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Abstract: Cardiovascular and cerebrovascular diseases are leading causes of death worldwide, 

accounting for more than 40% of all deaths in China. Acute myocardial infarction (AMI) is a common 

cardiovascular disease and traditionally divided into ST-segment (STEMI) and non-ST-segment 

elevation myocardial infarction (NSTEMI), which are known with different prognoses and treatment 

strategies. However, key regulatory genes and pathways involved in AMI that may be used as potential 

biomarker for prognosis are unknown. In this study, we employed both bulk and single-cell RNA-seq 

to construct gene regulatory networks and cell-cell communication networks. We first constructed 

weighted gene co-expression networks for differential expressed genes between STEMI and NSTEMI 

patients based on whole-blood RNA-seq transcriptomics. Network topological attributes (e.g., node 

degree, betweenness) were analyzed to identify key genes involved in different functional network 

modules. Furthermore, we used single-cell RNA-seq data to construct multilayer signaling network to 

infer regulatory mechanisms of the above key genes. PLAUR (receptor for urokinase plasminogen 

activator) was found to play a vital role in transducing inter-cellular signals from endothelial cells and 

fibroblast cells to intra-cellular pathways of myocardial cells, leading to gene expression involved in 

cellular response to hypoxia. Our study sheds lights on identifying molecular biomarkers for diagnosis 

and prognosis of AMI, and provides candidate key regulatory genes for further experimental validation.  
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1. Introduction  

The morbidity and mortality of acute myocardial infarction (AMI) is still substantial worldwide 

despite the widespread access to reperfusion therapy [1]. In 2017, about 10.6 million cases of 

myocardial infarction were reported worldwide contributing to hospitalization and mortality [2]. 

AMI is divided into ST elevation myocardial infarction (STEMI) and non-ST segment elevation 

myocardial infarction (NSTEMI). The clinical manifestations of acute myocardial infarction are chest 

tightness, chest pain, and dyspnea. The pathophysiological process of acute myocardial infarction 

involves lipid deposition, vascular endothelial dysfunction, plaque formation, arterial stenosis, plaque 

rupture, and thrombosis [3]. Major risk factors for atherosclerosis included age, hypertension, 

hyperlipidemia, diabetes, obesity, and lack of exercise. The acute myocardial infarction is a multi-stage 

and multi-step disease, and patients with AMI are of significant heterogeneity, which make it difficult 

for clinicians to identify biomarkers and targets for prognosis and therapy [4]. 

Previous studies have demonstrated that discovering and controlling specific proteins can 

effectively control atherosclerosis. It is well known that lipid deposition is a key factor in 

atherosclerosis. Many experimental studies have shown that PCSK9 was associated with the phenotype 

of familial hypercholesterolemia. Based on this finding, the PCSK9 inhibitors (alirocumab and 

evolocumab) could dramatically decrease plasma LDL-C levels, even in patients who are taking the 

maximum dose of statins. PCSK9 inhibitors bring long-term benefits to patients with coronary heart 

disease, especially patients with myocardial infarction [5]. These approaches allow for the 

identification of novel gene, specific antibody and efficient therapeutic strategies. Inflammation is 

another key pathophysiological mechanism in atherosclerosis. In the CANTOS clinical trial 

(Canakinumab Anti-Inflammatory Thrombosis Outcomes Study), Canakinumab, an anti-IL-β 

monoclonal antibody significantly reduced the incidence of major adverse cardiovascular events 

(MACE) in the subjects with prior myocardial infarction [6].  

The vascular endothelium is a thin layer of cells acted as a barrier to prevent lipid infiltration. 

Endothelial dysfunction is an independent risk factor of atherosclerosis. Numerous molecular and 

signal pathways are involved in the process of endothelial dysfunction, such as Nuclear factor kappa 

B(NF-κB) [7], endothelial nitric oxide synthase(eNOS) [8], AMPK-mTOR (AMP-activated protein 

kinase-mechanistic target of rapamycin kinase) signaling pathway [9]. However, the absence of 

reliable markers has hampered our understanding of specific role of endothelial dysfunction in 

atherosclerosis, especially myocardial infarction.  

