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Abstract: Background: Hypoxia is a crucial factor in the development of esophageal cancer. The 
relationship between hypoxia and immune status in the esophageal cancer microenvironment is 
becoming increasingly important in clinical practice. This study aims to clarify and investigate the 
possible connection between immunotherapy and hypoxia in esophageal cancer. Methods: The 
Cancer Genome Atlas databases are used to find two types of esophageal cancer cases. Cox 
regressions analyses are used to screen genes for hypoxia-related traits. After that, the genetic 
signature is validated by survival analysis and the construction of ROC curves. GSEA is used to 
compare differences in enrichment in the two groups and is followed by the CIBERSORT tool to 
investigate a potentially relevant correlation between immune cells and gene signatures. Results: 
We found that the esophageal adenocarcinoma hypoxia model contains 3 genes (PGK1, PGM1, 
SLC2A3), and the esophageal squamous cell carcinoma hypoxia model contains 2 genes (EGFR, 
ATF3). The findings demonstrated that the survival rate of patients in the high-risk group is lower 
than in the lower-risk group. Furthermore, we find that three kinds of immune cells (memory 
activated CD4+ T cells, activated mast cells, and M2 macrophages) have a marked infiltration in 
the tissues of patients in the high-risk group. Moreover, we find that PD-L1 and CD244 are highly 
expressed in high-risk groups. Conclusions: Our data demonstrate that oxygen deprivation is 
correlated with prognosis and the incidence of immune cell infiltration in patients with both types 
of esophageal cancer, which provides an immunological perspective for the development of 
personalized therapy. 

Keywords: hypoxia; esophageal cancer; tumor microenvironment; immune cell infiltration; gene set 
enrichment analysis 
 



7744 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 7743–7758. 

Abbreviations: EC: Esophageal cancer; EAC: Esophageal adenocarcinoma; ESCC: Esophageal 
squamous cell carcinoma; PD-L1: Programmed death-ligand 1; TME: Tumor microenvironment; 
TCGA: The cancer genome atlas; PPI: Protein-protein interaction network analysis; TMN: Tumour 
node metastases; HR: Hazard ratio; GSEA: Gene set enrichment analysis; ROC: Receiver 
operating characteristic; AUC: Area under curves; HIF: Hypoxia-inducible factor; TAMs: Tumor-
associated macrophages; SLAM: Signaling lymphocyte activation molecule; CD274: Cluster of 
differentiation 274; B7-H1: B7 homolog 1 

1. Introduction 

Esophageal cancer (EC) is the eighth most common cancer in the world. Non-industrialized 
countries account for nearly four out of every five instances, with Asia and Africa holds the greatest 
rates [1].Esophageal adenocarcinoma（EAC） and esophageal squamous cell carcinoma（ESCC） 
account for over 95% of esophageal cancers [2]. Esophageal cancer is related to a poor prognosis. 
Despite advances in diagnosis and treatment, esophageal cancer patients’ five-year overall survival 
rate is 15 to 20 percent globally and in the United States [3]. 

Hypoxia is an essential component of the tumor microenvironment and one of the most common 
features of solid tumors [3]. Tumor cells are more vulnerable to proliferation, metastasis, drug 
resistance, and poor prognosis when exposed to hypoxia [4,5]. 

Hypoxia stress can cause tumor resistance, resulting in immunosuppression [6,7]. Several 
studies have shown that the expression of programmed death-ligand 1 (PD-L1) in tumors is up-
regulated under hypoxia [8]. More and more studies began to focus on analyzing the tumor 
microenvironment (TME) in recent years. Immune cells in tumor microenvironment play an 
essential role in tumorigenesis [9–11]. These related immune cells may have anti-tumor or tumor-
promoting functions, and their specific mechanism is very complex [12].  

