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Abstract: Mobile health networks (MHNWs) have facilitated instant medical health care and remote 
health monitoring for patients. Currently, a vast amount of health data needs to be quickly collected, 
processed and analyzed. The main barrier to doing so is the limited amount of the computational 
storage resources that are required for MHNWs. Therefore, health data must be outsourced to the cloud. 
Although the cloud has the benefits of powerful computation capabilities and intensive storage 
resources, security and privacy concerns exist. Therefore, our study examines how to collect and 
aggregate these health data securely and efficiently, with a focus on the theoretical importance and 
application potential of the aggregated data. In this work, we propose a novel design for a private and 
fault-tolerant cloud-based data aggregation scheme. Our design is based on a future ciphertext 
mechanism for improving the fault tolerance capabilities of MHNWs. Our scheme is privatized via 
differential privacy, which is achieved by encrypting noisy health data and enabling the cloud to obtain 
the results of only the noisy sum. Our scheme is efficient, reliable and secure and combines different 
approaches and algorithms to improve the security and efficiency of the system. Our proposed scheme 
is evaluated with an extensive simulation study, and the simulation results show that it is efficient and 
reliable. The computational cost of our scheme is significantly less than that of the related scheme. 

The aggregation error is minimized from O(√𝐰 ൅ 𝟏) in the related scheme to O(1) in our scheme. 
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1. Introduction  

In the last few decades, technology has significantly dominated our lives and is currently 
considered the driving force of recent improvements in the medical health care area. Wireless sensor 
networks (WSNs) have demonstrated considerable importance due to their usage in many different 
aspects of human lives, such as medical health care, surveillance, environmental monitoring, military 
fields, and many other useful applications [1–3]. 

With the widespread use of smartphones, researchers have concentrated on the use of mobile 
technology for mobile medical health care, focusing on systems of medical data aggregation that are 
used to collect and send health data from patient smartphones directly to health care organizations. 

With the exponential growth of health data, the processes of aggregating and analyzing vast 
amounts of data require immense storage capabilities, powerful computational resources, and fast and 
secure means of communication. Achieving these requirements by relying only on traditional WSNs 
is difficult and expensive for health care organizations [4]. 

Cloud-based solutions have proliferated in the medical health care field due to their extensive 
benefits [5]. These benefits include large-scale and on-demand storage, agility, cost-effectiveness and 
continuous service availability for information processing. Therefore, cloud-based solutions have 
considerable potential to enhance collaboration among the various participating entities in medical 
health care, such as patients and health care organizations. 

Despite these benefits, cloud-based solutions are associated with elevated threat levels in terms 
of security and privacy. These threats include identity spoofing; data tampering; information disclosure; 
and violations of data integrity, confidentiality, authenticity, and accountability [6,7]. 

Mobile health networks (MHNWs) consist of small and inexpensive sensors that are deployed in 
unsupervised environments and are easily exposed to malfunctions and malicious attacks. Thus, fault 
tolerance is an important characteristic that must be considered when designing sensor network 
schemes [8]. 

In data aggregation schemes, sensor failures can cause the collection and transfer of incorrect data 
without a guarantee of excellence. Fault tolerance is defined as “the ability of the network to sustain 
its functionalities properly, even in the presence of failures in some of its nodes”. Fault tolerance aims 
to eliminate critical privacy threats and assure strong privacy protection for users who contribute their 
data to aggregators to ensure that the applied technology can deliver excellent service quality [9]. 

Two approaches can be employed to achieve fault tolerance. The first is a reactive approach, in 
which a system can recover from failures when they occur [10]. A small error can be recovered by a 
state-of-the-art protocol despite failures [11]. Unfortunately, these protocols can tolerate only partial 
failures and are not efficient in terms of bandwidth and delay. The second is a proactive approach that 
handles failures using multiple message exchanges between the nodes and the aggregator before faults 
occur. This approach substantially reduces the required recovery time, as the information needed for 
fault recovery is available. 

Despite the fact that the state-of-the-art binary proactive protocol achieves a low delay, it suffers 
from communication overhead, bandwidth costs and large errors [10]. Won et al. [10] presented a novel 
design for a future ciphertext mechanism; this design supports differential privacy and achieves a 
higher bandwidth than the state-of-the-art binary proactive protocol. Chen et al. [12] presented a data 
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aggregation scheme that preserves user privacy and guarantees data integrity by adopting a future 
ciphertext mechanism to provide fault tolerance capability. 

Due to the confidential nature of health information and the importance of protecting and 
preserving the confidentiality of data, information security systems should be designed and developed 
with consideration of legal, ethical and security issues. Therefore, to design a workable data 
aggregation scheme for medical health care, the following issues must be addressed. The first issue is 
how to protect and preserve the security and privacy of data and maintain data confidentiality. The 
second issue is how to protect a system against failures. 

Therefore, we propose a novel design for a fault-tolerant privacy-preserving data aggregation 
scheme. We use the cloud to aggregate, store and process data. Our contributions can be summarized 
as follows: 

 The proposed architecture achieves a fault-tolerant privacy-preserving data aggregation scheme 
for lightweight health data with end-to-end verification. Moreover, when some failures occur, the 
cloud can compute the aggregation result, and health care institutions (HCs) can verify the 
correctness of the aggregated result. 

 We modify the future ciphertext mechanism by adding a threshold for the number of faulty nodes. 
This modification avoids scenarios in which the cloud continues to compute meaningless 
aggregation when a serious abnormality occurs in the system. 

 For secure aggregation and identity protection, we use homomorphic encryption, as it enables 
aggregation functions to be performed on encrypted data. We use random noise to achieve 
differential privacy. 

 We provide a security and privacy analysis to show that our proposed scheme supports privacy 
preservation, fault tolerance, and data integrity verification. Additionally, we evaluate the 
efficiency, robustness and reliability of our scheme to confirm that it has good real-time 
performance and low aggregation error. 
The remainder of the paper is organized as follows: Section 2 provides a background of health 

data aggregation and investigates the privacy and security challenges of data aggregation. Section 3 
reviews related studies. Preliminaries and the proposed scheme are presented in Sections 4 and 5, 
respectively. The security analysis is provided in Section 6, followed by the performance analysis in 
Section 7. The conclusion of the study and future research ideas are discussed in Section 8. 

2. Background 

WSNs are formed by hundreds of thousands of sensor nodes that are used to measure and transmit 
physical or environmental changes, such as temperature and pressure or motion within a monitoring 
environment. Each sensor node consists of a sensing unit, memory, a processing unit, a power supply 
and a wireless communication unit [13]. The characteristics of WSNs include limited power, mobility, 
ability to cope with node failures, and low cost. These features have prompted researchers to introduce 
a new research area in the medical health care field: MHNWs. Recently, wearable devices and 
smartphones have been extensively applied in offering health monitoring services based on health data 
gathered from users. As these health data are very sensitive, any data leakage may violate user 
privacy [2]. In this section, we present an overview of the different uses of cloud computing in terms 
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of data aggregation and address the security and privacy issues associated with MHNWs. 

