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Abstract: Tumor heterogeneity significantly increases the difficulty of tumor treatment. The same 
drugs and treatment methods have different effects on different tumor subtypes. Therefore, tumor 
heterogeneity is one of the main sources of poor prognosis, recurrence and metastasis. At present, there 
have been some computational methods to study tumor heterogeneity from the level of genome, 
transcriptome, and histology, but these methods still have certain limitations. In this study, we proposed 
an epistasis and heterogeneity analysis method based on genomic single nucleotide polymorphism 
(SNP) data. First of all, a maximum correlation and maximum consistence criteria was designed based 
on Bayesian network score K2 and information entropy for evaluating genomic epistasis. As the 
number of SNPs increases, the epistasis combination space increases sharply, resulting in a 
combination explosion phenomenon. Therefore, we next use an improved genetic algorithm to search 
the SNP epistatic combination space for identifying potential feasible epistasis solutions. Multiple 
epistasis solutions represent different pathogenic gene combinations, which may lead to different 
tumor subtypes, that is, heterogeneity. Finally, the XGBoost classifier is trained with feature SNPs 
selected that constitute multiple sets of epistatic solutions to verify that considering tumor 
heterogeneity is beneficial to improve the accuracy of tumor subtype prediction. In order to 
demonstrate the effectiveness of our method, the power of multiple epistatic recognition and the 
accuracy of tumor subtype classification measures are evaluated. Extensive simulation results show 
that our method has better power and prediction accuracy than previous methods. 
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genome variation 

 

1. Introduction  

Precision medicine is the most potential strategy to improve the clinical treatment of cancer. In-
depth study of tumor heterogeneity is an important prerequisite for the implementation of precision 
medicine [1–3]. Tumor heterogeneity can be divided into two categories: inter-tumor heterogeneity 
and intra-tumor heterogeneity. The former refers to the molecular and cellular differences in the same 
organ tumors of different tumor patients, and the latter refers to the molecular and cellular differences 
in different tumor formation sites of the tumor tissue of the same patient [4–7]. Due to tumor 
heterogeneity, the same drugs and treatment measures have obvious clinical efficacy differences for 
different tumor subtypes [8–10]. For intra-tumor heterogeneity, there may be different tumor cell 
subclones in the same tumor tissue. When the drug only has a therapeutic effect on the primary clonal 
tumor cell, the remaining secondary subclonal cells will further evolve, leading to tumor recurrence 
and metastasis. More importantly, different tumor subtypes or different subclonal tumor cells may 
adopt different immune escape mechanisms, so that identifying their immune escape pathways in a 
targeted manner can implement immunotherapy more effectively [11–14]. In short, it is necessary to 
in-depth study tumor heterogeneity. 

