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Abstract: Calibration of Discrete Element Method (DEM) models is an iterative process of adjusting 

input parameters such that the macroscopic results of simulations and experiments are similar. 

Therefore, selecting appropriate input parameters of a model effectively is crucial for the efficient use 

of the method. Despite the growing popularity of DEM, there is still an ongoing need for an efficient 

method for identifying contact law parameters. Commonly used trial and error procedures are very 

time-consuming and unpractical, especially in the case of models with many parameters to calibrate. 

It seems that machine learning may offer a new approach to that problem. This research aims to apply 

supervised machine learning to figure out the dependencies between specific microscopic and 

macroscopic parameters. More than 6000 DEM simulations of uniaxial compression tests gathered the 

data for two algorithms - Multiple Linear Regression and Random Forest. Promising results with an 

accuracy of over 99% give good hope for finding a universal relation between input and output 

parameters (for a specific DEM implementation) and reducing the number of simulations required for 

the calibration procedure. Another pertinent question concerns the size of the DEM models used during 

calibration based on the uniaxial compression test. It has been proven that calibration of certain 

parameters can be done on smaller samples, where the critical threshold is around 30% of the radius 

of the original model.  

Keywords: Discrete Element Method; supervised machine learning; uniaxial compression strength 

test; numerical model calibration 

 

1. Introduction  

Do et al. [1] concluded that a major barrier to the effective use of DEM for industrial applications 
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is selecting appropriate input parameters so that simulations can accurately reproduce the behaviour of 

real systems. This problem was also raised by, for example, Bevenuti et al. [2]. There is a lack of a 

close relationship in DEM between parameters describing particles interactions and those representing 

the sample as a whole. The only solution to this problem is the iterative approach, called inverse 

modelling, in which the selection of microparameters takes place based on macroscopic parameters [3]. A 

commonly used approach is tuning microscopic parameters of bonds until compatibility between 

laboratory and numerical characteristics is achieved, what is a very arduous and tedious process. 

Moreover, DEM simulations are very time-consuming, so working on improving calibration procedure 

to minimize the number of required simulations is crucial to increase the efficiency of the method. 

For all the reasons mentioned above, the problem of calibrating DEM models has been undertaken 

by many research teams using a variety of techniques and approaches, although none of these attempts 

has become widely used among DEM users. Out of the many interesting works in this area, an 

application of theoretical formulas is worth mentioning [4], or trying to apply dimensional analysis [5], 

stable noisy optimization [6], genetic algorithms [7] or simulated annealing algorithms [8]. The 

application of artificial neural networks [9–11] has also been a raised approach. However, the 

increasing popularity of machine learning algorithms seems to offer completely new possibilities. One 

of the newest works in this field is [12], where the relationship between the macro- and 

microparameters of rockfill was created by Relevance Vector Machine and a memetic algorithm was 

used for the calibration of the microparameters. Due to inspiring machine learning capabilities, this 

article attempts to use supervised machine learning to make further progress towards finding a 

universal method for calibrating DEM models.  

2. Discrete Element Method 

Among the numerous particle-based numerical methods, the Discrete Element Method is one of 

the most popular. In DEM, the material is represented as an assembly of particles. Elements of 

simulation can move, rotate and interact with each other [3]. The elements can partially overlap each 

other. When two particles overlap, they start to interact. The magnitude of this interaction depends on 

the contact forces by the force-displacement relation. The algorithm of the DEM can be divided into 

two main parts: the first one is related to the creation of a contact model and the calculation of forces 

acting on the elements and in the second part, the second Newton's law of dynamics is applied to each 

component to calculate changes of position and velocity as a result of unbalanced action forces. Motion 

equations are solved separately for each particle [13]. The heavy computational burden of the DEM 

relative to other numerical methods is often one of the most important factors determining the quality 

and utility of simulation results. 