2.1. Security and privacy challenges 

The usage of WSNs has rapidly increased over the past few years in various fields. A massive 
amount of data is being collected, transmitted and aggregated to perform processing operations. A 
large number of threats surround WSNs. Consequently, the design of a privacy-preserving data 
aggregation protocol should address these threats [13], which include the following: 
a) Privacy Preservation and Eavesdropping: Eavesdropping is a type of attack in which the intruder 

tries to obtain confidential data by listening to transmissions over neighboring wireless links. 
Therefore, privacy preservation assures data privacy that may be threatened by trusted sensor 
nodes and adversaries. Some aggregation functions, such as min and max, can also be used to 
breach data privacy. Therefore, the designed protocol must maintain data privacy while using 
aggregation functions [13]. 

b) Data Integrity and Data Tampering: One of the most common types of attack on data privacy is 
data tampering, in which the attacker tries to manipulate (with an intermediate result) sensor data 
at the aggregator level during the data aggregation phase. This type of attack leads to an incorrect 
aggregation result and eventually to an incorrect decision [2,13]. 

c) Efficiency: In WSNs, it is very difficult to avoid communication overhead, but it can be greatly 
minimized by reducing communication costs, computational costs, and memory and payload sizes. 
In WSNs, data aggregation must fulfill both bandwidth and energy efficiency requirements 
throughout network processing. 

d) Accuracy and Dynamism: In WSNs, energy constraints must be properly managed. The data 
generated from all sensing nodes are important. Therefore, all nodes should have sufficient power 
to process the collected data [3,13]. 

2.2. Essential requirements for privacy preservation in an e-health cloud 

Certain rules and regulations are defined to ensure the privacy of the data within an organization 
and are called the CIA model (confidentiality, integrity and availability) [5]. Nevertheless, the data 
managed by third-party vendors require more privacy measures than those existing in the CIA model. 
Abbas and Khan [7] stated that there are many threats to privacy in the cloud, such as spoofing, 
masquerading, tampering, replaying and denial of service. The following requirements must be 
fulfilled to achieve data privacy preservation: 

 Confidentiality: The health information of patients must be protected not only in the cloud 
environment but also from external anomalies and unauthorized users [7]. 

 Integrity: The data must be protected from illegitimate actions while ensuring that the data have 
not been altered or tampered with by either authorized or unauthorized users [5,7]. 

 Anonymity: Health data contain vital information, such as the patient’s diseases and name, and 
this information must be hidden [14,15]. The patient’s identity must be protected from intruders, 
unauthorized users and other internal or external adversaries. Anonymity can be achieved by using 
a technique known as pseudonymity [5,7]. 



7543 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 7539-7560. 

 Nonrepudiation: These threats are posed by a user who performs tasks and denies them later. In 
the medical health care area, neither a patient nor a doctor can deny modifying data [7]. 

3. Related work 

Data aggregation, as a powerful technique for MHNWs, has attracted substantial attention in both 
academia and industrial fields. Recently, many privacy-preserving data aggregation schemes have been 
presented. In [11], ACS and Castelluccia proposed a privacy-preserving data aggregation scheme that 
applies the differential privacy concept by adding Laplace noise to aggregated data. However, the 
scheme increases network bandwidth and delay. Subsequently, they extended their scheme to support 
partial fault tolerance. 

Lu et al. [15] introduced an efficient privacy-preserving scheme that reduces the computational 
overhead and delays in the network with its features, thereby providing fewer calculations, less traffic, 
higher accuracy and verifiable completeness. Khan et al. [16] proposed a fault-tolerant privacy-
preserving data aggregation scheme in a fog-enabled Boneh-Goh-Nissam (BGN) cryptosystem used 
to preserve privacy. This scheme also reduces communication and computation costs. Zhang et al. [17] 
presented a privacy-preserving data aggregation scheme for health data monitoring in which the health 
data were stored and processed in the cloud and various strategies were applied based on the 
prioritization of the dataset. This scheme reduces the communication overhead but is not tolerant of 
node failures. 

Won et al. [10] introduced a novel design for future ciphertext buffering to tolerate malfunctioning 
smart meters and achieved both differential privacy and error optimization. Chen et al. [12] also 
adopted the future ciphertext buffering mechanism that was proposed in [10] and proposed an 
aggregation scheme that supports fault tolerance, privacy preservation and data integrity. In addition, 
confidentiality was guaranteed by using Diffie-Hellman cryptography, while integrity was achieved 
by attaching a homomorphic message authentication code (HMAC) to each message. 

Han et al. [8] addressed the fault tolerance issue within the health data monitoring framework. 
They proposed a cloud-based data aggregation scheme that supports additive and nonadditive data 
aggregation. A BGN cryptosystem was used to protect user privacy. Differential privacy was achieved 
by using multiple cloud servers. The scheme also guarantees data integrity. Chen et al. [18] presented 
another multifunctional data aggregation schema (MUDA) that takes advantage of the homomorphic 
property of the BGN cryptosystem and a bilinear map to provide confidentiality to user data. The 
MUDA was also extended to support differential privacy [19,20]. Zhu et al. [21] proposed a secure 
data integrity verification scheme based on a short signature algorithm. They introduced the use of 
cloud computing to augment computing and storage resources. 

Since health data aggregation requires very high computational capabilities, the privacy of 
sensitive information can be guaranteed if it is encrypted [22] by the owner. Homomorphic encryption 
enables the cloud to compute the result of aggregation without knowing the raw data. Another way to 
provide security for health data is through the use of cryptographic storage [3,8,17]. 

Moreover, verification is an extremely crucial step in health data aggregation, as any tampering 
with the data results in an invalid aggregation, and such interference must therefore be detected and 
rejected. The message authentication code (MAC) is a protocol that is commonly used to detect false 
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data and to protect and guarantee the integrity of the data [12, 23–25]. Zhang et al. [25] and Chen et 
al. [12] took advantage of the homomorphic properties of the MAC to guarantee data integrity. The 
hash-based MAC was used by Chen et al. [12] and Zhuo et al. [26] to verify user data. 

4. Preliminaries 

This section reviews the relevant definitions and terminologies. These definitions are necessary 
to understand the remainder of this work. The basic notations and symbols are listed in Table 1. 

Table 1. Descriptions of symbols that are frequently used. 

