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Abstract: Objective: To evaluate the automatic segmentation approach for organ at risk (OARs) and 

compare the parameters of dose volume histogram (DVH) in radiotherapy. Methodology: Thirty-three 

patients were selected to contour OARs using automatic segmentation approach which based on U-

Net, applying them to a number of the nasopharyngeal carcinoma (NPC), breast, and rectal cancer 

respectively. The automatic contours were transferred to the Pinnacle System to evaluate contour 

accuracy and compare the DVH parameters. Results: The time for manual contour was 56.5 ± 9, 23.12 

± 4.23 and 45.23 ± 2.39min for the OARs of NPC, breast and rectal cancer, and for automatic contour 

was 1.5 ± 0.23, 1.45 ± 0.78 and 1.8 ± 0.56 min. Automatic contours of Eye with the best Dice-similarity 

coefficients (DSC) of 0.907 ± 0.02 while with the poorest DSC of 0.459 ± 0.112 of Spinal Cord for 

NPC; And Lung with the best DSC of 0.944 ± 0.03 while with the poorest DSC of 0.709 ± 0.1 of Spinal 

Cord for breast; And Bladder with the best DSC of 0.91 ± 0.04 while with the poorest DSC of 0.43 ± 

0.1 of Femoral heads for rectal cancer. The contours of Spinal Cord in H&N had poor results due to 

the division of the medulla oblongata. The contours of Femoral head, which different from what we 

expect, also due to manual contour result in poor DSC. Conclusion: The automatic contour approach 

based deep learning method with sufficient accuracy for research purposes. However, the value of DSC 

does not fully reflect the accuracy of dose distribution, but can cause dose changes due to the changes 

in the OARs volume and DSC from the data. Considering the significantly time-saving and good 

performance in partial OARs, the automatic contouring also plays a supervisory role. 
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1. Introduction  

Patients with intensity-modulated radiotherapy need to go through several steps, including 

positioning, target contour, planning, plan design, plan verification, plan execution, etc. The contour 

of target volumes is one of the key steps in the preparation of a radiotherapy treatment plan of intensity 

modulated radiotherapy [1,2]. Nevertheless, manual contour is time taking process and conditional on 

intra- and inter-observer differences although established on standard guidelines. Multiple studies have 

shown that the contouring consensus among different oncologists at various hospitals is poor, to solve 

this radiotherapeutic problem, multiple studies have focused on automatic contouring [3,4]. 

With the improvement in the speed of computer calculations and the improvement of the images 

processing makes it possible to develop approach for delineation automatically for radiation therapy. 

In recent years, automatic segment has become one of the most popular research in the field of 

radiotherapy, atlas and deep learning based automatic contouring methods are the two mainly 

technologies at present. As early as 2009, Mahdavi et al. [5] reported and characterized a semi-

automatic prostate segmentation method for prostate brachytherapy. 

Coupled with the large number of patients in radiotherapy, the research can acquire much more 

the learning data. In radiation therapy automated methods for sub-volume oriented dose-escalation 

plans can assist medical examination [6,7], the precise contour can reduce the toxic effect of normal 

tissues and benefit patients with longer survival periods such as nasopharyngeal carcinoma (NPC), 

breast and rectal cancer patients.  

The objective of this study is to investigate the automatic techniques into NPC, breast and rectal 

cancer patients radiotherapy planning practice through automatic segmentation approach, which based 

on the deep learning method. The manual contours were acted as a reference for the study.  

2. Materials and methods 

2.1. Patient data 

Thirteen NPC, ten breast cancer and ten rectal cancer patients, who received IMRT between Oct 1st 

2019 to Oct 1st 2020 and underwent contrast-enhanced planning computed tomography (CT), were 

selected for this study. Written informed consent was obtained from each patient, and all studies 

involving people, medical records were approved by the Clinical Research Ethics Committee. 

2.2. Contour and planning 

2.2.1. Manual contour 

The organs at risk (OARs) were contoured by one radiation oncologist who has more than 10 years’ 

experience in the field of contouring (e.g., NPC was contoured by a H&N oncologist, etc.) according 

to the recommendations of the European Society of Therapeutic Radiation Oncology Guidelines on 
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planning CT. The same radiotherapist contoured OARs for three sequences on Multiplan2.4.1 system 

(Accuray Inc, USA), the OARs in NPC mainly contain: Lens, Optic-Nerves, Parotids, BrainStem and 

Spinal Cord; Lung, Heart and Spinal Cord for breast cancer while Bladder and Femoral heads for rectal 

cancer [8].   