2.1. Model description 

ESyS-Particle is an open-source DEM implementation applied in this work. This software was 

designed to provide a basis to study the physics of rocks and the nonlinear dynamics of earthquakes 

and to address the computational limits of existing DEM software [14,15]. ESyS-Particle provides 

different types of interactions (bonds) between particles. One of them - called BrittleBeamPrms in 

software notation - was designed especially for simulating brittle fracturing and therefore is commonly 



7492 

Mathematical Biosciences and Engineering                                                                         Volume 18, Issue 6, 7490–7505. 

used in recreating laboratory tests, like uniaxial compression. The BrittleBeamPrms involves all six 

degrees of freedom of each interacting particle. Three parameters are used to represent the position of 

the center of the mass of the particle and three other parameters (such as Euler angles) to represent 

rotations around the center of the mass. Particle motion can be decomposed into two completely 

independent parts, translational motion of the center of the mass and rotation about the center of the 

mass. The translational motion of the center of the mass is governed by the Newtonian equations and 

integrated using a conventional Molecular Dynamic scheme. The particle rotation is controlled by 

Euler's equations. The algorithm for calculating particle motion can be found in Wang et al. [16]. 

Two bonded particles may undergo normal and shear forces, as well as bending and twisting 

moments (Figure 1). Rotational frictional interactions impart torque to both particles, causing the 

particles to rotate relative to each other when they are in a frictional contact [15]. The physical 

interpretation of rotational bonds is that two particles are connected with a cylindrical elastic beam 

whose radius is the mean of the radii of the bonded particles and whose equilibrium length is the sum 

of the radii of those particles. Macroscopic elastic properties of an assembly of bonded particles do not 

necessarily match the microscopic elastic properties of the bonds themselves, so, consequently, model 

calibration is usually required. 

 

Figure 1. Forces and moments between particles bonded through rotational elastic-brittle 

bonds [5]. 

The relationship between forces or torques and relative displacements between two bonded 

particles (Equation 1) could be written in the following form (assuming small deformations):  

𝐹𝑟 = 𝐾𝑟∆𝑟 

𝐹𝑠1 = 𝐾𝑠1∆𝑠1 

𝐹𝑠2 = 𝐾𝑠2∆𝑠2   

𝑀𝑡 = 𝐾𝑡∆𝛼𝑡 

𝑀𝑏1 = 𝐾𝑏1∆𝛼𝑏1 

𝑀𝑏2 = 𝐾𝑏2∆𝛼𝑏2 

                                                             (1) 

where: F - represents forces, M - torques, K - rigidity constant, ∆𝑟  and ∆𝑠  - relative translational 

displacement, ∆𝛼 - relative angular displacement. The meaning of the symbols r, s, t and b is as follows: 
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r – radial component, s – shearing component, t – twisting component, b - bending component. In the 

isotropic case, 𝐾𝑠 = 𝐾𝑠1 = 𝐾𝑠2  and 𝐾𝑏 = 𝐾𝑏1 = 𝐾𝑏2 . Therefore only four rigidity parameters are 

required. The elasticity of bonds (under above assumptions and according to linear elastic beam 

theory) can be defined as functions of two parameters - the bond Young's modulus and the bond 

Poisson's ratio [15]. Bond between particles breaks according to a Mohr-Coulomb failure criterion. It 

happens when the shear stress inside the bond is bigger than its shear strength (τ), according to the 

formula: 𝜏 = 𝑐 + 𝜎𝑁𝑡𝑎𝑛(𝜑𝑓) where cb is the cohesion of the bond for zero normal stress (𝜎𝑁)  and 𝜑𝑓 

is the internal angle of friction of the bond. Therefore there are four bonds parameters in the model to 

calibrate: Young’s modulus Eb, Poisson’s ratio vb, cohesion cb, internal friction angle φb. Further 

explanations can be found in [17–20] and details of DEM implementation in ESyS-Particle are 

widely described in [16,21,22] or in [14,15]. 

2.2. Typical approach to calibration 

Calibration of the DEM model is usually done by comparing macroscopic parameters coming 

from laboratory tests and numerical simulations. Application of uniaxial compression test is very 

common for these purposes. Uniaxial compression is a laboratory test in which a cylindrical sample is 

compressed from the top and the bottom. A sample is subjected to a controlled compressive 

displacement along a vertical axis and the change in dimensions and resulting load is recorded to 

calculate the stress-strain curve [23,24]. From the obtained curve, elastic and plastic material properties 

can be determined. Strain is calculated as relation between the measured vertical displacement and an 

initial sample height. Stress is defined as a relation between the applied load and the initial cross-

sectional area of the sample normal to the loading direction. The slope of the strain-stress curve within 

the linear elastic regime is equal to Young's modulus, which is the ratio of the stress to axial strain, and 

the peak of the curve is equal to the uniaxial compressive strength (UCS), maximum axial compressive 

stress that a right-cylindrical sample of material can withstand before failing [23,24]. Young's modulus 

and UCS are often part of the calibration procedure because they allow to compare laboratory and 

numerical stress-strain curves. Those two macroscopic parameters are the subject of further consideration.   