Variables Description 

𝐆𝟏, 𝐆𝟐, 𝐆𝐓 Cyclic multiplicative group 
𝒈𝟏 Generator of Gଵ 
𝒈𝟐 Generator of Gଶ 
𝒑, 𝒒 Prime numbers 
𝒁𝒒

∗  Multiplicative group of 𝑍௤ 

𝒆ሺ𝒈𝟏, 𝒈𝟐ሻ The generator of group 𝐺் 
𝑨 A random mechanism 
𝝐 A parameter expressing the privacy cost 
𝑺 Subset of 𝑅𝑎𝑛𝑔𝑒ሺ𝐴ሻ 
𝑹𝒂𝒏𝒈𝒆ሺ𝑨ሻ A domain of the output under mechanism 𝐴 
𝛌 A security parameter 
𝒑𝒌 Public key 
𝒔𝒌 Secret key 
𝐱 Message 
𝒄 Ciphertext 
MAC Homomorphic MAC function 
𝒉 Secure hash function 

4.1. Bilinear pairing 

A bilinear pairing e  is a map e: Gଵ ൈ  Gଶ
 

→ G୘ , where Gଵ, Gଶ  and G୘  are cyclic 
multiplicative groups of the same prime order q, gଵ is a generator of Gଵ, and gଶ is a generator of 
Gଶ. The pairing e has the following properties: 

Bilinearity: e൫gଵ
ୟ, gଶ

ୠ൯ ൌ  eሺgଵ, gଶሻ ∀ gଵ ∈  Gଵ, gଶ ∈  Gଶ and a, b ∈  Z୯
∗ . 

Computability: ∀ gଵ  ∈  Gଵ, gଶ  ∈  Gଶ, eሺgଵ, gଶሻ can be computed by an efficient algorithm. 
Nondegeneracy: ∀ gଵ  ∈  Gଵ, gଶ ∈  Gଶ, eሺgଵ, gଶሻ ് 1. 

4.2. Complexity assumptions 

Definition 1. Discrete Logarithmic Problem [27] (DLP): Assume that Gଵ, Gଶ  are two cyclic 
multiplicative cyclic groups, Gଵ  is generated by gଵ , and Gଶ  is generated by gଶ . Suppose that 
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g଴, gଵ are two elements in Gଵ. It is computationally intractable to compute a such that 

gଵ ൌ g଴
ୟ (1) 

Definition 2. Computational Diffie-Hellman Problem [28] (CDH): Assume that Gଵ, Gଶ are two 
cyclic multiplicative cyclic groups, Gଵ  is generated by gଵ , and Gଶ  is generated by gଶ . Given 
e൫gଵ, gଵ

ୟ, gଵ
ୠ൯  and a, b ∈  Z୯

∗  , it is intractable to derive gଵ
ୟୠ  from the given e൫gଵ

ୟ, gଵ
ୠ൯  in 

polynomial time. 
Definition 3. Decisional Diffie-Hellman Problem [26] (DDH): Assume that Gଵ, Gଶ are two cyclic 

multiplicative cyclic groups, Gଵ  is generated by gଵ , and Gଶ  is generated by gଶ . Given 
e൫gଵ, gଵ

ୟ, gଵ
ୠ, gଵ

ୡ൯ , where a, b, c ∈  Z୯
∗  , a DDH determines whether c ൌ ab mod q  by checking as 

follows: 

e൫ gଵ
ୟ, gଵ

ୠ൯
?
ൌ

eሺ gଵ
ୡ, gሻ (2) 

Definition 4. Gap Diffie-Hellman [29] (GDH) Group: A group is Gap Diffie-Hellman if the 
computational Diffie-Hellman problem is hard but the Decisional Diffe-Hellman problem can be 
solved in a cyclic multiplicative group Gଵ, Gଶ. 

4.3. Differential privacy 

Definition 1. ( ϵ െ Differential Privacy) [30] A randomized mechanism A  satisfies 
ϵ െdifferential privacy if for any two datasets Dଵand Dଶ, where Dଵ is obtained from Dଶ by adding 
or removing a single element, and for all S ⊆RangeሺAሻ, 

PrሺAሺDଵሻ ∈ Sሻ ൑ e஫. PrሺAሺDଶሻ ∈ Sሻ (3) 

In the above definition, the parameter ϵ represents the privacy cost, which allows us to control 
the desired privacy level. A smaller value of ϵ denotes better privacy protection but implies that more 
noise is required and that the result will have lower accuracy. The most common mechanism for 
achieving ϵ-differential privacy is to add i.i.d Laplace noise sampled from the Laplace distribution to 
the aggregated result. 

Definition 2. (2ϵ െDifferential Privacy) [31] The noise Lapሺλሻ is sampled from the Laplace 
noise distribution with mean 0 and variance 2λଶ. The probability density function of the distribution 
is given by 

Lapሺλሻ ൌ
1

2λ
e|୶|/஛ (4) 

In our scenario, each participant should generate random noise following a Laplace distribution. 
The Laplace distribution is infinity divisible, where each random variable is a summation of n other 
random variables as follows: 

Lapሺλሻ ൌ ෍ ሺG୧ሺn, λሻ െ G′୧ሺn, λሻሻ
୬

୧ୀଵ
 (5) 
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where G୧ሺn, λሻ  and G୧′ሺn,λሻ  are gamma-distributed random variables with a gamma density 

given by 

gሺx, n, λሻ =
ሺଵ/஛ሻభ/౤

୻ሺଵ/୬ሻ
xଵ/୬ିଵeି୶/஛  (6) 

Additionally, Γሺ1/nሻ is the gamma function evaluated at 1/n. 

4.4. YASHE 

Yet Another Somewhat Homomorphic Encryption (YASHE) is a scheme based on a modified 
version of n-th degree truncated polynomial ring units (NTRUs) and the multikey homomorphic 
encryption scheme [32]. It has become a trendy fully homomorphic encryption (FHE) scheme due to 
its superior performance with lightweight data compared with the performances of other homomorphic 
schemes [32,33]. 

The security of YASHE is based on the hardness of the decisional-ring learning with errors 
(RLWE) problem [34]: Given sample a ← R୯, error term e ← χ, and a secret s ← R୯ where a ← R୯ 
is drawn uniformly at random, it is computationally hard for an adversary that does not know s and e 
to distinguish between the distribution of e ሺ𝑠𝑎 ൅ 𝑒, 𝑎ሻ and that of ሺ𝑎, 𝑏ሻ where ሺb ← R୯ሻ. 

YASHE. ParamGen(λ): Given a set of parameters λ, d, q, t, x୩ୣ୷, xୣ୰୰ and w, where λ is a 

security parameter, d is a fixed positive integer that determines R, and moduli q and t exist, with 
1 ൏ t ൏ q , x୩ୣ୷  and xୣ୰୰  are distributions on R , and w  is an integer base where w ൐ 1 . The 
algorithm generates ሺd, q, t, λ, x୩ୣ୷, xୣ୰୰, w). 

YASHE. keyGenሺd , q , t , λ , x୩ୣ୷ , xୣ୰୰ , w ): h , f ←  x୩ୣ୷  are computed; then, f ൌ ሾtf′ ൅

1ሿ୯ and h ൌ ሾtgf′ሿ୯ are set. e, s ←  xୣ୰୰
୪౭,౧ are sampled, and γ ൌ  ሾP୵,୯ሺfሻ ൅ e ൅ h. sሿ୯ ∈  R୪౭ is 

computed. Then, ሺpk, sk, evk) = ሺh, f, γ) is generated. 