Fortunately, with the help of next-generation high-throughput sequencing technology, researchers 
can use different levels of omics data (e.g., genome [15–18], transcriptome [19–22], proteome [23,24], 
metabolome and epitome [25–27], etc.) to stratify tumor cohorts accurately. On the basis of accurately 
identifying the patient’s tumor subtype, precision medicine can be implemented for the patient. 
Turashvili et al. summarized a comprehensive survey on inter-tumor heterogeneity and intra-tumor 
heterogeneity aspects for breast cancer [28]. For example, Hofree et al. proposed a network-based 
hierarchical method NBS which first converted somatic mutation data at the genome level into 
continuous analog signals through a network smoothing method, and then used a non-negative matrix 
factorization method to identify patient samples. In order to improve the robustness of the clusters, the 
consensus clustering algorithm was used to determine the number of clusters and the cluster 
relationship of samples [29]. For genome-level single nucleotide polymorphism (SNP) data, Li et al. 
proposed a three-stage processing framework based on techniques such as multi-objective optimization 
algorithm [30–33], clustering algorithm [34] and deep learning [35–38], which dealt with the problems 
of epistasis, heterogeneity [38–40] and tumor subtype prediction [38–43] respectively, which improved 
the efficiency of epistasis analysis and the accuracy of tumor heterogeneity recognition to a certain 
extent. Based on transcriptome data, Jiang et al. divided triple negative breast cancer (TNBC) into four 
subtypes and putative therapeutic targets or biomarkers were identified for each subtype [44]. To 
recognize dominate evasion pathway of different subtypes of breast cancer, Bou-Dargham et al. 
collected 1356 immune-related genes as clustering features based on cohorts’ transcriptome data [45]. 
However, the occurrence and development of tumors usually involve a variety of biomolecules, and 
only a certain level of omics data is difficult to fully characterize its internal characteristics, resulting 
in difficult reproducibility, lack of interpretability, and so on. Therefore, with integrating multiple 
omics data such as genome, epigenome and transcriptome, Robertson et al. typed the 80 cases of uveal 
melanoma samples, and four subtypes with significant molecular differences and clinically relevant 
were identified [46]. More importantly, the role of single-cell sequencing data in tumor heterogeneity 
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research has received widespread attention. For instance, Xiong et al. compared the heterogeneity 
among patients and subtypes based on CNV and revealed that there are four subtypes in Glioblastoma 
cells based on single-cell analysis [47]. Lawson et al. summarized cellular differentiation, 
diagnostics and therapy response, metastasis and heterogeneity in the microenvironment at single-
cell resolution [48]. 

With the accumulation of genomic variation, different subclones are differentiated in tumor cells, 
each of which may be caused by different epistasis of pathogenic genes. Our research designs a new 
risk epistatic combination evaluation method, and then improves the heuristic genetic algorithm to 
search the epistasis combination space to overcome the combination explosion challenge. The multiple 
risk epistasis combinations identified by our method represent tumor heterogeneity. Using feature 
SNPs to train the XGBoostclassifier, the results of subtype classification show that accurately 
identifying tumor heterogeneity is beneficial to improve the performance of tumor subtype 
classification. 

2. Materials and method 

This study mainly faces two challenges. One is that with the increase in the number of SNPs, the 
combination space of high-order epistasis increases sharply, which leads to a combination explosion. 
The other is that the epistasis between susceptible genes and the heterogeneity among tumor samples 
need to be considered. In order to solve these two problems, we first design multiple objectives 
evaluation criteria to evaluate the epistasis combination of susceptible genes from different angles and 
improves the heuristic genetic algorithm to efficiently search the combination space to screen multiple 
candidate epistasis combinations. 

2.1. Maximum correlation and maximum consistence criteria 

A single optimization criterion can usually only find potential risk epistatic combinations from 
one angle, which may miss other feasible solutions, especially when there is heterogeneity in the 
sample [49]. In this study, two evaluation criteria are designed to evaluate candidate epistasis 
combinations. One is to examine the correlation between the epistasis combination and the target 
phenotype, and the other is to examine the rationality of genotypes distribution of the epistasis 
combination among the samples. These two goals have evaluated the superior combination from 
different angles and have a certain degree of complementarity. 

Maximum correlation: It can be assumed that if a combination of loci is pathogenic, then the 
genotypes at these loci should have a strong correlation with the case/control states of the samples. 
Therefore, we can first use the maximum correlation to quantify and rank each candidate epistasis 
combination. Bayesian network consisted of nodes and directed edges can be used to describe the 
relationship between epistatic SNPs and disease. Given the Markov condition, the relationship between 
k SNPs and sample disease state can be simplified as the calculation of Eq (1), namely the joint 
probability distribution of epistatic combination in training samples. 
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distributions. K2 is a measure score for evaluating the structure of Bayesian network and it has been 
widely used in previous studies [30,50]. Since there is no prior knowledge about the known pathegenic 