3. Supervised machine learning and Discrete Element Method 

3.1. Generating dataset for machine learning algorithms 

The idea of that article was to employ supervised machine learning to find relationships between 

microscopic and macroscopic parameters. It seems that a DEM dataset containing an appropriate 

amount of data (and collected once) can facilitate any further calibration procedures. Macroscopic 

parameters of the sample depend, first of all, on parameters: Eb, vb, cb, φb rmin and r = rmax/rmin. Instead 

of calibrating those parameters for each new task anew, it could be possible to generate a dependency 

network between microscopic and macroscopic parameters once and then use supervised machine 

learning models to predict which set of microparameters will correspond to the desired set of macro-

parameters. Such a supervised machine learning model would work appropriately for every task within 

a given DEM implementation. Presented work is an attempt to generate such a DEM dataset. 

Further, the collected data were used to train Multiple Linear Regression (MLR) and Random 
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Forest (RF) algorithms.   

A dataset for the needs of machine learning algorithms was created during the series of 6480 DEM 

simulations of uniaxial compression with applied different range of microscopic parameters of bonds. 

The reference sample was a cylinder with a radius of 3 mm and a height of 12 mm. The range of bonds 

input parameters was as follows: the minimum particle radius rmin was equal to 0.1, 0.2, 0.3, 0.4, 0.5 

mm, the maximum particle radius rmax was equal to 1.0 mm, the microscopic Young's modulus Eb was 

equal to 1000, 3000, 5000, 7000, 9000, 11000 MPa, the microscopic Poisson ratio vb was equal to 0.15, 

0.17, 0.19, 0.21, 0.23, 0.25, cohesion cb was equal to 10, 20, 30, 40, 50, 60 MPa, and tangent of internal 

friction angle φb was equal to 0.5, 0.7, 0.9, 1.1, 1.3, 1.5. All possible combinations of the parameters 

give total number of simulations 6480. Particle density was a fixed parameter equal to 2500 kg/m3. 

These parameters were selected to include the possibly wide range of values, but with preserve 

reasonable calculation time. The entire series of 6480 simulations lasted 504 h (three weeks) of 

continous computations on a personal computer. Particles inside the samples were connected by 

BrittleBeamPrms bonds, and for a given set of microparameters two macroscopic parameters were 

defined: the slope of numerical stress-strain curve (Young’s modulus) and peak of this curve (Uniaxial 

Compressive Strength UCS). Model samples were compressed by two walls up to failure.  

For the needs of machine learning algorithms, parameters like Eb, vb, cb, φb rmin and r=rmax/rmin 

were treated as independent, macroscopic Young's modulus and UCS were treated as dependent. The 

dataset for the needs of machine learning algorithms, in accordance with the standard approach, was 

divided (randomly) into the training part and the test part in the ratio of 80% to 20%.  

3.2. Selected algorithms 

Supervised learning is the machine learning task of learning a function that maps an input to an 

output based on example input-output pairs [16]. It figures out a function from labelled training data 

consisting of a set of training examples. In supervised learning, each example is a pair consisting of an 

input object (typically a vector) and the desired output value. In this attempt, two algorithms have been 

selected: Multiple Linear Regression (MLR) and Random Forest (RF). 

3.3. Performance of Multiple Linear Regression 

Multiple Linear Regression is a statistical technique that uses independent variables to predict the 

outcome of a dependent variable [26]. The goal of MLR is to model the linear relationship between 

the explanatory (independent) variables and response (dependent) variable. MLR fits a linear model 

with coefficients β = (β1, ..., βn) to minimize the residual sum of squares between the observed targets 

in the dataset, and the targets predicted by the linear approximation. Between the other algorithms, this 

one is distinguished due to explicit form of its equation (mapping function): 𝑦 = 𝛽0 + 𝛽1𝑥1 +

𝛽2𝑥2+. . . +𝛽𝑛𝑝𝑛 + 𝜖, where y is dependent variable, xi are independent variables, βi are weights for 

for each independent variable, ε is the model’s error term also known as the residuals. 