YASHE. Encrypt (pk, xሻ : x ∈  R  is encrypted, and ciphertext c ൌ ሾ∆ሾxሿ୲ ൅ e ൅ hsሿ୯ ∈  R  is 

generated. 

YASHE. Decrypt (sk, cሻ: A ciphertext c is decrypted by x ൌ  ቂቔ୲

୯
. ሾfcሿ୯ඇቃ

୲
∈  R. 

YASHE. Add ሺcଵ, cଶ): The ciphertext cୟୢୢ= ሾcଵ ൅ cଶሿ୯ is output. 

4.5. Homomorphic MAC function 

One of the basic methods for ensuring data integrity and preventing tampering attacks is to use a 
homomorphic MAC function. The homomorphic property means that for two messages xଵ and xଶ, 
given two homomorphic MACs (MAC (xଵ) and MAC (xଶ)), anyone can compute MAC ሺxଵ ൅  xଶ) 
without knowing xଵ or xଶ. The MAC function can be constructed as follows: 

MAC ሺx୧ሻ ൌ g୶modq (7)
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where x୧ ൏ q. This MAC function satisfies the homomorphic property since it follows that 

MAC (xଵ) mod q+ MAC (xଶ) mod q = g୶ଵା୶ଶ mod q ൌ MAC (xଵ ൅ xଶ)∀ xଵ, xଶ ∈ Z୯ (8) 

4.6. Hash function 

The cryptographic hash function is used to check the integrity and source of the given data. This 
function accepts an input of arbitrary length and maps it to a fixed length with a one-way, collision-
resistant mapping. It is computationally infeasible to map two different input maps ሺa, bሻ to the same 
output such that hሺaሻ ൌ hሺbሻ, where a ് b. Additionally, it is impossible to infer a from hሺaሻ [35]. 

5. Proposed approach 

Data aggregation is an important tool in MHNWs, in which a vast amount of sensitive data is 
transmitted, processed, and analyzed. Therefore, fault tolerance and privacy have become critical 
issues for health data aggregation. Without appropriate privacy protection, users may not be willing to 
share their data. Therefore, we introduce a fault-tolerant privacy-preserving data aggregation scheme 
for health data. 

In our scheme, the computational overhead is reduced. Privacy is provided by the fully 
homomorphic YASHE in addition to embedded noise for differential privacy. Fault tolerance is 
achieved by applying the future message mechanism to properly sustain network operability even in 
the presence of failures. To enhance the efficiency of the proposed scheme, a health institution can 
control malfunctioning nodes. The basic notations and symbols of the scheme are listed in Table 2. 

Table 2. Basic notations for our proposed scheme. 

Variables Description 

𝑼𝒊 Participant 
𝐬𝐤𝐢 Private key for the participant 
𝐩𝐤𝐢 Public key for the participant 
𝐬𝐤𝐜 Private key for the health care institution 
𝐩𝐤𝐜 Public key for the health care institution 
𝐱𝐢,𝐭 Health data 
𝐫ො Random noise 
𝐱ො𝐢,𝐭 Noisy data 
𝐜𝐢,𝐭 Ciphertext 
𝑯 Secure hash function 
𝛔𝐢,𝐭 Signature generated by the secure hash function for participant 𝑈௜ 
𝐜̂𝐢,𝐭ା𝐁 Future ciphertext for time t + B 
𝑴𝑨𝑪 Homomorphic message authentication code 

𝐌𝐀𝐂෣  Future homomorphic message authentication code 
𝛍 Encrypted aggregation result 
𝛔 Verification of the correctness of the obtained aggregation result 
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5.1. System Model 

Our system model consists of four main entities, as shown in Figure 1: mobile workers (MWs), 
the health care institution (HC), the cloud (C), and the trusted authority (TA). 
 Trusted Authority (TA): The primary responsibility of the TA is the initialization of the entire 

system, which includes registering the participants, the HCs and the cloud; generating the required 
public parameters; and distributing the keys. 

 Health Care Institution (HC): The HC is the requester that seeks aggregation statistics from 
patients’ data. Due to limited storage and computation capabilities, the HC delegates 
computations to the cloud. 

 Cloud: The cloud server receives encrypted data from MWs and computes the desired statistical 
results. The cloud server encrypts the computation results and forwards them to the HC. 

 Participant (U): Participants refers to users or MWs who have smartphones and contribute their 
data to an HC. MWs are randomly chosen and encrypt and send their sensing data to the cloud. 

 

Figure 1. System model.  

Figure 2 depicts the framework of our proposed scheme, which contains three main entities: the 
client, the cloud, and the health institution. The cloud is the most prominent of these entities in our 
proposed scheme and contains three main modules: the data integrity verification module, the fault 
tolerance module, and the data aggregation module. 

The workflow of our framework is as follows: First, the user’s encrypted data are sent with two 
parameters: the first is the future ciphertext, and the second is the verification code. Then, the cloud 
server will verify the data integrity and calculate the aggregation result. If the aggregator fails to 
receive the data from one or more users up to m, the aggregator will use the future ciphertext from the 
buffer memory to calculate the aggregation result and then send the result to the HC. Finally, the HC 
will decrypt the result. 
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Figure 2. Our proposed framework. 

5.2. A novel fault-tolerant privacy-preserving cloud-based data aggregation scheme for lightweight 
health data 

Step 1: Setup and key management 

The TA generates the necessary parameters and keys for the system, generates the bilinear 
parameters (q, g, h, e, Gଵ, Gଶ, G୘) and encryption parameters for YASHE ሺd, q, t, λ, x୩ୣ୷, xୣ୰୰, w) 
and chooses a secure hash function Hሺxሻ. The TA registers all mobile users, the requester and the 
cloud in the system by sending them a private/public key pair (skୡ, pkୡሻ. The TA selects N mobile 
users and registers them. Each registered MW is assigned private/public key pairs (sk୧, pk୧). Both the 
requester and workers are assigned encryption keys (α, β) for the homomorphic MAC. 

Step 2: Sensing and reporting 

During each time period t, each participant U୧ reports his/her sensing data x୧,୲ as follows. First, 

U୧ computes 

xො୧,୲ ൌ x୧,୲ ൅rො୧,୲ (9)

rො୧,୲ ൌ G୧,୲ሺn, λሻ െ 𝐺 ′
୧,୲ሺn, λሻ ൌ G෡୧,୲ሺn, λሻ (10)

where rො୧,୲ represents random noise variables with gamma densities. The sum of all random noise from 

all participants guarantees differential privacy due to the divisibility of the Laplace distribution, as 
described in Section 4.1. 