2.2.2. Automatic segment approach 

The OARs were automatically contoured on the same images using automatic segment approach. 

The approach based on deep learning and traditional algorithm model, which divided into three parts: 

data collection, annotation, model training and prediction [9]. The module builds loss function pool, 

image segmentation model pool and selectable parameter pool after obtaining training set data. The 

training model is constructed by randomly selecting the corresponding loss function, image 

segmentation model and training parameter value based on the selectable parameter pool, and the 

training model is trained based on the training set data to obtain the trained training model [10]. Then, 

the DSC value of each trained training model is calculated on the corresponding verification set. Finally, 

the corresponding training model with the highest DSC value is selected as the final OAR automatic. 

2.2.2.1. The training network 

The default network in deep learning network is an adaptive structure strategy similar to 2D-

UNet [11], it contains 5 maximum pooling layers and 5 upper adoption layers, The basic convolutional 

core channels are 32, size 3 × 3, Behind each convolutional layer are batch normalized (Batch Norm) 

layers and a linear rectifier function (ReLU), the jump connection is cascaded between the encoder 

and the decoder, combine high-resolution details and deep image semantic information to improve the 

effect of sketching the model. The network architecture is shown in Figure 1. 

 

Figure 1. Schematic diagram pertaining to deep learning approach. 
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2.2.2.2. Loss function 

Furthermore, the loss function is set to Dice Loss, learning rate to 3e-4, optimizer set to Adam, 

Batch Size to 16 and the total number of iterations is 100 epochs. 

BA

BA
DiceLoss






2
1  

2.2.2.3. Assessment 

There are two evaluation methods in approach: cross-validation and training/test separation 

validation. The first method divides the dataset into the same number of k subsets. Use k-1 subsets for 

training each time and the other as a test set. Repeat the training for k times and evaluate the results. 

The second method divides the dataset into two parts for training and testing, which applies to those 

with a large number of cases. For small dataset, we selected k = 5 for cross-validation while with big 

dataset we chose 80% for the training and 20% for the test.  

For evaluation, we adopted two quantitative evaluation metrics while the manual contouring 

served as the reference standard for contouring time and DVH parameters comparisons[12].  

2.3. Evaluations of automatic contours  

The quality of the automatic is critical, numerous measures are utilized to compare the volumes 

between automatic and manual contouring including Time, Dice Similarity Cofficient (DSC), 

Hausdorff Distances (HD), Jaccard Distance (JD) and DVH parameters [13]. 

2.3.1. Dice similarity coefficient 

DSC(A,B) = 2(A∩B)/(A+B)                            (1) 

A and B represented automatically contoured and manually contoured OARs, respectively. As the 

contours approach agreement, the DSC value approaches 1; as the volumes diverge into two 

nonoverlapping structures, the DSC value goes to 0. The calculation of DSC in commercially available 

registration systems is not standard, although its inclusion in commercial software is a 

recommendation of TG132. However many professional literature reported that the values of 

DSC > 0.700 shows optimum overlap of contours [14,15].  

2.3.2. Hausdorff Distances (HD) 

 HD=max (h(A,B), h(B,A))                          (2) 

where h(A,B) is the fixed HD from A to B. where h(A,B)=max(min(||a-b||)),
BbA  ,a

, when the 

HD near to zeros, the difference between the auto contouring and manual contouring get smaller. 
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2.3.3. Jaccard Distance(JD) 

BA

BA
JD




                                     (3) 

JD is used to describe the dissimilarity between sets. The larger the JD, the higher the sample 

similarity. Where A and B represented automatically contoured and manually contoured OARs, 

respectively. 

2.3.4. Time evaluation 

The time needed by the approach to generate contours was measured by when the CT was imported 

until the end of the entire generation process. 

2.3.5. Evaluation of DVH Parameters 

Once the automatic completed, the automatic contours were sent back to the Pinnacle Treatment 

Planning System (TPS,version 9.8, Philips Radiation Oncology systems, Madison, WI). Then the 

planning dose based on manual contouring were copied to the automatically contours for planning 

parameters evaluation and comparison. The prescribe dose are 60Gy/30fx for NPC, 50Gy/25fx for 

breast cancer and 50Gy/25fx for rectal cancer. 

