LUAD prognostic 
snoRNAs. In a review of previous studies, no one in LUAD has ever comprehensively analyzed 
prognostic related snoRNA. This study is the first to report that snoRNA can be used as a prognostic 
marker for LUAD.  

Among the five prognostic snoRNAs in the signature of this study, only U3 is closely related to 
cancers in previous studies, and the other four snoRNAs have not been reported in cancers. expression 
had a poor prognosis [6]. In this study, we also observed that LUAD patients with low U3 expression 
have a poor prognosis for patients with higher expression. Some DEGs or co-expressed genes of 
snoRNAs screened in this study that are related to the prognosis of LUAD have also been reported to 
be closely related to cancers in previous studies. TMEM125 has been reported to be significantly 
associated with prognosis in non-small cell lung cancer [23]. Previous studies have confirmed that 
PRMT8 plays a certain role in the proliferation, invasion, migration and drug resistance of colon cancer, 
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and is closely related to the formation of stem cells of colon cancer cells [24]. PRMT8 is highly 
expressed in breast cancer, ovarian cancer, and gastric cancer. High PRMT8 expression is associated 
with increased survival in breast and ovarian cancer patients, while high PRMT8 expression is 
associated with reduced survival in gastric cancer patients [25]. KRT9 and HSP70 interact to influence 
bladder cancer cells invasion and metastasis in vitro [26]. GFI1B is necessary for the development of 
erythrocyte and megakaryocyte cell lines, and its abnormal function often leads to cancer or 
hematologic malignancies [27]. Meanwhile, study have shown that GFI1B can regulate the immobility 
of hematopoietic stem cells and the differentiation of red blood cells and platelets, and the loss of 
GFI1B heterozygosity can accelerate the progression of acute myeloid leukemia (AML) [28]. Low 
expression of GFI1B is associated with poor prognosis in patients with myelodysplastic syndrome 
(MDS) and AML [29]. Spi-1 proto-oncogene (SPI1) is a regulatory target of GFI1B, and there is a 
negative correlation between the two genes. GFI1B can affect the development of erythroid and bone 
marrow mononuclear cells by regulating SPI1 [30]. GFI1B p32 mutation can reduce the number of 
platelets, p32 is elevated in acute and chronic leukemia cells, and cancer-related genes in humans are 
significantly dysregulated, confirming that GFI1B may play a role in carcinogenic regulation [31]. 
Significant overexpression of GFI1B in hematological malignancies can increase the proliferation of 
leukemia cells and make the disease progress. Targeted inhibition of GFI1B can significantly inhibit 
the proliferation of hematological malignancies and can be used as a potential therapeutic target for 
hematological malignancies [32,33]. In the functional enrichment analysis, we enriched a large number 
of classic tumor-related signaling pathways, which may be the potential molecular mechanism of 
snoRNA’s function in LUAD. 

The objective evaluation of this research is not perfect. First, this study is a single-center cohort 
study and lacks additional validation cohorts. Second, this study is based on RNA sequencing data for 
functional enrichment analysis, and the biological functional mechanisms selected still need to be 
verified by in vivo and in vitro experiments. Third, due to the limited clinical parameters and sample 
size provided by the TCGA official website, our results still need further verification. Despite the 
above shortcomings, our research still innovative. First of all, this study is the first comprehensive 
screening study of LUAD prognostic-related snoRNAs based on RNA sequencing dataset, and no one 
has ever reported on LUAD prognostic snoRNAs before. Secondly, we also use prognostic-related 
snoRNA to construct a prognostic signature model. Third, we also explored the molecular mechanism 
of this snoRNA feature based on RNA sequencing data. In summary, this study innovatively identified 
the prognostic related snoRNAs of LUAD for the first time, and comprehensively explored them from 
the perspective of prognosis and molecular mechanisms. It has certain clinical application value and 
provides theoretical basis for future study. 

5. Conclusions 

In summary, seven LUAD prognostic related snoRNAs were screened in this study. We also 
constructed an expression signature containing five LUAD prognostic related snoRNAs (snoU109, 
SNORA5A, SNORA70, SNORD104 and U3). Functional analysis indicated that LUAD patients with 
different risk score phenotypes had significant differences in cell cycle, apoptosis, integrin, TGFB, 
ErbB, NFκB, MAPK, PI3K and toll like receptor signaling pathway. These biological functional 
mechanisms may be the potential factors for the significant differences in prognosis between different 
risk score phenotype LUAD patients. Immune microenvironment analysis also indicated that there 
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were significant differences in immune microenvironment scores among LUAD patients with different 
risk score. However, our results still need to be validated in future studies. 
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