Applying the MLR algorithm to the DEM dataset gave the following results. Coefficients for 

macroscopic Young’s modulus were as follows: Eb was 0.0019, vb was -2.6, cb was 0.016, φb was 0.25, 

r was 1.9, rmin was -1.1e+01 and intercept was -5.22. In case of UCS results were as follows: Eb was 

0.0017, vb was -6.1, cb was 2.7, φb was -4e+01, r was 2.3e+01, rmin was -7.1e+01 and intercept was -
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49.53. Complete equations are presented below (Equation 2):  

𝑌𝑀 = 0.0019𝐸𝑏 − 2.6𝜈𝑏 + 0.016𝑐𝑏 + 0.25𝑡𝑎𝑛𝜑𝑏 + 1.9𝑟 − 1.1𝑒 + 01𝑟𝑚𝑖𝑛 − 5.22 

𝑈𝐶𝑆 = 0.0017𝐸𝑏 − 6.1𝜈𝑏 + 2.7𝑐𝑏 + 4𝑒 + 01𝑡𝑎𝑛𝜑𝑏 + 2.3𝑒 + 01𝑟 − 7.1𝑒
+ 01𝑟𝑚𝑖𝑛 − 49.53 

               (2) 

Such equations attempt to find out the universal relationship between microscopic and 

macroscopic parameters in DEM modelling. However, in further steps, it was necessary to assess the 

quality of predictions. Visual comparison between MLR predictions and DEM results is presented in 

Figure 2. MLR does not predict the outcome very precisely. Results are significantly biased from the 

dotted line representing ideal predictions with 100% accuracy. 

 

 

Figure 2. Comparison between MLR predictions and DEM simulations for Young’s 

modulus (A) and Uniaxial Compressive Strength (B). 

3.4. Assessment of multiple linear regression results 

Assessment of the performance of the regression algorithm includes application of several 

essential metrics [25,26], namely: 1) coefficient of determination R2, also called accuracy, which is the 

proportion of the variance in the dependent variable that is predictable from the independent variable 

(the best possible score is 1.0, what is an equivalent of 100% accuracy); 2) Mean Squared Error MSE, 

which measures the average of the squares of the errors, the average squared difference between the 

estimated values and the actual value; 3) Mean Absolute Error MAE, which finds all absolute errors 

(xi – x), adds them all and divide by the number of errors 4) Root Mean Squared Error RMSE, the 

square root of the mean of the square of all of the error. Those metrics calculated in this particular case 

were as follows: for Young’s modulus the R2 was 0.84, MSE was 15.69, MAE was 2.92, RMSE was 

3.96; for UCS: the R2 was 0.83, MSE was 1564.10, MAE was 28.25, RMSE was 39.55.  

3.5. Algorithm assumptions 

MLR is quite straightforward but it has demanding assumptions [26]. The most important are as 

follows: a linear relationship (correlation) between independent and dependent variables; a 

multivariate normality - residuals (errors) normally distributed; no multicollinearity - no correlations 

between independent variables; homoscedasticity – this assumption states that the variance of error 
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terms are similar across the values of the independent variables. 

Table 1. Pearson correlation matrix of the DEM dataset. 

 Eb vb cb φb r rmin YM UCS 

Eb 1.00 0.00 0.00 0.00 0.00 0.00 0.62 0.05 

vb 0.00 1.00 0.00 0.00 0.00 0.00 0.01 0.00 

cb 0.00 0.00 1.00 0.00 0.00 0.00 0.02 0.46 

φb 0.00 0.00 0.00 1.00 0.00 0.00 0.01 0.14 

r 0.00 0.00 0.00 0.00 1.00 0.90 0.67 0.77 

rmin 0.00 0.00 0.00 0.00 0.90 1.00 0.63 0.71 

YM 0.62 0.01 0.02 0.01 0.67 0.63 1.00 0.60 

UCS 0.05 0.00 0.47 0.14 0.77 0.71 0.60 1.00 

 