We mainly use the max dose (Dmax), the Dose of the certain percentage of the volume (Dx), and 

the volume of receiving the certain dose of organs (Vx) for DVH Parameters. Figure 2 shows the whole 

workflow of the evaluation. Dose assessment of OARs reference RTOG0615 (Radiation Therapy 

Oncology Group, RTOG0615) [16]. 

 

Figure 2. The flowchart of proposed methodology. First we selected the patients images 

from CT scan, and then transferred images to automatic and manual contour respectively. 

Finally, we can compare the effects of contour and dose parameters. 
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2.4. Statistical analysis 

All statistical comparison were performed using Origin2019. A comparison of the time required 

to contour and DVH parameters were performed using paired t test, with significance set at p <0.05.  
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


                                   (4) 

Here, X1, X2 represented automatically contoured and manually contoured. S2 represented the total 

variance, d0 represented the average difference between the two samples. 

3. Results 

3.1. Evaluation of the time 

The time required to manually contour the OARs were 56.5 ± 9.0 minutes (mean ± standard 

deviation) for NPC, 23.12 ± 4.23min for breast cancer and 45.23 ± 2.39 min (mean ± standard 

deviation) for rectal cancer. And auto contours required 1.5 ± 0.23minutes, 1.45 ± 0.78 and 1.8±

0.56 respectively (Table 1). The difference of requiring time savings of 70%, which were all highly 

significant (p < 0.0001). 

Table 1. Mean contouring time for the thirty-three patients based on each tumor. 

Antomical Manual Contouring Time(SD) Automatic segment time(SD) P 

NPC 56.5± 9 1.5 ±0.23 p <0.0001 

breast cancer 23.12 ± 4.23 1.45 ±0.78 p <0.0001 

rectal cancer 45.23 ± 2.39  1.8±0.56 p <0.0001 

3.2. Contours and DVH parameter evaluation 

Regarding the clinical demand and the clinical use of automatic software, we only selected the 

partial OARs for comparison. We just selected the Eyes, Lens, Optic path, BrainStem, Spinal Cord, 

Parotids for NPC, while selected Lung, Heart, Spinal Cord and Bladder, Femoral heads for breast and 

rectal cancer respectively. 

Mean values and standard deviations of parameters that evaluate the contours generated by the 

automatic software, which use manual contours as a reference, for each organ of the NPC, breast and 

rectal cancer.  

Tables 5,8,10 showed the OAR geometrical quantitative evaluation parameters of 33 patients 

between automatic contours with manual contours. Automatic contours overlapped with manual 

contours of Eye with the highest degree DSC of 0.907 ± 0.02 while with the poorest DSC of 0.459 ± 

0.112 of Spinal Cord for NPC. Among the HD of OARs, the maximum HD was (23.0 ± 1.5) mm in 

Spinal Cord, and the minimum was (2.45 ± 0.31) mm in lens. The maximum JD in eye was 0.89 ± 0.03 

while the minimum in Spinal Cord was 0.38 ± 0.2; And Lung with the highest degree DSC of 0.944 ± 

0.03 while with the poorest DSC of 0.709 ± 0.1 of Spinal Cord for breast. Among the HD of Lung-L, 
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Lung-R, Heart and Spinal Cord, the maximum HD was (20.7 ± 5.3) mm in Lung-L, and the minimum 

was (3.15 ± 0.8) mm in Spinal Cord. The JD in Lung and Heart were greater than or equal to 0.8 while 

that in Spinal Cord was 0.7 ± 0.1; And Bladder with the highest degree DSC of 0.91 ± 0.04 while with 

the poorest DSC of 0.43 ± 0.1 of Femoral heads for rectal cancer. Among the HD of Bladder and 

femurs, the maximum HD was 35.3 ± 6.9 in Femur, and the minimum was (2.87 ± 1.1) mm in Bladder. 

JD in Bladder was the greater than 0.9 while the mean value in Femur was 0.4. The contours achieved 

good contour level, however the Dose parameters were not similarity with the contours. Even if the 

contours reach the high level, the DVH Parameters of automatic contours had the significantly 

difference with the manual contours from Tables 2–4, 6,7 and 9.  

We generated dose volume histograms dosimetric parameters for each patient from the automatic 

contours and the reference contours. Examples of these dosimetric endpoints include the mean dose 

(Dmean), the minimum dose to the hottest x% of a structure (Dx). The full list of parameters investigated 

in this study is given in Tables 2 to 9. Studies of Tables gives qualitative representation of the best 

match contours in our cohort, where the Eyes had best geometric overlap, yet the doses had 

significantly difference with the manual contours. 