The cardiomyocytes (CM) were incapable of regeneration following injury in adult mammalian 

heart, but it can be regenerated for newborn mammalian heart. Several studies used RNA-sequencing 

to explore key molecular mechanisms of cardiomyocytes in myocardial infarction. Cui M et al. have 

recently described two factors, nuclear transcription factor Y subunit alpha (NFYa) and nuclear factor 

erythroid 2-like 1 (NFE2L1) transcription factors, that play a unique role in protecting against ischemic 

injury [10]. Ruiz-Villalba A et al. identified a unique subtype of cardiac fibroblasts (CF) that plays an 

essential role in ventricular remodeling process in response to cardiac damage [11]. The activated 

cardiac fibroblasts highly express collagen triple helix repeat containing 1 (Cthrc1) in the scar. 
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Furthermore, it has been confirmed that the CTHRCI was a key regulator to heal scar process. However, 

how different types of cells (e.g., endothelial cell (EC), CM and CF) interact with each other during 

the course of myocardial infarction are unclear. Furthermore, the key molecules involved in inter and 

intra-cellular signaling pathways between endothelial cell (EC), CM and CF remains poorly 

understood.   

In this paper, to identify key genes and regulatory pathways involved in different subtypes of 

AMI, we collected both bulk and single-cell RNA-seq (scRNA-seq) data to construct weighted gene 

co-expression networks and multilayer inter-/intra-cellular signaling networks. Network module 

analysis, topological attribute analysis, functional enrichment analysis and scRNA-seq data analysis 

were performed. The results revealed that PLAUR (receptor for urokinase plasminogen activator) 

plays a vital role in inter- and intra-cellular signaling transduction of myocardial cells. Our study 

provided potential biomarkers for diagnosis and prognosis of AMI.  

2. Materials and methods  

2.1. RNA-seq data analysis 

RNA-seq data was collected from Gene Expression Omnibus (GEO) database with accession 

number GSE103182 [12]. The RNA-seq data contained 30 samples of AMI patients, of which 15 were 

STEMI and 15 were NSTEMI. The raw data were corrected for unnecessary confounding variables 

and analyzed for differential gene expression with R package RUVSeq [13] and edgeR [14], 

respectively [12]. 

Based on the FPKM standardized expression matrix, we constructed the co-expression network 

for differential expressed genes using WGCNA R package [15] (version: 1.70-3). The main steps to 

construct co-expression network were as follows: (1) cluster the samples, and remove outliers; (2) 

select the soft threshold β; (3) construct co-expression network by ‘blockwiseModules’ function, which 

is used to divide genes into modules. The parameter ‘minModuleSize’ was set to 30. Other parameters 

not mentioned were default parameters in the WGCNA package. 

For network visualization, we exported the co-expression network of gene modules (expect grep 

module), and then imported them into Cytoscape [16] software (version: 3.8.2), respectively. Also, we 

performed network topology properties analysis on every gene of every network by the ‘Analyze 

Network’ function in the Cytoscape software.  

2.2. scRNA-seq data analysis 

scRNA-seq dataset of heart tissue in human heart disease (coronary atherosclerotic heart disease 

and dilated cardiomyopathy) patients was derived from GEO database with accession number 

GSE121893 [17]. There were 25742 genes and 4933 cells in the data. Due to many missing values or 

dropouts in single-cell data usually, we made single-cell data imputation by scImpute [18] package 

before analysis. All parameters are default in the scImpute package. 

We imported the scRNA-seq data into R4.0.3, and performed data analysis by Seurat [19] package 

(version: 4.0.0). First, ‘CreateSeuratObject’ function was used to create Seurat object, and 

‘LogNormalize’ method in ‘NormalizeData’ function was used for data normalization. Then, we found 

2000 highly variable genes through ‘FindVariableFeatures’ function. Next, we carried on 
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dimensionality reduction by PCA method, based on the 2000 highly variable genes, which was scaled 

by ‘ScaleData’ function. The top 15 PCs was applied in analysis of cell clustering, by ‘FindNeighbors’ 

and ‘FindClusters’ function, whose resolution was set to 0.5. In addition, cell type classification was 

performed according to the marker genes described in the original literature [17]. Finally, UMAP 

method was used for visualization based on the first 15 PCs. Other parameters not mentioned were 

default parameters in the Seurat package. 

2.3. Multilayer network construction 

Based on the scRNA-seq data mentioned above, multilayer networks were constructed by our 

previously developed tool scMLnet [20] package (version: 0.2.0), which uses prior information and 

Fisher's exact test to construct intercellular communication and intracellular transcriptional regulation 

network. We constructed multilayer networks with CM as receptor cells, macrophages (MP), EC, 

fibroblasts (FB) and smooth muscle cells (SMC) as ligand cells. All parameters are default in the 

scMLnet package. 