Moreover, there are several (non-)aggressive hypoxia biomarkers that can be identified in 
esophageal cancer. In esophageal cancer, the molecular responses associated with hypoxia are an 
important clinical phenomenon, and elevated levels of hypoxia-related biomarkers are often associated 
with poorer treatment outcomes such as overall survival, disease-free survival, complete remission, 
and local control [13]. Various myeloid cells make up the immune portion of the TME. Hypoxia can 
disrupt lymphocyte differentiation and function by altering the expression of co-stimulatory receptors 
and the cytokines released by these cells [14].  

The high incidence and s severe adverse complications of gastrointestinal tumors seriously affect the 
long-term survival rate and quality of Life In the patient population. It is well known that early detection 
of the disease will lead to longer survival rates and better quality of life [15]. At present, a variety of 
molecules have been reported to be used as prognostic markers and targets for the development of new 
therapies, such as Autophagy-related microRNAs [16], Circular RNAs [15], curcumin [17,18]  

Multiple models have been developed to forecast the prognosis of esophageal cancer. However, 
there is no risk model based on hypoxia-related genes to predict the prognosis of esophageal cancer. 
Therefore, we generated a hypoxia-related gene-based signal in this study to look into the possible 
value of hypoxia-related genes in the prognosis of esophageal cancer patients. 
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2. Materials and methods  

2.1. Data collection 

GEO publicly provides genomic data to support MIAME-compliant data submissions [14]. Human 
lncRNA, miRNA and mRNA expression were freely accessible from NCBI-GEO (GSE124401 and 
GSE136547). To be specific, the threshold of up-regulated or down-regulated lncRNA/mRNA was 
|log2 (fold-change) | > 1 with adjust P < 0.05. 

The RNA-seq transcriptome data and corresponding clinicopathological information from The 
Cancer Genome Atlas (TCGA) are obtained for 82 ESCC patients and 78 EAC patients 
(http://cancergenome.nih.gov/). The MSigDB database provided the hypoxia-associated gene set 
(Hallmark-hypoxia) (https://www.gsea-msigdb.org/gsea/index.jsp). Hypoxia-related genes have been 
shown to be upregulated in the lab in reaction to low oxygen levels. In this study, we used an 
illustration package in R to map the heatmaps of gene expression. 

The data in the TCGA database is freely accessible to the public and this study follows a strict 
access policy and publication guidelines, thereby ethical review and approval by the ethics committee 
are not required for this study. 

2.2. Protein-protein interaction (PPI) network analysis 

The Search Tool to Retrieve Interacting Genes (STRING) database (http://string-
db.org/cgi/input.pl) is used to construct the hypoxia gene network. The 50 genes with the most adjacent 
nodes are chosen for further investigation using R software. 

2.3. The hypoxia model’s construction and grouping 

Testing for oxygen deprivation genes and discovering genes that are separately associated with 
esophageal cancer prognosis. In a multivariate Cox regression, correlation coefficients are 
obtained after finding statistically relevant hypoxic genes in a univariate Cox regression. Moreover, 
the risk score of each patient is determined by multiplying the expression levels of each gene in 
the TCGA databases by the expression coefficients for each gene. Based on median risk score 
values, patients in both databases are categorized into high-risk and low-risk categories.  

The risk score equation is defined as follows: Risk score = ∑Ni = 1(Expi × Coei)  
For example: In EAC, N = 5, Expi is the expression of each of the five hypoxic genes and Coei is 

the multivariate Cox regression coefficient that corresponds. 

2.4. Independence of prognostic genetic features from other clinical features. 

We used R’s “survival” kit and conducted univariate and multivariate Cox regression analysis to 
identify hypoxia-related genes linked to prognosis. Then, to determine whether hypoxia risk score is 
an independent factor affecting prognosis, age, gender, tumor node metastases (TNM) level and the 
proposing risk score are used. Statistical significance is identified as a bilateral P value of less than 
0.05. The hazard ratio (HR) is estimated, as well as the 95 percent confidence intervals. 
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2.5. Gene set enrichment analysis (GSEA) 

During enrichment between high and low-risk groups in two groups of esophageal cancer, using GSEA 
(https://www.gsea-msigdb.org/gsea/index.jsp) to identify significant variations between the groups of genes 
expressed in the MSigDB pool (h.all.v7.0.cymbols.gmt; c5.bp.v7.0.symbols.gmt). For each analysis, 1000 
permutations of gene sets are performed. A risk index is calculated using the phenotype mark. 