Table 2. Mean values and standard deviations of parameters that evaluate the Eyes, Lens, 

Spinal Cord generated by the automatic segment approach for NPC. 

Organ at risks Volume(cc) D1(cGy) P (VolumeManually  

VS VolumeAutomatic) 

P (DoseManually  

VS DoseAutomatic) 

Eye_R Manually 9.93±1.08 2551.23±701.2 0.02 0.002 

Automatic 10.45±1.06 2911.62±613.1 

Eye_L Manually 9.73±0.99 2649.62±668.1 0.01 0.019 

Automatic 11.12±1.17 2921.08±616.9 

Lens_R Manually 0.31±0.08 676.92±95.62 0.26 0.40 

Automatic 0.28±0.08 663.77±120.8 

Lens_L Manually 0.31±0.1 674.77±89.56 0.81 0.66 

Automatic 0.31±0.07 680.92±118.41 

Spinal Cord Manually 25.16±9.17 4127.3±330.81 0.000 0.000 

Automatic 10.66±3.46 5071.5±394.35 

 

Table 3. Mean values and standard deviations of parameters that evaluate the Parotids 

generated by the automatic segment approach for NPC. 

Organ at risks Volume(cc) Mean Dose P (VolumeManually  

VS VolumeAutomatic) 

P (DoseManually  

VS DoseAutomatic) 

Parotid_L Manually 26.9±8.86 3426.23±174.19 0.017 0.001 

Automatic 30.2±7.27 3646.53±243.32 

Parotid_R Manually 26.62±9.86 3485.31±280.21 0.01 0.01 

Automatic 29.2±7.85 3707.54±478.13 
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Table 4. Mean values and standard deviations of parameters that evaluate the OpticNerve, BrainStem generated by the automatic 

software for NPC. 

 

 

 

 

 

 

Organ at risks Volume(cc) D1 D5 D50 P(VolumeManually VS 

VolumeAutomatic) 

P(DoseManually VS 

DoseAutomatic) 

OpticNerve_L Manually 0.66±0.37 5144.08±1186.04 4893.54±1132.75 3247.54±1150.39 0.35 PD1=0.21; 

PD5=0.17; 

PD50=0.97 

Automatic 0.53±0.12 4943±1052.02 4665.08±1018.21 3252.46±978.06 

OpticNerve_R Manually 0.68±0.4 4721.62±1740 4540.23±1703.0 3196.53±1490.77 0.086 PD1=0.71; 

PD5=0.64; 

PD50=0.41 

Automatic 0.58±0.16 4613.08±1191 4405.92±1225.79 3099.7±1300.2 

BrainStem Manually 29.43±3.32 5602.46±180.22 5039.31±264.88 3645.77±648.88 0.000 PD1=0.13; 

PD5=0.04; 

PD50=0.04 

Automatic 23.21±2.37 5679.61±241.2 5105.92±287.77 3450.31±693.3 
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Table 5. Mean values and standard deviations of geometric quantitative evaluation parameters between automatic segmentation and 

manual segmentation for NPC. 

Organ at risks DSC HD(mm) JD 

Eye_R Manually 0.904±0.02 3.55±0.32 0.87±0.05 

Automatic 

Eye_L Manually 0.907±0.02 3.6±0.4 0.89±0.03 

Automatic 

Lens_R Manually 0.789±0.1 2.45±0.31 0.72±0.1 

Automatic 

Lens_L Manually 0.789±0.09 2.5±0.4 0.74±0.07 

Automatic 

Spinal Cord Manually 0.459±0.11 23.0±1.5 0.38±0.2 

Automatic 

Parotid_L Manually 0.819±0.05 17.5±2.1 0.75±0.02 

Automatic 

Parotid_R Manually 0.768±0.1 

 

17.8±2.3 0.75±0.1 

  Automatic 

OpticNerve_L Manually 0.652±0.1 11.5±1.1 0.63±0.2 

Automatic 

OpticNerve_R Manually 0.66±0.12 12.3±1.23 0.57±0.15 

Automatic 

BrainStem Manually 0.83±0.03 21.0±1.5 0.77±0.04 

 Automatic 
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Table 6. Mean values and standard deviations of parameters that evaluate the contours generated by the automatic segment approach 

for breast cancer. 