2.4. Functional enrichment analysis 

For further study, clusterProfiler [21] package (version: 3.18.1) was used for functional 

enrichment analysis in both RNA-seq and scRNA-seq data. In the WGCNA analysis of RNA-seq, in 

order to study the functions involved in each gene module, we performed gene ontology (GO) 

enrichment analysis on all genes of every gene modules respectively. In the multilayer network analysis 

of scRNA-seq, we extracted sub-network of specific gene from multilayer network. And GO 

enrichment analysis was employed in the downstream genes (transcription factors and target genes) of 

the sub-network. All parameters were the default parameters in the clusterProfiler package. 

2.5. Plasma collection and RNA extraction  

Whole blood samples were collected from STEMI patients and health control subjects before 

heparinization using vacutainer tubes containing EDTA. Blood samples were immediately processed 

by centrifugation at 1000 × g for 10 min at room temperature to separate the peripheral blood 

mononuclear cell (PBMC). The isolated PBMC was frozen at −80 °C in EP tubes until use. 

2.6. RT-qPCR 

Total RNA in PBMC was isolated using Trizol (Invitrogen, U.S.A.) following the manufacturer’s 

instructions. cDNA was generated by reverse transcript from mRNA using the Prime ScriptTM RT reagent 

Kit (TaKaRa, Dalian, China) according to the manufacturer’s instructions. The SYBR Premix ExTaqTM 

Kit (TaKaRa, Dalian, China) was used for real time PCR reaction. The PLAUR primer sequences were: 

forward 5’-TGTAAGACCAACGGGGATTGC-3’ and reverse 5’-AGCCAGTCCGATAGCTCAGG-3’. 

The thermal cycle condition used for reverse transcription was as follows: 15 min at 37 °C and 5 s at 85 °C. 

The condition used for real-time PCR was as follows: 30 s at 95 °C, 40 repeats of 5 s at 95 °C and 31 s at 

60 °C, and 1 repeat of 15 s at 95 °C, 1 min at 60 °C and 15 s at 95 °C. Expression levels were normalized 

to the housekeeping genes GAPDH and analyzed using the 2−ΔCt method. 
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Figure 1. Heatmap of 323 DEGs between STEMI and NSTEMI. 

3. Results 

3.1. Gene co-expression networks based on bulk RNA-seq data 

Base on differential expression analysis, 323 differentially expressed genes (DEGs) were obtained, 

of which 180 genes were highly expressed in STEMI and 143 genes were highly expressed in NSTEMI 

(Figure 1) [12]. When clustering the samples, we found the sample 13003 was a outlier, thus we 

removed it from data for further analysis (Figure 2A-B). 

The key step to construct co-expression networks by WGCNA is to select soft threshold β which 

is used to take β powers for the adjacency matrix between genes. The soft threshold β is used to make 

the co-expression network conform to the distribution of scale-free network. Because biological 

network has the characteristics of scale-free network, which means that the degree of nodes in the 

network obeys power-law distribution. In other words, it meets the negative correlation between log(k) 

and log [P(k)], where k represents the degree of nodes and P(k) represents the frequency of nodes with 

degree k. The larger the correlation coefficient R^2 between log(k) and log [P(k)], the more significant 

the characteristics of the scale-free network.  

When β was 12, the correlation coefficient R^2 was greater than 0.9 (Figure 2C-D), and the 

network approached the distribution of scale-free network (Figure 2E-F). For reducing the operation 

time, we chose 12 as β, and then used ‘blockwiseModules’ function to construct co-expression 

networks. Finally, 323 DEGs were divided into 4 modules, each corresponding to each color 

(Figure 3A). Genes that didn’t belong to any of the four modules were classified into gray module. 
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Figure 2. Co-expression network construction. (A-B) Clustered sample, and removed 

outlier samples. (C-D) Selected soft threshold β. (E-F) Check scale-free network. 

3.2. Network visualization and analysis  

We imported the co-expression network of each module into Cytoscape software for visualization 

(Figure 3B), and used the “Analyze Network” function to analyze the network topology attributes of 

all nodes of each network. Degree is a count of the number of edges directly connected to a node in 

the network, and betweenness is defined as the proportion of the number of paths passing through the 

node in the total number of shortest paths in the network. That the greater the degree and betweenness 

of a node, means that the node plays an important role in the network and might be of great biological 

significance. Base on them, we identified potentially important genes in the modules (Figure 4). In the 

blue module, TMEM229B and GIMAP6 were two genes with high degree and betweenness; In the 

brown module, CIRBP had the highest betweenness, but its degree was slightly lower. While the degree 
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of ATP5L, NDUFB10 and ATP5J2 were higher, but the betweenness of them was relatively low; In the 

turquoise module, RNF149, SRGN and ABHD5 had relatively high degree and betweenness; In the 

yellow module, although DYNLT1 had the highest betweenness, its degree was relatively backward. 