However, adding random noise rො is not adequate for ensuring the privacy of the data. As a result, 
the noisy data xො୧,୲ should be encrypted using the public key pkୡ of the requester to obtain 
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c୧,୲ൌ Enc୮୩ౙ
ሺxො୧,୲ሻ (11)

Each ciphertext c୧,୲ is signed with its corresponding signature σ୧,୲ (generated by the secure hash 

function H() using participants’ private keys sk୧ ) to prevent tampering attacks and ensure data 
integrity as follows: 

σ୧,୲ ൌ Hሺt||c୧,୲ሻୱ୩౟ (12)

To address fault tolerance, we use the proactive aggregation protocol based on the future 
ciphertext mechanism. Each participant U୧  computes two kinds of ciphertext—c୧,୲  for xො୧,୲  and a 
future ciphertext cො୧,୲ adapted from c୧,୲ as follows: 

cො୧,୲ା୆ൌ Enc୮୩ౙ
ሺrො୧,୲ା୆ ൅ Lap୧,୲ା୆ሺλሻሻ (13)

We assume that the aggregator has a buffer memory (B) to store future ciphertexts for each node. 
In our design, the aggregator is the cloud, which has intensive storage. Each node i sends its ciphertext 
c୧,୲ at time t and B future ciphertexts cො୧,୲, cො୧,୲ାଵ, cො୧,୲ାଶ... cො୧,୲ା୆ିଵ, as shown in Figure 3. In the next 

iteration, each node sends two ciphertexts: The first ciphertext is the current ciphertext c୧୲, and the 
second ciphertext is the future ciphertext cො୧,୲ା୆ and the corresponding signature σ୧,୲. The purpose of 

a future ciphertext is to replace a given ciphertext if the cloud is unable to receive ciphertexts from the 
corresponding participant node. For increased efficiency, the HC controls the number of 
malfunctioning nodes using the parameter factor M. 

 

Figure 3. Future ciphertext mechanism. 

Step 3: Verifying the correctness of the health data aggregation 

To ensure end-to-end verification, we use the HMAC function MAC. Each participant U୧ signs 
the reported data with the corresponding homomorphic MAC value 𝑀𝐴𝐶 (𝑥ො௜,௧) and calculates the 

homomorphic MAC value for the future ciphertext 𝑀𝐴𝐶෣   ( 𝑟̂௜,௧ା஻ ). Participant U୧  sends 𝑐௜,௧ , 
𝑐̂௜,௧ା஻ , 𝜎௜,௧, 𝑀𝐴𝐶 (𝑥ො௜,௧) and 𝑀𝐴𝐶෣  (𝑟̂௜,௧ା஻) to the cloud. 

Step 4: Data aggregation and verification 

After receiving all reports, the cloud verifies whether the received reports were obtained from the 
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chosen participants for each ciphertext 𝑐௜,௧ using participants’ public keys 𝑝𝑘௜ by checking 

𝑒൫𝜎௜,௧, 𝑔ଶ൯ ൌ 𝑒ሺ𝐻ሺ𝑡|ห𝑐௜,௧൯, 𝑝𝑘௜ሻ (14)

If the above equation is valid, then data integrity is guaranteed, and the cloud proceeds to compute 
the aggregation result 𝜇. If not, a breach has occurred. 

𝜇 ൌ ෍ 𝑐௜,௧

௡

௜ୀଵ,௜ ∉ ௎ಷ

 (15)

However, this equation does not consider fault tolerance. If some reports were not received by 
the cloud, the cloud cannot verify the received reports or obtain the aggregation results. For a more 
efficient and reliable schema, we modify the future ciphertext mechanism to enable users to set a 
preference configuration parameter M and resist the failure of a maximum of M participants out of N 
total participants. 

𝜇 ൌ  ∑ 𝑐௜,௧
௡
௜ୀଵ,௜ ∉ ௎ಷ

൅∑ 𝑐̂௝,௧
௡
௝ୀଵ,௝ ఢ ௎ಷ

 (16)

If the cloud does not receive the ciphertext c from between one and M nodes, where HC can 
specify M, the cloud uses the future ciphertext cො , which corresponds to the malfunctioning node from 
the buffer memory. If the number of malfunctioning nodes exceeds M, then the system is reinitialized 
to choose new medical health care nodes. 

To verify the correctness of the aggregation result, the cloud computes the corresponding 
homomorphic message authentication code MAC as follows: 

𝜎 ൌ∑ 𝑀𝐴𝐶 ሺ𝑥ො௜,௧ሻ௡
௜ୀଵ  (17)

If the number of participants who fail to send their data is less than M, the cloud verifies the 
correctness of the aggregation result as follows: 

𝜎 ൌ ∑ 𝑀𝐴𝐶 ሺ𝑥ො௜,௧ሻ௡
௜ୀଵ,௜ ∉ ௎ಷ

൅∑ 𝑀𝐴𝐶෣ ሺ𝑟̂௝,௧ሻ௡
௝ୀଵ,௝ ఢ ௎ಷ

 (18)

The cloud forwards the results and the corresponding homomorphic MAC values {μ, σሽ to the 
requester (the HC). 

Step 5: Decryption and verification of the results 

When HC receives { μ, σሽ  from the cloud, it derives the aggregation result ∑ c୧,୲
୬
୧ୀଵ   by 

decrypting μ as follows: 

∑ 𝐷𝑒𝑐௦௞೎
ሺ𝑐௜,௧

௡
௜ୀଵ ሻൌ 𝐷𝑒𝑐௦௞೎

ሺ𝜇ሻ (19)

The HC verifies the correctness of the aggregation result obtained using the homomorphic MAC 
algorithm by checking 

𝑀𝐴𝐶൫𝐷𝑒𝑐௦௞೎
ሺ𝜇ሻ൯

?
ൌ

ෑ 𝑀𝐴𝐶ሺ𝑥ො௜,௧ሻ

௡

௜ୀଵ

൅ ෑ 𝑀𝐴𝐶෣ ሺ𝑟̂௝,௧ሻ

௡

௝ୀଵ

 (20)
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If the verification fails, the HC rejects the results. Otherwise, the HC accepts the results. 

6. Security analysis 

This section analyzes the security and privacy requirements satisfied by our proposed scheme. 
Moreover, we demonstrate how our proposed scheme resists different types of adversary models. 

6.1. Data privacy 

In our scheme, health data x୧ are encrypted using YASHE, which is indistinguishable under the 
chosen ciphertext attack (IND-CPA) and secure under the decisional-RLWE assumption [34]. It is 
impossible for any time-bounded adversary to decrypt the ciphertext and obtain the health data without 
the knowledge of the private key, which is known only by the HC. 

 Resilience against external attacks: 
Proof: The external adversary cannot eavesdrop on the ciphertext 𝑐௜,௧  and extract 𝑥௜,௧ 

successfully since he/she has no knowledge of 𝑡, 𝑞, 𝑓 or 𝑒, ℎ. Such knowledge is impossible because 
f is held securely by participant 𝑈௜ and 𝑒, ℎ is privately held by the HC. 