2.6. Distinguish of immune cell types fractions and gene expression  

CIBERSORT [25] is used to calculate immune cell types in low- and high-risk classes. In each 
sample, the number of all predicted immune cell type scores equals 1. The online 
platform(http://biocc.hrbmu.edu.cn/TIP/index.jsp) for tracking tumor immunophenotypes to screen 
for immune-related genes that play an important role in the control of this immune cell type. In R serve, 
the ggExtra packages, ggplot2 and ggpubr to explore the relationship between the hypoxic risk and the 
gene expression, as well as the expression levels that differ between the high and low risk of hypoxia, 
in patients looking for genes that perform a critical role in the regulation of immune cells. 

3. Results 

3.1. Hypoxia-related genes extraction and screening 

The gene expression data and clinical data of esophageal cancer and hypoxia related genes were 
downloaded from the TCGA database and GSEA website respectively. We later used STRING to 
model PPIs among hypoxia-related genes (Figure 1A,B). The number of nodes in the network for every 
protein is used to identify the central genes. Figures 1C,D showed the top 50 essential genes. To find 
genes linked to prognosis, we used univariate Cox regression analysis and multivariate Cox analysis. 

PGM1 is correlated with low risk in the EAC, while two genes (PGK1 and SLC2A3) are 
associated with a high risk of malignancy development by using univariate Cox regression analysis 
(Figure 1E). Finally, multivariate Cox regression analysis identified three hub genes related to patient 
prognosis (Figure 1F). The model coefficients for these three genes (PGK1, PGM1 and SLC2A3) are 
-2.8966, 0.5736 and 1.6160, respectively. 

Furthermore, univariate Cox and multivariate Cox showed that EGFR relates to a low risk, while 
ATF3 was correlated with a high risk of malignancy development in ESCC (Figure 1G,H). The model 
coefficients for these two genes (EGFR and TPF3) are -0.482 and 1.394, respectively.  
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Figure 1. Characterization of hypoxia risk score to predict prognosis of esophageal cancer. 
(A, C) Protein-protein interactions among 50 hypoxia-associated genes. (B, D). The genes 
with the highest interaction degrees. (E, G). hypoxia genes associated with the patient’ OS 
were confirmed by univariate Cox regression. (F, H). hub hypoxia-related genes were 
chosen to establish a hypoxia risk model by multivariate Cox regression. 
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3.2. Association between hypoxia related genes and prognosis 

 

Figure 2. Prognostic value of the hypoxia risk score in esophageal cancer. (A-B) Kaplan-
Meier overall survival analysis of esophageal cancer patients in high- and low-risk groups. 
(C-D). ROC curve showing the prognostic value of hypoxia risk scores in patients. 

We used the genes from the Cox regression study to model and used the median risk score to 
classify patients into high-risk and low-risk types. Subsequently, the survival rate was significantly 
increased in the low-risk categories in both ESCC and EAC groups (p < 0.05; Figure 2A,B). 
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Figure 3. Establishment of prognostic risk score models in esophageal cancer. (A-B). The 
expression of hub hypoxia-related genes in high and low hypoxia risk groups from the 
TCGA databases. (C-D). Risk score plot. （E-F）. Patient survival status distribution in 
the high and low hypoxia risk groups. The dot indicates the status of the patient ranked 
according to the increasing risk score. (G-H). Heatmap of prognostic genes among hub 
hypoxia-related genes. 