In addition, PLAUR, RGL4, IVNS1ABP and FCAR had relatively high degree and betweenness. 

 

Figure 3. Co-expression networks visualization. (A) Cluster dendrogram and module 

division of genes. (B) Gene modules networks visualization by Cytoscape. 

For further study of the biological processes involved in each gene module, we used the 

‘enrichGO’ function in the clusterProfiler package to perform GO enrichment analysis on all genes of 

each gene module (Figure 5). We used “FDR” as the correction method of multiple hypothesis test, 

0.05 as the threshold of P value and 0.2 as the threshold of Q value for enrichment analysis. The blue 
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module was mainly significantly related to biological processes such as cell matrix adhesion and 

regulation of cell shape. Biological processes such as ATP metabolic process, RNA slicing and mRNA 

slicing were significantly enriched in the brown module. The yellow module was mainly significantly 

related to biological processes such as regulation of apoptotic signaling pathway, neural degradation 

and neural activation involved in immune response. However, no biological processes were 

significantly enriched in the turquoise module. 

 

Figure 4. Scatter diagram of degree-betweenness centrality. 

Table 1. Result of multilayer networks. 

Receiver cell types MP EC FB SMC 

Sender cell types CM CM CM CM 

Number of pairs Ligand-Receptor pairs 13 150 188 63 

Receptor-TF pairs 352 2183 1891 1184 

TF-TG pairs 293 320 320 308 

Number of molecules Ligands 9 55 65 28 

Receptors 13 84 73 43 

TFs 85 99 99 95 

TGs 87 87 87 87 
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Figure 5. GO enrichment analysis for each gene module. 
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3.3. scRNA-seq data based multilayer regulatory networks  

After data analysis of scRNA-seq, five cell types were identified, namely CM, MP, EC, FB and 

SMC (Figure 6). In addition, two clusters were not identified and were labeled as “UN1” and “UN2” 

respectively. 

Then, we used CM as receptor cells and MP, EC, FB and SMC as ligand cells to construct 

multilayer networks respectively (Table 1, Figure 7). We found that PLAUR as a receptor existed in 

the multilayer networks of EC-CM and FB-CM (Figure 8A,B). Moreover, the downstream genes 

regulated by PLAUR receptor were the same in both networks. Therefore, we extracted the 

downstream genes regulated by PLAUR receptor for GO enrichment analysis (Figure 8C). We 

observed that downstream genes were significantly enriched in biological processes such as regulation 

endothelial cell proliferation, pri-miRNA transcription and cellular response to oxygen levels. 

3.4. RT-qPCR validation 

To validate the differential expression of PLAUR in an independent cohort, we enrolled patients 

(age ≥18 years) who presented with ST segment elevation myocardial infarction (STEMI). STEMI 

was defined by continuous chest pain lasting >30 min, ST-segment elevation >0.1 mV in at least 

2 contiguous leads, and elevated troponin I levels. The healthy control subjects (age ≥18 years) were 

prospectively recruited independently without coronary artery diseases according to coronary CT 

angiography. The healthy control subjects were matched to patients with STEMI patients with PR for 

age and sex. This study was performed in accordance with the Declaration of Helsinki and was 

approved by the Ethics Committee of the Third Affiliated Hospital of Sun Yat-sen University. All 

patients provided written informed consent. 

We performed RT-qPCR to measure the expression of PLAUR in both health control subjects 

and patients with STEMI (Figure 9). Compared with healthy control subjects, the expression of 

PLAUR decreased significantly in patients with STEMI (p < 0.05). The differential expression of 

PLAUR indicates that it may be used as a potential biomarker for prognosis of AMI patient.  