6.2. Differential privacy 

During each time period t, the cloud can perform one of the above two types of queries. Both 
queries provide 2𝜖 -differential privacy, where λ  = 𝐺𝑆/𝜖  and 𝐺𝑆  is the global sensitivity of the 
aggregation result. Although the cloud uses the current and future ciphertexts to infer the sensing data 
𝑥௜,௧,, i.e., 𝑐௜,௧ - 𝑐̂௜,௧ = 𝑥௜,௧ െ 𝐿𝑎𝑝௜,௧ሺλሻ, it also provides 𝜖 -differential privacy for the data 𝑥௜,௧ [12], 

as the Laplace distribution has a symmetric shape around its mean of zero. Therefore, during each time 
period, from the participants’ perspective, our scheme provides 2𝜖-differential privacy based on its 
parallel composition and sequential composition properties. Furthermore, our scheme provides 
protection against human factor-aware differential aggregation (HAD) [36]. This type of attack aims 
to break individual privacy. Suppose there are three MWs MWଵ, MWଶ and MWଷ, and the sensing 
data 𝑥ଵ, 𝑥ଶ of MWଵ,MWଶ, respectively, are stable at time slots 𝑡ଵ and 𝑡ଶ. MWଷ does not report any 
data at time slot 𝑡ଶ . From Eqs (5), (9), (10) and (13), the aggregated results for 𝑡ଵ  and 𝑡ଶ  are 
𝑀ଵ=∑ 𝑥௜,ଵ

ଷ
௜ୀଵ ൅ 𝐿𝑎𝑝ଵሺλሻ and 𝑀ଶ=∑ 𝑥௜,ଶ

ଶ
௜ୀଵ ൅ 𝐿𝑎𝑝ଶሺλሻ ൅ 𝐿𝑎𝑝ଷ,ଶሺλሻ, respectively. It is infeasible for 

the adversary to derive the sensing data 𝑥ଷ of MWଷ at time slot 𝑡ଵ by comparing the aggregated 
result of 𝑡ଵ and 𝑡ଶ since 𝑀ଵ െ 𝑀ଶ ൌ  𝑥ଷ,ଵ െ 𝐿𝑎𝑝ଷ,ଵሺλሻ. 

6.3. Data integrity 

In our scheme, the cloud can easily detect if a report has been modified or interrupted by any 
adversary. Each report will be signed by a secure hash function at each time 𝑡. 

 Resilience against modification attacks: 

Proof: Assume that the adversary modifies 𝑐௜,௧  and 𝜎௜,௧  into 𝑐௜,௧
ᇱ   and 𝜎௜,௧

ᇱ  , respectively. The 

modified message passes the verification step if and only if 𝜎௜,௧
ᇱ  is guessed correctly. However, GDH 
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group theory posits that it is infeasible for the adversary to determine 𝜎௜,௧
ᇱ   from e൫𝜎௜,௧

ᇱ , 𝑔ଶ൯ ൌ

𝑒 ቀ𝐻 ቀ𝑡|ห𝑐௜,௧
ᇱ ൯ቁ , 𝑝𝑘௜ቁ since 𝐺ଵ is a GDH group. Additionally, for the given 𝜎௜,௧

ᇱ , it is impossible to 

extract 𝑐௜,௧
ᇱ  from 𝑒൫𝜎௜,௧

ᇱ , 𝑔ଶ൯ ൌ 𝑒ሺ𝐻ሺ𝑡 |ห𝑐௜,௧
ᇱ ൯, 𝑝𝑘௜) due to the features of the secure hash function and 

GDH group. 
Therefore, when the adversary tries to transmit a modified message 𝑐௜,௧

ᇱ   to the cloud, the 

modification can be detected by the cloud. As a result, our proposed scheme is resilient against 
modification attacks. 

 Resilience against impersonation attacks: 
Proof: To impersonate Uଵ, the adversary must know the private key sk୧. Using the public key 

pk୧ and the signature σ୧,୲= H ሺt||c୧,୲ሻୱ୩౟, it is intractable to find sk୧ in polynomial time due to the 
discrete logarithmic assumption in Gଵ. 

 Resilience against reply attacks: 
Proof: The adversary launches a reply attack by sending ciphertext c୧  with the signature σ୧,ଵ at 

time tଶ, which has been used at time tଵ, where (tଵ ൏  tଶ). This can be detected by the cloud since 
e൫σ୧,ଵ, gଶ൯ ൌ e ሺH ሺtଵ|หc୧,ଵ൯, pk୧). 

6.4. Robustness 

To achieve robustness and node failure resistance in our scheme, we utilize a future ciphertext 
mechanism that requires low memory expenses. In the case of node failure, the cloud can still compute 
the aggregation and allows the HC to verify the correctness of aggregation. This in turn guarantees 
fault tolerance and robustness.   

Table 3. Comparison of the security features of the proposed approach and related works. 

Features Our scheme Won et al. [10] Zhuo et al. [26] Chen et al. [12] 

PPR Yes Yes Yes Yes 
REX Yes No Yes No 
DPR Yes Yes No Yes 
RIM Yes No Yes - 
RMO Yes No Yes - 
RRE Yes No - - 
ROU Yes Yes No Yes 
Correctness of Verification Yes No Yes Yes 
Computation Delegation Yes No Yes No 
PPR: Privacy preservation. RMO: Resilience against modification attacks. 

REX: Resilience against external attacks. RRE: Resilience against reply attacks. 

DPR: Differential privacy. ROU: Robustness. 

RIM: Resilience against impersonation attacks.   

6.5. Correctness of the verification process 

We use HMAC to ensure the correctness of the obtained aggregation result. First, during each 
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time period t, the cloud computes the summation of the HMACs’ σ for all received data and forwards 
the sum to the HC with the aggregation result μ. Then, the HC computes the HMAC for the aggregation 
result μ and checks whether the equation below holds: 

𝑀𝐴𝐶൫𝐷𝑒𝑐௦௞೎
ሺ𝜇ሻ൯

?
ൌ

𝜎  

Therefore, if the adversary tampers with the aggregation result, this tampering can be detected by the 
HC. Moreover, Table 3 demonstrates a comparison between the security features of our proposed 
scheme and those of other works [10,12,26]. 

7. Performance analysis 

Our proposed scheme is implemented based on the homomorphic scheme developed by Lepoint 
and Naehrig [32] using the Fast Library for Number Theory (FLINT) arithmetic library and the GNU 
Multiple Precision (GMP) math library. Our simulation experiments and benchmark tests are executed 
on a laptop with an Intel core i5 processor, 6 GB of RAM and the Windows 7 (64-bit) operating system. 
We also implement the scheme of Won et al. [10] for comparison. The performance results are stated 
in terms of milliseconds. 