That assumptions were verified in the following way. Linear relationship between independent 

and dependent variables and multicollinearity were checked with correlation matrix (Table 1). In such 

a matrix the standard Pearson correlation was calculated between every parameter. Pearson coefficient 

varied between -1 and 1, where 0 stands for total lack of linear correlations and -1 or 1 means ideal 

linear correlation [25]. From Table 1 it can be concluded that linear correlation between dependent and 

independent parameters was not very strong and that was probably the main reason of not very good 

MLR algorithm performance. It is visible that macroscopic Young’s modulus was affected mostly by 

Eb (correlation 0.62), r (correlation 0.67) and rmin (correlation -0.63). The significance of other 

parameters in negligible. The most influential parameters for UCS were cb (correlation 0.47), and again 

r (correlation 0.77), as well as rmin (correlation -0.71). 

Deeper assessment of the multicollinearity can give the variance inflation factor (VIF), which is 

the ratio of the variance of estimating some parameter in a model that includes multiple other terms 

(parameters) by the variance of a model constructed using only one term [26]. VIF calculated for DEM 

dataset returned following results: Eb was 4.01, vb was 25.09, cb was 5.00, φb was 8.88, rmin was 12.87, 

r was 8.56. Basically, VIF should be smaller than 10, but fulfilling this assumption would require 

removal of precious parameters like vb. 

The third assumption is multivariate normality, which means that residuals (errors) are normally 

distributed. Graphical representation of residuals distribution is presented in the Figure 3. That 

assumption was satisfied quite well for both parameters, Young’s modulus and UCS. 

The last assumption- homoscedasticity states that the variance of error terms is similar across the 

values of the independent variables. Customary verification tool is a plot of standardized residuals 

versus predicted values (Figure 4). Ideally, residuals are randomly scattered around 0 (the horizontal 

line) providing a relatively even distribution. Heteroscedasticity is indicated when the residuals are not 

evenly scattered around the line [26]. There are two big reasons why homoscedasticity is desired. 

While heteroscedasticity does not cause bias in the coefficient estimates, it does make them less precise. 

Lower precision increases the likelihood that the coefficient estimates are further from the correct 

population value. Figures (Figure 4) below suggest that homoscedasticity assumption was not very 

well satisfied for both parameters. 
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Figure 3. Multivariate normality for Young’s modulus (A) and Unconfined Compressive 

Strength (B). 

 

Figure 4. Variance of error terms for Young’s modulus (A) and Unconfined Compressive 

Strength (B). 

To summarize, the MLR algorithm presented a mediocre performance on the generated DEM 

dataset. Probably the amount of data in the dataset was not sufficient for the algorithm, as well as the 

range of the parameters. Another problem is that MLR works perfectly when linear dependence 

between dependent and independent variables occurs, which was not the case here. Therefore, the more 

flexible algorithm was applied further, called Random Forest. 

3.6. Random Forest performance 

Random Forest is an algorithm from ensemble family that fits a number of decision tree classifiers 

on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and 

control over-fitting [27]. RF is well suitable to produce a predictive model, and its defaults 

hyperparameters already return satisfactory results and the system is very good at avoiding overfitting. 

The number of trees in the forest in this particular case was 10. Random Forest was applied to the 

generated DEM dataset and achieved results are presented in the set of figures below (Figure 5). 

Predictions of Random Forest were exceptionally well, especially in case of UCS where 

correspondence was almost ideal. In case of Young’s modulus, some discrepancies appear for the lower 

values, but most of the results are also ideally suited to the dotted line representing 100% accuracy. 
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Figure 5. Comparison between DEM simulations and Random Forest predictions for 

Young’s modulus (A) and Uniaxial Compressive Strength (B). 

3.7. Assessment of Random Forest results 

Metrics of the Random Forest algorithm for the DEM dataset were as follows: Young’s modulus 

R2 metric was 0.98, Mean Squared Error MSE was 1.57, Mean Absolute Error MAE was 0.26, Root 

Mean Squared Error RMSE was 1.25; for UCS R2 metric was 0.999, MSE was 9.08, MAE was 1.77, 

RMSE was 3.01. That values show very good performance of the algorithm, an attention is especially 

drawn by very high accuracy (R2 metric) almost equal to 100% for both macro-parameters. 