 

 

Figure 6. Cell-type clustering and identification. 
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Figure 7. Multilayer networks visualization. Multilayer networks of MP-CM (A), EC-CM 

(B), FB-CM (C) and SMC-CM (D).  
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Figure 8. Visualization and analysis of PLAUR-related subnetworks. (A) PLAUR related 

subnetwork in the FB-CM multilayer networks. (B) PLAUR-related subnetwork in the EC-

CM multilayer networks. (C) GO enrichment analysis for downstream genes regulated by 

PLAUR. 
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Figure 9. RT-qPCR validation of PLAUR expression in patients with STEMI. Fold change 

of PLAUR mRNA levels measured by qRT-PCR in patients with STEMI (n = 3 

independent patients) and healthy control subjects (n = 3 independent subjects). Expression 

values were normalized to GAPDH. P-value was calculated using student t-test (p = 0.023). 

Data shown as mean ± SEM. 

4. Discussion 

Based on whole-blood RNA-seq transcriptomics, this study represents the weighted co-

expression networks of differentially expressed genes between STEMI and NSTEMI patients. In 

addition to identify key genes involved in different network modules using network topological 

attributes, we revealed regulatory mechanisms of key genes by multilayer signaling network based on 

single-cell RNA-seq data. Furthermore, we identified PLAUR as a crucial receptor gene in transducing 

inter-cellular signals from endothelial cells and fibroblast cells to intra-cellular pathways of myocardial 

cells, leading to downstream gene expression involved in cellular response to hypoxia. 

We mainly analyzed four modules of the co-expression networks constructed by WGCNA. 

According to GO enrichment analysis, those four modules were associated to some important 

biological processes, such as cell matrix adhesion, cell shape, apoptotic signaling pathway, neural 

degradation, neural activation, ATP metabolic process, RNA slicing and mRNA slicing. In the blue 

module, TMEM229B and GIMAP6 express highly. CIRBP, ATP5L, NDUFB10 and ATP5J2 had high 

betweenness centrality. RNF149, SRGN and ABHD5 were ranked as top genes in the turquoise module 

according to degree and betweenness centrality. In addition, PLAUR, RGL4, IVNS1ABP and FCAR 

were genes with relatively high degree and betweenness centrality in the yellow module, where 

although DYNLT1 had the highest betweenness centrality, its connectivity was relatively low. Previous 

study has proven that the process atherosclerosis involved in lipid metabolism, inflammatory, 

endothelial dysfunction, monocyte transendothelial migration and apoptosis. It has also been verified 

that TMEM229B is a novel gene which was highly expressed untreated islets and strongly suppressed 

by STZ. It means TMEN229b play a protective role in β-cell function [22]. 

In the multilayer networks of EC-CM and FB-CM, PLAUR was found as a crucial receptor that 

mediates inter-cellular and intra-cellular signaling pathways and regulates numerous downstream 

genes which are involved in endothelial cell proliferation, pri-miRNA transcription and cell response 

to oxygen levels. PLAUR is a glycosyl-phosphatidylinositol (GPI)-anchored membrane protein which 
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is associated with cell signaling because it forms a multi-protein complex with neighboring 

tansmembrance receptors, such as EGFR [23]. Inhibition of PLAUR can inhibit tumor growth, 

invasion. PLAUR can be released into blood and be detected as a biomarker in small cell cancer [24], 

breast cancer [25]. In this study, we found that PLAUR had high degree and betweenness centrality, 

and involved in apoptosis signal pathway and immune response.  

Nowadays in clinical practical, the major biomarkers of myocardial infarction are creatine kinase-

MB (CK-MB) and cardiac troponin (cTn). The measurement of CK-MB and cTn is superior because 

of the high sensitivity and specificity for myocardial damage [26]. However, the limitation of CK-MB 

and cTn is obviously. CK-MB and cTn will elevate in skeletal muscle injury, marathon runners, chronic 

renal failure and hypothyroidism [27]. We expect that the key genes identified in this study represent 

promising novel biomarkers for myocardial infarction. Such biomarkers may facilitate timely 

diagnosis of AMI and identification of successful reperfusion after thrombolysis. Moreover, more and 

more drugs targeting a single gene or protein will have a great impact on decreasing of MACE. Amon 

them are PCSK9 inhibitor and anti-IL-β monoclonal antibody. The above-mentioned genes may be 

explored as potential targets for myocardial infarction.  

In summary, in this study, we employed bulk and single-cell RNA-seq data to construct gene 

regulatory networks and cell-cell communication networks to identify key genes involved in AMI. Our 

study sheds lights on identifying molecular biomarkers for diagnosis and prognosis of AMI, and 

provides candidate key regulatory genes for further experimental validation. 

Data availability 

The gene expression datasets as well as clinical information of the patients were downloaded from 

the NCBI GEO database, as described in the main text. 
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