Additionally, we consider that the health data are manipulated by the patient’s mobile phone 
(MW). Encryption is performed by the MW before sending the data to the cloud, and decryption is 
performed by the HC after sending the data to the cloud. The cloud receives the encrypted data, 
computes the summation of these encrypted data, and forwards the encrypted results to the HC. The 
size of the encrypted dataset is relatively small, as our scheme focuses on lightweight health data. Our 
simulation dataset is randomly generated from 35 to 42 human body temperature readings. 

Table 4. Key generation cost for different security levels. 

Security Bit 
Our Scheme Scheme of Won et al. [10] 

n q CPU Time (ms) Real Time (ms) CPU Time (ms) Real Time (ms)

128 2048 54 0.115 0.346 0.960 1.917 

192 4096 75 0.151 0.395 0.985 1.982 
256 8192 118 0.185 0.469 0.995 2.078 

7.1. Cost of key generation 

First, we compare the key generation costs of an MW in our scheme with those in the scheme of 
Won et al. [10] by changing the security bit to examine the key generation costs at different security 
levels. Table 4 shows the parameter sets used in our benchmarks. We choose these parameters based 
on [37]. The comparison is shown in Figures 4 and 5 for the real-time and CPU time flags yielded by 
benchmark testing. For this comparison, we calculate the cost based on a group of 100 MWs. The 
graphs plotted in Figures 4 and 5 indicate that the required time for key generation in our scheme is 
lower than that in the scheme of Won et al. [10] in terms of both real time and CPU time. Note that the 
real time required for key generation in the scheme of Won et al. [10] is three times higher than that 
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required for key generation in our scheme. Thus, our scheme is four times faster than that of Won et 
al. [10] based on CPU time flags. The key generation cost is critical to the MW, as a lower cost for key 
generation leads to a longer battery life. 

 

Figure 4. Comparison of key generation costs in terms of real time. 

 

Figure 5. Comparison of key generation costs in terms of CPU time. 

7.2. Cost of encryption 

We also simulate the costs of encryption incurred by an MW when each group of our scheme 
has 100 participants (U) and compare the calculated costs with those of the scheme of Won et al. [10] 
at different security levels by changing the security bit. The simulation results are shown in Figures 6 
and 7 for the real-time and CPU time flags yielded by benchmark testing. As shown in Figures 6 and 7, 
the encryption time of our scheme is superior to that of the scheme developed by Won et al. [10]. In 
terms of both real time and CPU time, the encryption cost of our scheme is six times lower than that 
of the scheme of Won et al. [10]. The low efficiency of the Won et al. [10] scheme is attributed to its 
encryption mechanism, where each participant in each time period t must communicate with all 
partners from the same group to exchange the secret keys 𝒔𝒌𝒊,𝒕 to be used as the encryption key. To 

reduce the encryption cost in the scheme of Won et al. [10], we need to reduce the number of 
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participants (U) in each group. This reduction would cause a decrease in the privacy level of the data 
and result in a reduced security level. The opportunity for the adversary to attack and disclose the data 
would then increase. 

 

Figure 6. Comparison of encryption costs in real time for different security levels. 

 

Figure 7. Comparison of encryption costs in CPU time for different security levels. 

7.3. Low aggregation error 

To make our scheme more practical, we utilize the future ciphertext mechanism proposed by Won 
et al. [10] to guarantee fault tolerance at the expense of two main requirements. If failures occur, the 
cloud can still calculate the aggregation result and the corresponding data integrity verification value. 
To evaluate our fault tolerance protocol, we measure the closeness between the actual summation of 
the sequence of data and the noisy sum calculated using the root mean square error (RMSE). Figure 8 
shows the simulation result of our proposed scheme, where p is the probability of failure for MWs. 
The error in our scheme is significantly lower than that in the scheme developed by Won et al. [10]. 
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Figure 8. Comparison of encryption costs in real time yielded by changing the number of 
participants. 

8. Conclusions and future work 

We propose a fault-tolerant privacy-preserving cloud-based data aggregation scheme for 
lightweight health data. Our proposed scheme takes advantage of the numerous capabilities of the 
cloud by enabling an HC to delegate data aggregation tasks to the cloud. In our proposed scheme, we 
implement YASHE to protect the patient’s identity and privacy, which enables the cloud to calculate 
the aggregation result with encrypted data. For differential privacy, we distribute noise among the 
MWs. Although our scheme enables the HC to verify the correctness of the aggregation result, our 
fault tolerance scheme is proactive and based on a future ciphertext mechanism. For increased 
efficiency, we enable the HC to control the number of acceptable malfunctioning nodes. 

Compared with the aggregation process in the scheme of Won et al. [10], that in our scheme has 
a lower aggregation error and is not affected by the number of malfunctioning nodes. In addition, the 
performance evaluation shows that the computational overhead is significantly reduced. Unlike the 
encryption time in the scheme of Won et al. [10], that in our scheme is not affected by the number of 
participants utilized. The simulation results demonstrate the efficiency and feasibility of our scheme. 
In future work, we will improve our scheme to support multifunctional health data aggregation. 
Additionally, we will apply batch verification instead of individually verifying the reported data, which 
will improve the performance of the scheme. 

Acknowledgments 

This research project was supported by a grant from the Research Center of the Female Scientific 
and Medical Colleges, Deanship of Scientific Research, King Saud University. 

Conflict of interest 

All authors declare no conflicts of interest in this paper. 

0
5

10
15
20
25
30
35
40

0.0001 0.0004 0.007 0.001
RM

SE

Probability of Malfunctioning Node
Scheme of Jongho Won et al. [10] Our Scheme



7558 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 7539-7560. 

References 

1. G. Dhand, S. S. Tyagi, Data aggregation techniques in WSN: survey, Proc. Comput. Sci., 92 
(2016), 378–384. 

2. K. Zhang, K. Yang, X. Liang, Z. Su, X. Shen, H. H. Luo, Security and privacy for mobile 
healthcare networks: from a quality of protection perspective, IEEE Wirel. Commun., 22 (2015), 
104–112. 

3. C. Castelluccia, A. C. F. Chan, E. Mykletun, G. Tsudik, Efficient and provably secure aggregation 
of encrypted data in wireless sensor networks, ACM Trans. Sens. Netw. (TOSN), 5 (2009), 1–36. 

4. N. Dong, H. Jonker, J. Pang, Challenges in eHealth: from enabling to enforcing privacy, in 
International Symposium on Foundations of Health Informatics Engineering and Systems, 
Springer, Berlin, (2012), 195–206. 

5. A. Abbas, S. U. Khan, E-health cloud: privacy concerns and mitigation strategies, in Medical Data 
Privacy Handbook, Springer International Publishing, (2015), 389–421. 

6. S. P. Ahuja, S. Mani, J. Zambrano, A survey of the state of cloud computing in healthcare, Netw. 
Commun. Technol., 1 (2012), 12. 