Random Forest has another advantage called the feature importance. Feature importance is one of 

the best qualities of RF because it allows to measure the impact each parameter has on the final 

prediction. Feature importance of the RF for DEM dataset can be seen below (Figure 6).  

 

Figure 6. Feature importance generated by Random Forest for macroscopic Young’s 

modulus (A) and UCS (B)., where ym stands for microscopic Young’s modulus Eb, pr - 

Poisson’s ratio vb, coh - cohesion cb, tan - internal friction angle φb. 

That results coincide with the results presented in the correlation matrix (Table 1). Macroscopic 

Young’s modulus is the most affected by microscopic Young’s modulus, as well as by radii r and rmin. 

Other microparameters are negligible. In case of UCS the most significant microparameter is cohesion 

cb, as well as r and rmin. Small contribution comes from microscopic Young’s modulus Eb and tangent 
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of internal friction angle φb. 

There is no need to check another algorithms because Random Forest presented almost ideal 

efficiency on the DEM dataset. Calculated metrics are the best proof of this, especially accuracy almost 

equal to 100% for macroscopic Young’s modulus, as well UCS. Judging on the results, it seems that 

Random Forest algorithm trained on a properly big DEM dataset can be excellent tool to predict 

macroscopic parameters of the samples from the given micro-parameters with great precision. 

However, one of the disadvantages of the presented DEM dataset is the constant size of the cylinder 

used during uniaxial compression strength tests. In the second part of that work the question was raised 

how certain macro-parameters of the material change with sample size.      

3.8. Scaling of macroscopic parameters 

Simulations serving for generating the DEM dataset were carried out for the numerical samples 

(cylinders) of the same size. It raises the logical question of how the change in sample dimension will 

affect considered macroscopic parameters. This question is essential from the calibration point of view 

because it allows to find out whether the model parameters (eg. bonds parameters) found for one model 

size will also give the same results for larger samples. If this were true, it would save a lot of effort on 

calibration, as some necessary calculations could be performed on smaller and less time-consuming 

samples and their results transferred to the actual samples of the original size. Therefore, in the other 

part, additional tests were carried out concerning scaling of such macroscopic parameters like Young's 

modulus and UCS in a function of cylinder radius. All the tests were performed for four types of 

materials, called further shortly material 1, material 2, material 3, material 4. Each material had 

different density (2429 kg/m3, 2655 kg/m3, 2142 kg/m3, 2448 kg/m3) and distribution of particles radii 

(0.25–2.0 mm, 0.25–0.5 mm, 0.25–1.0 mm, 0.125–0.5 mm). Those materials created cylindrical 

samples of height 75 mm and radius 18.75 mm. Such dimensions are typical for real samples used in 

laboratory uniaxial tests.  

Target values (values that should be obtained) in case of material 1 were 20.8 GPa (Young’s 

modulus) and 98 MPa (UCS), in case of material 2–29.2 GPa (Young’s modulus) and 136 MPa (UCS), 

in case of material 3–23.4 GPa (Young’s modulus) and 61 MPa (UCS), in case of material 4–27.4 GPa 

(Young’s modulus) and 118 MPa (UCS). Such parameters are typical for sandstone-like materials. 

Scalablity of macroscopic Young’s modulus and UCS was tested for cylindrical samples of radii 3 - 17 

mm with resolution of 1 mm. The radius and the height were the only variable parameter, the other 

parameters were constant for each sample (within each type of material). The DEM simulations of 

uniaxial compression were carried out in accordance with the international standard ASTM D2938 

(Standard Test Method for Unconfined Compressive Strength of Intact Rock Core Specimens), so 

every cylindrical specimen had a slenderness of 2, where slenderness is the relationship between the 

height and diameter of the specimen (the consequence of the radius change was a change in height). 