 

Table 7. Mean values and standard deviations of parameters that evaluate the Heart,Spinal Cord generated by the automatic segment 

approach for breast cancer. 

Organ at risks Volume(cc) D1 V30 V40 D33 D67 P(VolumeManually VS 

VolumeAutomatic) 

P(DoseManually VS 

DoseAutomatic) 

Heart Manually 677.43±99.59 4113.7±1705.38 4.5±4.35 2.5±2.79 897.4±164.9 446.8±124.83 0.087 PD1=0.70; 

PV30=0.16; 

PV40=0.34; 

PD33=0.33; 

PD67=0.33; 

Automatic 623.24±97.57 4183.3±1415.7 4.7±4.39 2.6±2.91 852.1±82.08 450.4±128.75 

Spinal Cord Manually 48.43±14.85 2518.2±1651.02     0.15 PD1=0.21; 

 Automatic 41.37±6 2358.5±1629.04     

 

Organ at risks Volume(cc) ipsilateral Lung  

V5 

ipsilateral Lung  

V10 

ipsilateral Lung  

V20 

ipsilateral Lung 

V30 

ipsilateral Lung 

V40 

P(VolumeManually VS 

VolumeAutomatic) 

P(VxManually VS 

VxAutomatic) 

Lung_L Manually 1030.20±238.49 68.2±9.87 44.8±5.67 26.8±4.16 18.4±3.97 11.7±4 0.98 PV5=0.20; 

PV10=0.052; 

PV20=1 

PV30=0.59 

PV40=0.467 

Automatic 1031.3±3625.63 66.6±10.7 44.1±5.63 26.8±3.82 18.6±3.56 12±3.68 

Lung_R Manually 1248.57±273.46  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.07 

Automatic 1301±248.54 
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Table 8. Mean values and standard deviations of geometric quantitative evaluation parameters between automatic segmentation and 

manual segmentation for breast cancer. 

Organ at risks DSC HD(mm) JD 

Lung_L Manually 0.944±0.03 20.7±5.3 0.93±0.02 

Automatic 

Lung_R Manually 0.944±0.03 20.31±3.85 0.83±0.17 

Automatic 

Heart Manually 0.858±0.15 16.6±5.4 0.83±0.16 

Automatic 

Spinal Cord Manually 0.709±0.1 3.15±0.8 0.7±0.1 

Automatic 
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Table 9. Mean values and standard deviations of parameters that evaluate the Bladder,Femurs generated by the automatic segment 

approach for rectal cancer. 

Organ at risks Volume(cc) D1 D5 D15 D25 D35 D45 Mean P(VManually VS 

VAutomatic) 

P(DManually VS 

DAutomatic) 

Bladder Manually 427.89±131.2 5235.8±164.5 4908±155.8 4760±156.44 4619.85±158.8 4379.1±222.37 4039.9±337.7 3766.25±252.9 0.06 PD1=0.16; 

PD5=0.43; 

PD15=0.34; 

PD25=0.059; 

PD35=0.052; 

PD45=0.18; 

PMean=0.74; 

Automatic 394.32±130.5 5026±174.15 4902.6±157.04 4751.9±158.67 4598.1±176.88 4357.8±224.14 4013.3±331.6 3762.6±255.3 

Femur-

L 

Manually 65.03±28 3833.7±203.4 4145.1±282.68 3678±271 3375.1±238.13 3112±253 2867.5±279.6 2819.1±243.2 0.000 PD1=0.70; 

PD5=0.000; 

PD15=0.000; 

PD25=0.000; 

PD35=0.000; 

PD45=0.000; 

PMean=0.000; 

Automatic 134.8±36 4470.9±257.78 3341.7±254.56 2761.5±335.85 2341±311.4 2095.1±271.3 1922±267 1820.9±268.3 

Femur-

R 

Manually 70.8±34.04 4479.6±312 4159.1±316.5 3640.6±258 3329.7±217.7 3061.1±254.2 2772.08±363.1 2792.2±260.45 0.000 PD1=0.000; 

PD5=0.000; 

PD15=0.000; 

PD25=0.000; 

PD35=0.000; 

PD45=0.000; 

PMean=0.000; 

Automatic 132.42±34.3 3802.3±300 3335.6±284.3 2804.2±357.5 2429.9±304.85 2122±222 1910.7±195.76 1812.5±18707 



7518 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 7506–7524. 