The accuracy of this model in predicting survival is tested using receiver operating characteristic 
(ROC) curve analysis. The EAC three-gene prognostic model has AUCs of 0.728, 0.778 and 0.921 
after one, three, and five years respectively (Figure 2C). The ESCC three-gene predictive model has 
Area Under Curves (AUCs) of 0.654, 0.871 and 0.982 after one, three, and five years respectively 
(Figure 2D). This means that the model gets more accurate over time in predicting survival rates for 
EAC and ESCC patients at 1, 3 and 5 years, implying that the model correctly predicted survival rates 
in EAC and ESCC.  

Figures 3A,B showed the interaction between hub hypoxia-related genes. The risk curve showed 
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that the survival time of the low-risk group was higher than that of the high-risk group Figure 3C,D). 
In addition, the high-risk category showed that the number of deaths increased over time (Figure 3E,F). 
Heat Maps showed the expression level of the hub gene in different groups. The expression of these 
genes was significantly different in high and low-risk groups (Figure 3G,H). 

3.3. Effects of different clinical characteristics on esophageal cancer prognosis 

Clinical characteristics differ in the impact they have on patient prognosis. Thus, we analyzed the 
impact of clinical characteristics on the prognosis of patients included in EAC and ESCC databases. 
We first used univariate Cox regression analysis to evaluate the impact of clinical characteristics on 
the survival time and prognosis of patients included.  

 

Figure 4. (A, B). KM survival curves for the hypoxia-related gene risk score for esophageal 
cancer in TCGA dataset. (C, D). ROC of the risk signature based on the hub characteristic genes. 

In TCGA-EAC and TCGA-ESCC database, we found that patient gender and tumour stage 
affected neither survival nor prognosis, while node stage affected EAC patients, metastases stage 
affected ESCC patients (Figure 4A,B). The p-value of the risk score in our model was < 0.05 for 
patients in both databases, indicating that the risk score affected patient prognosis and survival. 
Multivariate Cox regression analysis indicating that risk score about hypoxia were independent 
prognostic factors (Figure 4C,D). 

3.4. GSEA identifies hypoxia-related signaling pathways 

We use GSEA to find hypoxia-related signaling pathways. When compared to the TCGA-
EAC database’s low-risk category, the high-risk group had several enriched pathways linked to 
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apoptotic, hypoxia, and inflammatory response pathways (Supplemental Table 1). On the other 
hand, the pathways associated with metabolism are enriched in the low-risk community 
(Supplemental Table 2), and similar pathways are shown in the TCGA-ESCC database in 
metabolism (Supplemental Tables 3 and 4) 

3.5. Immune landscape between low and high hypoxia risk  

 

Figure 5. Infiltration of hypoxia-related immune cells. (A, B) Heat map of immune cell 
infiltration in TCGA databases. (C, D, E) Immune cells whose infiltration is significantly 
associated with the risk of hypoxia in TCGA database (p < 0.05).  

According to GSEA, we investigated the ability to characterize hypoxia risk in the evaluation of 
the immune microenvironment. Using the CIBERSORT method combined with the LM22 feature 
matrix, we estimated the differences in immune infiltration of 22 immune cell types in patients with 
low- and high-risk esophageal cancer. The outcomes of immune infiltration for patients with EAC and 
ESCC were summarized in the Figure 5A,B. 
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In EAC patients, the proportion of M2 macrophages is significantly higher in high risk (Figure 5C). 
In ESCC patients, the proportion of activated mast cell and activated CD4 memory T cell is 
significantly higher in in high risk (Figure 5D,E). Visualization of the expression of immune-related 
genes from the online platform mentioned in the method were by Heatmap. Several immune-related 
genes differed significantly between the high- and low-risk groups (p < 0.05) (Figure 6A,D).  