The boundary values of the number of particles were as follows. Material 1: radius 3 mm–370 

particles, radius 18.75 mm–82266 particles; material 2: radius 3 mm–1275 particles, radius 18.75 mm 

–339 324 particles; material 3: radius 3 mm–551 particles, radius 18.75 mm–150 563 particles; 

material 4: radius 3 mm–4525 particles, radius 18.75 mm–82 1 155 851 particles. The biggest DEM 

models (with radius 18.75 mm and around), equivalents of laboratory samples, were out of the reach 

of the personal computer. Therefore, DEM simulations of that part of the article were carried out with 



7500 

Mathematical Biosciences and Engineering                                                                         Volume 18, Issue 6, 7490–7505. 

the help of Supercomputer Cray XC40 “Okeanos” of Interdisciplinary Center for Mathematical and 

Computational Modelling, Warsaw University. One DEM simulation of uniaxial compression test for 

a sample with radius 18.75 mm lasted: material 1–287 min (using 92 processors), material 2–667 

min (using 228 processors), material 3–335 min (using 93 processors), material 4–1440 min (using 

320 processors).  

Arrangement of particles and the number of particles were determined by the particle packing 

algorithm and they depended on the cylinder geometry and particles sizes (radii). Implemented in the 

ESyS-Particle geometric algorithm places elements according to their geometric relationships using 

pre-prepared grids. The biggest particles were firstly located in the model domain as the seeds. Then, 

subsequent particles were inserted in the remaining spaces. This process was completed when the 

model domain was filled up. The more precise description of the procedure can be found in [28]. 

The best and most promising results were obtained for the Young's modulus (Figure 7a). In this 

case, it can be seen that this parameter does not depend on the sample size in DEM simulations and 

the same bonds parameters return similar results as for larger samples. UCS (Figure 7b) is not as well 

scalable as Young’s modulus, but these results are also very similar. Some differences are visible for 

various types of materials. UCS of material 3 is a practically perfect line, there is no dependence on 

sample radius. It seems that materials characterized by bigger values of UCS parameter are also 

characterized by higher discrepancies.  

 

Figure 7. Young’s modulus (A) and UCS (B) in a function of cylinder radius. 

Generally, the results from the set of figures 7 are the most scattered for the smallest values of the 

considered parameter, it means below radius of 6 mm. Therefore, it seems that samples with radius 

smaller than 30% of the reference value give less reliable results. Comparison between reference 

(target) values and results for the samples with radius bigger than 30% of reference radius is as follows: 

target values in case of material 1 were  20.8 GPa (Young’s modulus) against 20.57+/-0.36 for smaller 

samples and 98 MPa (UCS) against 100.62+/-5.42 for smaller samples; in case of material 2–29.2 GPa 

(Young’s modulus) against 29.16+/-0.44 for smaller samples and 136 MPa (UCS) against 145.21+/-

7.04 for smaller samples; in case of material 3 – 23.4 GPa (Young’s modulus) against 23.57+/-0.30 for 

smaller samples and 61 MPa (UCS) against 57.67+/-1.06 for smaller samples; in case of material 4–

27.4 GPa (Young’s modulus) against 27.32+/-0.13 for smaller samples and 118 MPa (UCS) against 



7501 

Mathematical Biosciences and Engineering                                                                         Volume 18, Issue 6, 7490–7505. 

125.18+/-4.33 for smaller samples.  

Initially, all the particles inside the material were connected by bonds. Together with progressing 

compression, some of the bonds disappear due to the acting stresses and a place with lacking bonds 

can be considered as new fracture. Dependence between number of bonds and cylinder radius is 

presented in the Figure 8. All the values were scaled (within its material group) to the maximum initial 

number of bonds of the biggest cylinder. This dependence between number of bonds and sample size 

is just resulting from the packaging algorithm and the fact that bigger cylinders contain more particles. 

It is possible to see that this is an exponential relationship with equation f(x) = 0.00014x3.04, and, very 

interesting, this dependence is the same for each type of the material. 

 

Figure 8. Scaled number of bonds. 

Other important parameters are kinetic energy (Figure 9a) and potential energy (Figure 9b). Again, 

that values were scaled against the highest possible energy noted for each type of the material. Kinetic 

energy can be treated as a sum of all linear and rotational movements of the particles in the material. 

Potential energy is a sum of all types of energies stored inside the bonds between particles. Again, as 

in case of number of bonds, this was an exponential dependence with equation f(x) = 0.00027x2.74 for 

kinetic energy and f(x) = 0.00009x3.18 for potential energy. Functions for different types of material 

were similar, but not identical. In case of kinetic energy at the end of the plot huge differences appeared 

being probably numerical artifacts. 