Table 10. Mean values and standard deviations of geometric quantitative evaluation 

parameters between automatic segmentation and manual segmentation for rectal cancer. 

Organ at risks DSC HD(mm) JD 

Bladder Manually 0.91±0.04 2.87±1.1 0.9±0.2 

Automatic 

Femur-L Manually 0.43±0.1 35.2±7.2 0.4±0.08 

Automatic 

Femur-R Manually 0.44±0.11 35.3±6.9 0.4±0.1 

Automatic 

 

 

Figure 3. The poor contours between automatic segmentation and manual contour. 
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Figure 4. The dose distribution of the small size contours: A represents the lens; B 

represents the Optic Nerve. 

4. Discussion 

Medical image segmentation using deep learning methods has been widely studied at present. All 

deep learning algorithms are designed to improve the accuracy of automatic segmentation [17,18]. The 

classical deep learning techniques are mostly based on convolutional neural network (CNN), which 

can be trained on patched that belong or not the segmentation class [19]. A problem with this approach 

is that the patches may overlap with the same convolution calculated multiple times. A series of image 

segmentation models are derived from the CNN, but the improved accuracy depends on an increase in 

the number of network layers which aggravates the over-fitting problem [20]. In addition, the output 

image size is far less than the input, and cannot meet the end-to-end medical image segmentation needs. 

The U-net [21] is based on two-dimensional convolutions on slices of volumetric medical data, it 

consists of two stages, one contracting (reduction in image size) and one expanding (restoration of the 

original image size). The approach used in the paper is a flexible deep learning platform and modular 

back-end architecture which embedded U-net. The approach backend consists of four components, 

including a data manager, model trainer, model evaluation, and model deployment. The model has 

been extensively tested previously. Christ et al. [22] segments the liver, U-Net1 segments the liver 

from the input image and then enters the results into U-Net2 for segmenting the liver tissue, U-Net2 

also segments the liver tissue directly from the input image. Two U-Net form complex connections in 

this way, forming cascading fully convolutional neural networks, achieving results with both liver and 

lesion segmentation DSC values higher than 94%. By connecting the deep learning network in string 

and parallel, the network depth and the segmentation specificity are increased. 

In our research, we used the clinical automatic segment approach for contouring OARs in NPC, 

breast and rectal cancer. The automatic system will be widely application in clinical radiotherapy while 

manual contouring proved to time-consume. From Table 1, the deep-learning automatic contouring 

approach, allowed significantly time-saving work for the radiation oncologists. And many methods 

exist to compare the automatic segmentation and manual contour. Ciardo et al. [23] also investigated 

47 patients treated with breast cancer with Atlas based segmentation in the supine position during 

breast conservation surgery or non-conservation surgery, editing atlas-based volumes save time (12%) 
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compared with manual contouring (44%). Henry et al. [24] assessed atlas-based segment (atlas-based 

segment, ABS) in 9 various OARs, and lymph node volumes in 30 patients with breast cancer through 

the software result in a 40% decrease in structures contour time. Eldesoky et al. [8] reported efficacy 

and precision by developing clinically acceptable contours faster compared to manual contours and 

also declared the average time for manual contour was reduced to 94% for all structure after 

lumpectomy. Macchia et al. [25] compared 3 commercial software (ABAS, MIM Maestro, VelocityAI) 

for atlas-based segmentation applying them to a number of the prostate, Head and Neck, and pleura. 

In this paper, the physician can save one hour for the H&N site, the time saved was about twenty 

minutes for a mesothelioma patient, and 40 minutes for a prostate patient. 

The most distinction advantage of the automatic contour methods compared to the manual contour 

is saving the time. However, we need to think whether our research can meet the requirement of clinical 

demand by obtaining faster contouring time. Deep learning framework [26,27] can be utilized for 

medical image diagnosis, accurate diagnosis is the foundation of accurate contour. Based on prior 

knowledge, radiotherapy requires accurate radiation delivery and precise contouring of the OARs. CT 

images typically have high resolution and provide detailed anatomical information. However, limited 

physiological information can be captured by CT imaging, in order to evaluate target volumes 

effectively in automatic segment, medical imaging modalities such as the CT and positron emission 

tomography (PET) are widely used. Song et al. [28] proposed a novel approach for the segmentation 

of the PET-CT images, which makes use of the strength from both modalities: the functionality 

information of PET and the anatomical structure information of CT, both Lung and N &head tumor 

are well validated. Rundo [29] also proposed fully automatic multimodal PET/MRI segmentation 

method to help the clinicians to define a CTV that includes both metabolic and morphologic 

information. The precise of the dose delivery with relate to the precise contours of Targets and OARs, 

and the toxicity correlated with the risk of the OARs dose received. Therefore, we discussed the DVH 

parameters of each contour which was delineated by automatic segment approach. The Gemetric 

measures did not predict the accuracy of dosimetric parameters determined by automatic software in 

our research. The results were similar to those of Robert et al. [30]. 