7. A. Abbas, S. U. Khan, A review on the state-of-the-art privacy-preserving approaches in the e-
health clouds, IEEE J. Biomed. Health Inf., 18 (2014), 1431–1441. 

8. S. Han, S. Zhao, Q. Li, C. Ju, W. Zhou, PPM-HDA: privacy-preserving and multifunctional health 
data aggregation with fault tolerance, IEEE Trans. Inf. Forensics Secur., 11 (2016), 1940–1955. 

9. L. Bergamini, L. Becchetti, A. Vitaletti, Privacy-preserving environment monitoring in networks 
of mobile devices, in NETWORKING 2011 Workshops, Springer, (2011), 179–191. 

10. J. Won, C. Y. T. Ma, D. K. Y. Yau, N. S. V. Rao, Proactive fault-tolerant aggregation protocol for 
privacy-assured smart metering, in IEEE INFOCOM 2014-IEEE Conference on Computer 
Communications, IEEE, (2014), 2804–2812. 

11. G. Ács, C. Castelluccia, I have a DREAM! (differentially private smart metering), in International 
Workshop on Information Hiding, Springer, (2011), 118–132. 

12. J. Chen, H. Ma, D. Zhao, Private data aggregation with integrity assurance and fault tolerance for 
mobile crowd-sensing, Wirel. Netw., 23 (2017), 131–144. 

13. R. Bista, J. W. Chang, Privacy-preserving data aggregation protocols for wireless sensor networks: 
a survey, Sensors (Basel), 10 (2010), 4577–4601. 

14. B. Fabian, T. Ermakova, P. Junghanns, Collaborative and secure sharing of healthcare data in 
multi-clouds, Inf. Syst., 48 (2015), 132–150. 

15. R. Lu, X. Liang, X. Li, X. Lin, X. Shen, EPPA: an efficient and privacy-preserving aggregation 
scheme for secure smart grid communications, IEEE Trans. Parallel Distrib. Syst., 23 (2012), 
1621–1631. 

16. H. M. Khan, A. Khan, F. Jabeen, A. U. Rahman, Privacy preserving data aggregation with fault 
tolerance in fog-enabled smart grids, Sustainable Cities Soc., 64 (2021), 102522. 

17. K. Zhang, X. Liang, M. Baura, R. Lu, X. Shen, PHDA: a priority based health data aggregation 
with privacy preservation for cloud assisted WBANs, Inf. Sci., 284 (2014), 130–141. 

18. L. Chen, R. Lu, Z. Cao, K. AlHarbi, X. Lin, MuDA: multifunctional data aggregation in privacy-
preserving smart grid communications, Peer Peer Netw. Appl., 8 (2015), 777–792. 



7559 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 7539-7560. 

19. J. Won, C. Y. T. Ma, D. K. Y. Yau, N. S. V. Rao, Privacy-assured aggregation protocol for smart 
metering: a proactive fault-tolerant approach, IEEE/ACM Trans. Netw., 24 (2016), 1661–1674. 

20. K. Grining, M. Klonowski, P. Syga, Practical fault-tolerant data aggregation, in International 
Conference on Applied Cryptography and Network Security, Springer, Cham, (2016), 386–404. 

21. H. Zhu, Y. Yuan, Y. Chen, Y. Zha, W. Xi, B. Jia, et al., A secure and efficient data integrity 
verification scheme for cloud-IoT based on short signature, IEEE Access, 7 (2019), 90036–90044. 

22. Benaloh, M. Chase, E. Horvitz, K. Lauter, Patient controlled encryption: ensuring privacy of 
electronic medical records, in Proceedings of the 2009 ACM Workshop on Cloud Computing 
Security, Association for Computing Machinery, (2009), 103–114. 

23. M. M. Fouda, Z. M. Fadlullah, N. Kato, R. Lu, X. S. Shen, A lightweight message authentication 
scheme for smart grid communications, IEEE Trans. Smart Grid, 2 (2011), 675–685. 

24. H. Bao, L. Chen, A lightweight privacy-preserving scheme with data integrity for smart grid 
communications, Concurr. Comput. Pract. Exp., 28 (2016), 1094–1110.J. 

25. R. Zhang, J. Shi, Y. Zhang, C. Zhang, Verifiable privacy-preserving aggregation in people-centric 
urban sensing systems, IEEE J. Sel. Areas Commun., 31 (2013), 268–278. 

26. G. Zhuo, Q. Jia, L. Guo, M. Li, P. Li, Privacy-preserving verifiable data aggregation and analysis 
for cloud-assisted mobile crowdsourcing, in IEEE INFOCOM 2016 - The 35th Annual IEEE 
International Conference on Computer Communications, IEEE, (2016), 1–9. 

27. C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, M. Naor, Our data, ourselves: privacy via 
distributed noise generation, in Advances in Cryptology-EUROCRYPT 2006, Springer, (2006), 
486–503. 

28. C. Meshram, An efficient ID-based cryptographic encryption based on discrete logarithm problem 
and integer factorization problem, Inf. Process. Lett., 115 (2015), 351–358. 

29. D. Boneh, B. Lynn, H. Shacham, Short signatures from the weil pairing, in International 
conference on the theory and application of cryptology and information security, Springer, (2001), 
514–532. 

30. C. Dwork, Differential privacy, in International Colloquium on Automata, Languages, and 
Programming, Springer, 2006. 

31. J. He, L. Cai, Differential private noise adding mechanism: basic conditions and its application, 
in 2017 American Control Conference (ACC), IEEE, (2017), 1673–1678. 

32. T. Lepoint, M. Naehrig, A comparison of the homomorphic encryption schemes FV and YASHE, 
in International Conference on Cryptology in Africa, Springer, Cham, (2014), 318–335. 

33. A. Costache, N. P. Smart, Which ring based somewhat homomorphic encryption scheme is best?, 
in Cryptographers’ Track at the RSA Conference , Springer, (2016), 325–340. 

34. J. W. Bos, K. Lauter, J. Loftus, M. Naehrig, Improved security for a ring-based fully homomorphic 
encryption scheme, in IMA International Conference on Cryptography and Coding, Springer, 
Berlin, Heidelberg, (2013), 45–64. 

35. J. Shao, Efficient verifiable multi-secret sharing scheme based on hash function, Inf. Sci., 278 
(2014), 104–109. 

36. W. Jia, H. Zhu, Z. Cao, X. Dong, C. Xiao, Human-factor-aware privacy-preserving aggregation 
in smart grid, IEEE Syst. J., 8 (2014), 598–607. 



7560 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 7539-7560. 

37. K. Laine, Simple encrypted arithmetic library 2.3. 1, Microsoft Research, 2017. Available from: 
https://www. microsoft. com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1. Pdf. 

38. H. Liu, T. Gu, Y. Liu, J. Song, Z. Zeng, Fault-tolerant privacy-preserving data aggregation for 
smart grid, Wirel. Commun. Mobile Comput., 2020 (2020). 

©2021 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 

 