Concluding, it seems that certain macroscopic parameters show weak or no dependence on sample 

size, with the threshold ratio between radii defined around 30% (descending below this threshold 

results in greater differences). It means, for example, that macroscopic Young’s modulus of the cylinder 

of 6 mm radius is basically the same as for the cylinder of almost 19 mm radius. Number of particles 

inside the cylindrical samples is growing exponentially, therefore using smaller samples during 

calibration should mean also an exponential time saving. Similar conclusions were drawn for UCS 

parameter, however, with a slightly larger scatter of results. 
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Figure 9. Kinetic (A) and potential (B) energy. 

4. Discussion and conclusions 

Calibration of DEM models so that the created models correspond to real materials is a difficult, 

tedious, and time-consuming task [29]. Despite the common work on this subject [1,2,30], the most 

typical approach to calibration is the inversion method. The microscopic parameters are selected in 

trial and error attempt so that the macroscopic parameters generated by them are more or less the same 

as the macroscopic parameters of the real material. This approach significantly limits the application 

of the DEM method, especially on a larger, industrial scale. DEM simulations themselves are very 

time-consuming and generally require the use of a supercomputer, and a significant portion of the time 

is spent on model calibrating. 

Considering the significance of the described problem, this paper attempted to use supervised 

machine learning to predict macroscopic parameters of the material. Generated DEM dataset, which 

includes sets of microscopic parameters with corresponding macroscopic parameters, consisted of the 

results of 6,480 DEM simulations. DEM simulations were a series of uniaxial compression tests on 

cylindrical samples with a different range of microscopic parameters (parameters of particles and 

bonds between them), based on which two macroscopic parameters describing the stress-strain curve 

were calculated, i.e., Young's modulus and Uniaxial Compressive Strength. The generated data were 

used to train two machine learning models (so-called regressors) - Multiple Linear Regression and 

Random Forest, using the dataset divided into a training and testing part. Both algorithms were 

assessed using several basic metrics (assessment was done on the testing part of the dataset), and in 

the case of Multiple Linear Regression, the degree of fulfillment of the algorithm's basic assumptions 

was also checked. One of the most basic metrics, i.e. accuracy (R2 metric), indicated that Multiple 

Linear Regression achieves a prediction accuracy of slightly over 80%, which results from not very 

high linear correlation between independent parameters and dependent parameters. On the other hand, 

another algorithm, Random Forest, fully confirmed its good reputation, and its accuracy of predictions 

on the testing dataset reached almost 100% with equally good results of the other metrics. 

This clearly demonstrates the feasibility and the possibility of generating a one general DEM 

dataset with posibly wide range of relevant microscopic parameters and corresponding macro-

parameters for training Random Forest algorithm, and such a trained model could later be used by all 
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performing DEM simulations (within one DEM implementation) as a universal method for quick 

prediction of desired parameters. Unfortunately, the dataset generated for the purposes of this work 

was still not large enough and complete to satisfied such a role. It would be necessary to expand the 

range of microscopic parameters, as well as to take into account other macroscopic parameters, such 

as Poisson's ratio, as well as to include the parameters describing the anisotropic properties of the 

material. Generating such a dataset once would be quite time-consuming, but its later usefulness would 

be enormous. 

Another issue that was taken up in this paper was an attempt to check whether it is necessary to 

calibrate DEM models on samples of real dimensions or whether it is possible on smaller, and therefore 

less time-consuming samples. The macroscopic Young's modulus and Uniaxial Compressive Strength 

were calculated for the cylindrical DEM models (of the size of real models used in the laboratory), and 

then it was checked how these two macroscopic parameters behave for models with identical 

parameters but smaller radii. The obtained results were very promising, and it turned out that if a certain 

critical value (below 30% of the target radius size) is not exceeded, smaller samples give essentially 

the same results as a large sample. This can be a handy hint to save a considerable amount of time 

during calibration, especially since the number of particles in the cylindrical model increases 

exponentially with the radius of the cylinder, which corresponds to the same increase in 

computational time. 
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