This work represents the investigation of the impact of an automated contouring on estimates of 

radiation dose to the whole body patients. It demonstrates that dosimetric information of automatic 

contours from CT images is difference with the DSC. We deduced that the result with a perfect Dice-

similarity coefficient one would expect to have perfect accuracy with dosimetric endpoints [31]. 

However, on the contrary we investigated that geometric parameters evaluation such as DSC which 

was heavily influenced by the volume of a structure, but may not consistently reflect whether an 

automatic contour accurately represents actual radiation dose.  

For the NPC, all the OARs have good DSC (>0.7) besides Lens, Optic Nerve and Spinal Cord 

which due to the small size. Small size of organs is more likely to contoured error such as Lens. In 

addition, for small size organs such as OpticNerves with unclear tissue boundaries, there were still a 

certain deviation between automatic and manual. On the other hand, we can learn from Tables 5 and 8, 

the volume and the exposed dose of Spinal Cord had big distinction in Head and Neck, we can obtain 

the differences of Spinal Cord from Figure 3, which because of the precise contour of the boundary 

between the Spinal Cord and BrainStem. In manual contouring, the Spinal Cord contoured to C2 while 

contoured to upper C1 by Automatic segment approach. So the dose of Spinal Cord contoured by 

automatic higher than the manual. In Figure 4, we found that the smaller the size of the Organ the less 

difference of the dose. But there are great difference of the contouring of small organs, many scholars 
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tried to develop standard model to improve contouring accuracy, Yang et al. [32] proposed an 

automated structure nomenclature standardization framework simulates clinicians’ domain knowledge 

and recognition mechanisms to identify small-volume organs at risk (OARs) with heavily imbalanced 

data better than other methods. 

For breast cancer, the Lung and the Heart which had big size no matter of the volume (p > 0.05) 

and DVH distribution (p > 0.05) had no difference between two methods. At the same time, we can 

see that the Spinal Cord of thorax is more accurate than the Neck. Multiple studies with automatic 

contouring come from the breast cancer, which mainly because of the boundary of OARs was clear 

and density contrast was obvious. In the studies of Robert et al. [33], Xu et al. [34] and Henry [24] et 

al., which are all based on breast cancer patients, their research all have achieved well clinical 

validation, and the same trend of clinical validation was also found. Therefore good correlation was 

obtained in terms of DSC, volume or dose parameters. 

For rectal cancer, it can meet the clinical requirement and also have the similar dose of the Bladder 

because of the obvious boundary. Other studies have investigated the automatic contouring of rectal 

cancer using different methods, Song et al. [3] using deep learning for rectal cancer postoperative 

radiotherapy, it concluded that convolutional neural networks at various feature resolution levels well 

delineated rectal cancer CTVs and OARs, displaying high quality and requiring shorter computation 

and manual correction time. Because the femoral head has obvious bone markers, it should be well 

delineated automatically. However in Table 10, we found the DSC and JD was lower than the clinical 

predict, the contour and the dose all had the differences. From Figure 3, we can clearly see that manual 

contour the partial Femoral heads. After communicating with radiation oncologist, the contouring 

method of different department present small difference according to the guideline. 

5. Conclusions 

In conclusion, we investigated the contour of NPC, breast and rectal cancer by automatic segment 

approach. The value of DSC does not fully reflect the accuracy of dose distribution. For the obvious 

boundary of the Heart, Lung, Bladder, they can be completely dependent on automatic contouring. 

However, the strict validation is also required for small size OARs. In addition, for the Femoral heads, 

Spinal Cord and BrainStem contour guideline can be obtained using the semi-automatic method and 

validation when required. In the future, we will take more effort at improving the contouring accuracy 

of small volume organs and establishing the standardization of contouring. Furthermore, we also will 

extend our work to the segmentation of the tumor from multi-modalities. 
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