 

Figure 6. Relationships between genes regulating immune cell behavior and hypoxia risk. 
(A, D) Heat maps showing the expression levels of all immune genes in different hypoxia 
risk groups (**p < 0.01; ***p < 0.001). (B, C, E, F) Scatter plots show the correlations of 
gene expression with immune cell regulation, showing differences in the expression levels 
between the different hypoxia risk groups (p < 0.05). The blue line in each plot is a fitted 
linear model indicating the relationship between gene expression and the risk of hypoxia. 
Pearson coefficients were used to assess the correlation between the two factors. The box plots 
show the differences in gene expression levels between groups at risk of hypoxia (p < 0.05). 
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In two types of esophageal cancer, CD244 and CD274 are found to be up regulated in high-
risk categories and their expression levels are in positive correlation with the risk scores of the 
patients, according to the correlation curves between their risk scores and their expression levels 
(Figure 6B,C,E,F).  

4. Discussion 

The poor prognosis and increasing occurrence of esophageal cancer illustrate the importance of 
better diagnosis and prediction methods before treatment [19]. Numerous reports were linking hypoxia-
related genes to esophageal cancer [20–23]. In addition, for patients with esophageal cancer, mRNA gene 
markers dependent on certain tumor microenvironment features have high predictive ability. 

Hypoxia may cause multiple transcription factors to react by inducing or repressing genes, 
resulting in the initiation of an adaptive transcriptional response [24]. Hypoxia-inducible factor (HIF) 
is the most significant of these, dubbed a “chief regulator” of the “metazoan adaptive response to 
hypoxia” [25–27].  

To learn more about the connection between hypoxia-related gene expression and patient 
prognosis, the researcher constructed a hypoxia analysis model and divided the hypoxia analysis model 
into two risk groups. Besides, the difference in prognosis between patients in the high-risk and low-
risk groups is statistically significant. In both ESCC and EAC, the survival rate of patients in the low-
risk group is substantially higher than that of the control group. 

We looked at the influence of other variables on the prognosis of patients, which included age, 
gender, TNM stage, and our proposed risk score on the prognosis of the patients. We conclude that our 
risk score is an independent predictor of esophageal cancer and is valid in both esophageal squamous 
cell carcinoma and esophageal adenocarcinoma. 

Next, the enriched pathways in the high-risk and low-risk groups are identified using GSEA. Most 
of the enriched pathways in esophageal cancer is linked to angiogenesis, apoptosis, hypoxia, the 
inflammatory response, and metabolic pathways, according to our findings. In tumor tissue, hypoxia 
can lead to the release of many cell debris and inflammatory factors, macrophages and monocytes are 
attracted and cause macrophage polarization. After polarization, macrophages secrete inflammatory 
factors [28]. These results suggest that hypoxia, inflammation, and the immune system's response are 
all related. Therefore, we studied the differences in immune function between the high and low risk 
groups in the hypoxia model. 

We discovered that patients with a high risk of hypoxia had a substantially higher proportion 
of M2 Macrophage cells. Macrophages are a significant component of the immune infiltration of 
solid tumors, as they differentiate into tumor-associated macrophages (TAMs), which are 
preferentially present in hypoxic zones of the tumor [29]. Macrophages can be stimulated by a 
multitude of stimuli and polarized to functionally distinct phenotypes， including classically 
activated (M1) and alternatively activated (M2) macrophages [30]. Infiltrating macrophages are 
classified as the M2 phenotype in most tumors, and they provide an immunosuppressive 
microenvironment for tumor development. In addition, many cytokines, chemokines, and 
proteases are secreted by tumor-associated macrophages, which promote tumor angiogenesis, 
development, metastasis, and immunosuppression [31,32]. Cancer patients typically receive 
intensive surgery of the tumor tissue, as well as radiochemical or hormone therapy. However, none 
of these drugs are unique for tumors, and they all have significant side effects. As a result, using 
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macrophages to mediate tumor resistance is being considered as a possible therapy. The discovery 
of mechanisms underlying macrophage functional polarization into M1 or M2 cells could lead to 
new insights into developing macrophage-centered diagnostic and therapeutic strategies for a 
variety of diseases. 