SNPs in this study, the Dirichlet distribution 11[ ... ]ijD   are set to be 1 in Eq (2).  
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where I is the combination space of k SNPs and each SNP has 3 states, namely heterozygous, wild 

homozygous and mutant homozygous, so that 3kI   . ir   denotes the frequency of i-th epistatic 

combination in training samples and ijr   represents the frequency of i-th epistatic combination in 

samples with j-th state and j ∈(case, control). 
Maximum consistence: Due to the heterogeneity in the samples, there may not be a strong 

correlation between some epistatic combinations and sample labels. Therefore, it is necessary to find 
these potentially susceptible genotypes from another perspective. It can be assumed that there is 
another susceptible genotype in the sample due to heterogeneity, and this genotype has a weaker 
association due to its small sample size. Therefore, this study believes that it can be investigated from 
the perspective of genotype consistency. If the genotype at the loci is more stable in the sample, then 
the genotype may be one of the main sources of case samples. Here, we applied Shannon entropy to 
measuring the uncertainty of genotype distribution. Of note, the smaller the information entropy value, 
the more stable the genotype at the loci is in the case samples, and the greater the possibility that the 
genotype is risky. The uncertainty of genotype distribution is defined as Eq (3). 
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where h refers to the number of genotypes actually present in the case samples and pi is the possibility 
of the i-th genotype in the case samples. 

2.2. Adaptive genetic algorithm 

The genetic algorithm simulates the phenomena of replication, crossover, and mutation that occur 
in natural evolution. Starting from the initial population, through random selection, crossover and 
mutation operations, a group of individuals (solution) more adapted to the environment (problem) are 
generated and finally converges to a group of individuals who are most adaptable to the environment. 
The genetic algorithm includes several main parts: coding, fitness value evaluation, selection, 
crossover, and mutation, which are briefly introduced below. 

Individual coding: Individual coding is the first step in using genetic algorithms to solve specific 
problems. We encode each individual as a string of ‘0’, ‘1’, and the length of the string is equal to the 
number of SNPs, ‘0’ means that the SNP is not selected, and ‘1’ means that the SNP is selected to 
construct an epistatic combination. The goal of our study is to identify epistasis and heterogeneity. 
Therefore, multiple ‘1’s on an individual solution indicate epistasis, and multiple near-optimal 
solutions correspond to heterogeneity. 
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Fitness evaluation: The evaluation of the solution not only affects the convergence speed of the 
population, but also determines whether to break out of the local optimum. Here, we combined the 
maximum correlation and maximum consistence criteria to evaluate each solution. 

Selection operator: The selection operation simulates the rule of survival of the fittest in the 
natural evolution process. This operator keeps the more adaptable individuals in the population and 
recombines them to produce better next generations. In this study, each candidate solution is 
investigated with two criteria, and the sufficiently good solutions on any one goal are retained for the 
next generation. 

Crossover operator: The size of the crossover probability Pc determines the abundance of the 
population. The larger the Pc, the higher the abundance of the population, but the higher the probability 
that good individuals will be destroyed [51]. In this study, we design an adaptive crossover probability 
adjustment strategy defined as Eq (4) to dynamically adjust based on the optimal fitness value and 
average fitness value of the population. 
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where fmax is the maximum fitness of the population and fave is the average fitness of the population. 
The f1 and f2 are the fitness of two individuals to be recombined. The k1 and k2 are constant values 
between 0 and 1. 

Mutate operator: The size of the mutation probability Pm defined as Eq (5) determines whether it 
can jump out of the local optimum value to find the global optimal solution. The larger the Pm, the 
easier it is to jump out of the local optimum value to find the global optimal solution. However, a too 
large Pm value will degenerate genetic algorithm to Random search. 
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where f is the fitness of the individual to be mutated and k3 and k4 are constant values between 0 and 1. 