We also looked for genes that could influence immune cell infiltration rates and looked at the 
relationship between the risk of hypoxia and these genes. Though EAC and ESCC have been treated 
as distinct entities due to their widely differing and overlapping etiologies, and targeted treatments for 
each have been investigated. Interestingly, regardless of the type of esophageal cancer, PD-L1 and 
CD244 levels increased in the high-risk population.CD244 belongs to the Signaling Lymphocyte 
Activation Molecule (SLAM)class of Ig Superfamily receptors. It is a transmembrane receptor made 
up of an extracellular segment with two immunoglobulin (Ig) -like domains, a transmembrane region, 
and a cytoplasmic domain with tyrosine-based motifs. The rest of the SLAM family. Unlike other 
SLAM family receptors, it does not function as a self-ligand; instead, it binds CD48, a transmembrane 
receptor widely expressed in hematopoietic cells [34,35]. In a recent review on squamous cell 
carcinoma of the head and neck, researchers evaluated the therapeutic potential of CD244 and found 
that CD244 plays a role in the overall immunosuppressive environment and therefore has the potential 
to be a new immunotherapeutic target for malignancies [33]. 

Another gene was Cluster of differentiation 274 (CD274), also known as B7 homolog 1 (B7-H1) 
or PD-L1, which was the first functionally characterized ligand of the co-inhibitory PD-1 [34]. PD-L1 
is an immunosuppressive molecule that can inhibit the activation of T cells, leading to tumor 
progression [35]. A large number of studies have confirmed that the expression of PD-L1 on tumor 
cells is related to the poor prognosis of tumor patients, such as lung cancer [36,37], gastric cancer [38], 
and colorectal cancer [39]. Two studies have reported a positive correlation between PD-L1 expression 
and poor Esophageal cancer prognosis [40,41]. In addition, numerous studies suggest a crucial role for 
PD-L1 in cancer immune escape [42–44]. Some studies reported that blocking PD-L1 could enhance 
anti-tumor immunity [45–48]. PD-L1 upregulation occurs in approximately 40% of esophageal cancers. 
Preliminary clinical data show remission rates of 22–27% in metastatic gastroesophageal cancer treated 
with PD-1/PD-L1 inhibitors and 10–17% in unselected patients [49]. 

Our research provides a more theoretical basis for PD-L1 to become a targeted treatment for 
esophageal cancer. In the future, we will pay more attention to the therapeutic effect of PD-L1 in 
esophageal cancer. However, due to the low accuracy of PD-L1 immunohistochemical staining, PD-
L1 as the only predictive biomarker for cancer immunotherapy is problematic [50]. Therefore, it is 
necessary to understand the tumor microenvironment better and use other biomarkers, for example, in 
combination with other biomarkers to predict the prognosis of esophageal cancer, better to identify the 
benefits of PD-1/PD-L1 checkpoint blockade Therapy patients. 

Our result was the first hypoxia prediction model based on esophageal cancer, and at the same 
time identified crucial genes linked to the immune microenvironment in esophageal cancer, pointing 
to possible molecular targets for esophageal cancer immunotherapy，It will enrich the research on the 
hypoxia and immunity therapy in esophageal cancer, which deserves in-depth exploration by follow-
up researchers. 

However, there are some limitations to our study. First, the development and progression of 
esophageal cancer are influenced by many other complex mechanisms, and the use of a single 
feature to construct a predictive model may be inherently flawed. Secondly, our evidence is based 
on a bioinformatics methodology that needs to be validated by more cell experiment and clinical 
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trials before it can be considered initially. Furthermore, our inability to find molecularly targeted 
drugs in a variety of situations, including normoxia and hypoxia (acute and chronic). 
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