2.3. Tumor subtype recognition and classification 

In this section, K-means clustering algorithm was introduced to recognize different tumor 
subtypes hidden in cases. For a given sample set, K-means divides the sample set into K clusters 
according to the distance between the samples. Make the points in the clusters as close together as 
possible, and make the distance between the clusters as large as possible. Assuming that the cases are 
divided into K clusters, namely (𝐶1, 𝐶2, ... 𝐶𝑘), then our goal is to minimize the squared error E defined 
in Eq (6). Of note, the K is set to be number of risky epistatic combinations, which means that each 
risk epistasis may lead to a subtype. 
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where 𝜇𝑖 is the centroid of i-th cluster, and is defined as Eq (7). The optimization objective can be 
solved by iterative algorithms. 
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After using the K-means clustering algorithm to subdivide all case samples into different subtypes, 
our method proposes to use the XGBoost classifier to predict the subtype of a new sample. The 
XGBoost implements parallel tree boosting technique in a portable and efficient way [52]. The 
XGBoost prevents over-fitting through regularization items, and it can be optimized in parallel to 
improve training efficiency. To help researchers to solve classification problem in an easy-use, friendly 
way, R, Python, Ruby are provided. In order to more intuitively describe the computing framework 
proposed in this paper, we draw a flow chart in Figure 1 to describe the method in this paper. 

Maximum correlation
and

Maximum consistence

Genetic
Algorithm

Tumor subtype 
recognition with 

K means 

Subtype prediction by 
XGBoost

Feature 
SNPs

Epistasis Heterogeneity

 

Figure 1. The flowchart of our method for epistasis and heterogeneity analysis. 

3. Datasets and evaluation measures 

3.1. Simulation datasets 

In this study, to demonstrate the performance of the proposed method, extensive simulated 
datasets listed in Table 1 were generated by GAMETES_2.1 [53] which has been wildly used in 
previous studies [34,35]. With using GAMETES_2.1, researchers can customize epistatic datasets by 
setting parameters, such as minor allele frequency (MAF), epistatic order (k), heterogeneity proportion 
(HP), sample size, SNP size and so on. 

In this study, we also simulated pure and heterogeneous dataset with using the same parameters 
as previous study [35]. The pure datasets were labelled with ‘Pure’ prefix, while heterogeneous 
datasets were labelled with ‘Hete’ prefix. The sample sizes of the data sets have five scales, namely 
1000, 2000, 3000, 4000 and 8000, but the number of SNPs in each data set is fixed at 100. For pure 
datasets (HP = 1.0), 2 loci and 3 loci disease models were simulated and their MAFs are (0.2, 0.2) and 
(0.2, 0.2, 0.2) and their epistasis order are 2 and 3, respectively. For heterogeneous datasets, all these 
datasets are composed with two balanced disease models, so that the disease model H1 holds 50% and 
the H2 is also 50%. For instance, the HPs of ‘Hete10’ dataset are H1 = 50% and H2 = 50%, so that the 
8000 samples are composed with 4000 samples caused by 3 loci disease model H1(0.2, 0.2, 0.2) and 
the rest 4000 samples caused by 3 loci disease model H2 (0.3,0.3,0.3). 

3.2. Performance evaluation measures 

This study has dealt with the epistasis and heterogeneity of complex diseases at the same time, so 
different measures are used to evaluate the performance of our method. The Power is defined as Eq (8). 
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n
Power

N
                                   (8) 

where n refers the frequency of correctly identifying the real pathogenic loci and N is the number of tests.  
Accurately identifying heterogeneity in cases is a prerequisite for improving the accuracy of 

tumor subtype classification. In this study, the accuracy defined as Eq (9) is also applied to evaluating 
the performance of tumor subtype classification. In order to evaluate the accuracy of tumor subtype 
classification more objectively, this study adopted a 10-fold cross-validation strategy which divides 
the dataset into 10 equal parts, and then uses each part as the test set in turn, and the remaining parts 
as the training set and finally the results of the 10 tests are averaged [25,54–56]. 

n
Acc

N
                                     (9) 

where N is the total number of cases and n represents the number of times the sample was correctly 
identified.  

Table 1. The parameters of simulated datasets. 

Data ID Sample size MAFs HP 
Pure1 1000 (0.2, 0.2) 1.0 
Pure2 2000 (0.2, 0.2) 1.0 
Pure3 3000 (0.2, 0.2) 1.0 
Pure4 4000 (0.2, 0.2) 1.0 
Pure5 8000 (0.2, 0.2) 1.0 
Pure6 1000 (0.2,0.2,0.2) 1.0 
Pure7 2000 (0.2,0.2,0.2) 1.0 
Pure8 3000 (0.2,0.2,0.2) 1.0 
Pure9 4000 (0.2,0.2,0.2) 1.0 
Pure10 8000 (0.2,0.2,0.2) 1.0 
Hete1 1000 (0.2, 0.2) (0.3,0.3) H1 = 50%, H2 = 50% 
Hete2 2000 (0.2, 0.2) (0.3,0.3) H1 = 50%, H2 = 50% 
Hete3 3000 (0.2, 0.2) (0.3,0.3) H1 = 50%, H2 = 50% 
Hete4 4000 (0.2, 0.2) (0.3,0.3) H1 = 50%, H2 = 50% 
Hete5 8000 (0.2, 0.2) (0.3,0.3) H1 = 50%, H2 = 50% 
Hete6 1000 (0.2,0.2,0.2) (0.3,0.3,0.3) H1 = 50%, H2 = 50% 
Hete7 2000 (0.2,0.2,0.2) (0.3,0.3,0.3) H1 = 50%, H2 = 50% 
Hete8 3000 (0.2,0.2,0.2) (0.3,0.3,0.3) H1 = 50%, H2 = 50% 
Hete9 4000 (0.2,0.2,0.2) (0.3,0.3,0.3) H1 = 50%, H2 = 50% 
Hete10 8000 (0.2,0.2,0.2) (0.3,0.3,0.3) H1 = 50%, H2 = 50% 

4. Experimental results 

In this section, our method MCMC (maximum correlation and maximum consistence) was 
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compared with DPEH [34] and MDR [57]. The DPEH is a three-stage framework for epistasis 
detection, heterogeneity analysis and disease prediction based on deep learning. Note that DPEH 
adopted a ESMO method which applied an exhaustive search strategy to search epistasis with using 
two optimization objectives. The MDR reduces high dimensional multi-locus genotype into one 
dimension and also uses an exhaustive search strategy to find the riskiest epistatic combinations. 

4.1. Results on pure datasets 

Since a sample in pure dataset only has two possible states: normal or case, there is no need to 
distinguish tumor subtypes, so that the diagnosis can be regarded as a binary classification problem. 

 

Figure 2. The accuracy results of pure datasets simulated by 2 loci disease model. 

 

Figure 3. The accuracy results of pure datasets simulated by 3 loci disease model. 

It can be seen from the results in the Figures 2 and 3 that the accuracy of our method MCMC is 
significantly improved compared with the other two methods, and the accuracy is increased by more 
than 5%. The increase in accuracy mainly comes from XGBoost’s ability to more accurately describe 
the relationship between epistasis and disease status. In addition, on average, the prediction accuracy 
of the 3 loci dataset is slightly higher than that of the 2 loci dataset. The reason for this phenomenon 
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may be that the increase in the number of features input to the prediction model XGBoost provides 
more information. 

4.2. Results on heterogeneous datasets 

The heterogeneous simulation data set is generated by two kinds of pathogenic models, so there 
are 2 subtypes in the cases, and there are 3 categories in addition to the normal sample, so it is a triple 
classification problem. Since the MDR cannot directly deal with heterogeneous data, we use the same 
processing method as the DPEH to compare the accuracy of prediction with the MDR. 

4.2.1. The accuracy of 2 loci disease models 

 

Figure 4. The accuracy results of heterogeneous datasets simulated by 2 loci disease model H1. 

 

Figure 5. The accuracy results of heterogeneous datasets simulated by 2 loci disease model H2. 

From the results in the Figures 4–6, it can be found that the MCMC is significantly improved 
compared with the subtype prediction of the DPEH and MDR methods. And it can be found that the 
accuracy of the pathogenic loci corresponding to the H2 model shown in Figure 5 as predictive features 
is higher than that of the H1 model shown in Figure 4. The reason may be that the MAFs of the H2 
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model are higher than the H1. It means that this mutation pattern of H2 in the case is more stable H1, 
which facilitates subtype identification. Comparing Figure 6 with Figures 4 and 5, it can be found that 
jointly inputting the pathogenic loci of the two models into the prediction model at the same time can 
further improve the prediction accuracy, because the information inputted to the model is more complete. 

 

Figure 6. The accuracy results of heterogeneous datasets simulated by 2 loci disease 
models H1 and H2. 

4.2.2. The accuracy of 3 loci disease models 

In Figures 7–9, we compared the results of DPEH, MDR and MCMC on 3 loci disease models. 
It can be found from the experimental results that the performance of the MCMC method is still 
significantly higher than the DPEH and MDR methods in this disease model. Similarly, the 
susceptibility loci corresponding to the H2 disease model can train more accurate subtype classifiers. 
In addition, the joint input of the pathogenic loci of the two disease models into the classifier can 
further improve the accuracy. 

 

Figure 7. The accuracy results of heterogeneous datasets simulated by 3 loci disease model H1. 
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Figure 8. The accuracy results of heterogeneous datasets simulated by 3 loci disease model H2. 

 

Figure 9. The accuracy results of heterogeneous datasets simulated by 3 loci disease 
models H1 and H2. 

Table 2. The results of DPEH and MCMC on power measure. 

 DPEH MCMC 

Data ID Power of H1 (%) Power of H2 (%) Power of H1 (%) Power of H2 (%) 

Hete1 68 72 68 75 

Hete2 65 68 69 70 

Hete3 65 65 63 65 

Hete4 72 75 75 78 

Hete5 62 62 65 70 

Hete6 56 58 60 62 

Hete7 55 55 58 60 

Hete8 58 60 60 62 

Hete9 63 65 68 65 

Hete10 60 63 66 68 
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4.2.3. The power on heterogeneous datasets 

Table 2 details the detection efficiency of the two methods for each disease model. The bold 
numbers in the experimental results indicate that the performance of MCMC is more advantageous, so 
it can be found that in most cases, the performance of the MCMC method is significantly better than 
the DPEH method. More importantly, disease models with larger MAF are easier to accurately identify, 
and the detection efficiency of the 2 loci disease model is better than that of the 3 loci disease model. 

5. Discussion and conclusions 

Tumor epistasis makes it difficult to find weakly effect susceptibility genes, while tumor 
heterogeneity makes it difficult to distinguish patient subtypes. Solving these two problems is the basic 
work of tumor precision medicine. In practical application, for tumors whose subtypes have not been 
fully defined, we can first treat the cohort for genome sequencing, and then use our method MCMC to 
analyze epistasis and heterogeneity, so as to fully identify tumor subtypes with different combinations 
of pathogenic sites. On the basis of fully defining tumor subtypes, our method can be used to classify 
new samples. Our computational framework proposed in this study has the following three advantages: 

1) The MCMC method has more significant advantages than previous methods in terms of 
efficiency and accuracy. 

2) The framework first uses improved genetic algorithms to optimize different epistasis evaluation 
criteria to identify multiple potential epistasis risk combinations. This multi-objective evaluation 
criterion improves the possibility of identifying weakly effect susceptible genes from different 
perspectives. Therefore, it is more conducive to the comprehensive discovery of target genes of 
complex diseases. 

3) Adaptively determine the number of tumor subtypes based on high-confidence risk 
combinations, and then use a clustering algorithm to identify heterogeneity in case samples. Therefore, 
the MCMC method can adaptively deal with epistasis and heterogeneity at the same time, and has 
certain practical value. 

Although the MCMC method designed in this study has achieved certain advantages in evaluation 
measures, there are still areas for further improvement. For example, there is still room for 
improvement in the efficiency of epistatic recognition and the classification accuracy of tumor 
subtypes. More important, it is necessary to apply our method to real tumor case-control study to 
further verify the reliability of tumor heterogeneity from the perspectives of tumor tissue morphology 
and tumor immune escape pathways. 
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