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Abstract: Aiming at the premature convergence problem of particle swarm optimization algorithm,
a multi-sample particle swarm optimization (MSPSO) algorithm based on electric field force is pro-
posed. Firstly, we introduce the concept of the electric field into the particle swarm optimization algo-
rithm. The particles are affected by the electric field force, which makes the particles exhibit diverse
behaviors. Secondly, MSPSO constructs multiple samples through two new strategies to guide particle
learning. An electric field force-based comprehensive learning strategy (EFCLS) is proposed to build
attractive samples and repulsive samples, thus improving search efficiency. To further enhance the con-
vergence accuracy of the algorithm, a segment-based weighted learning strategy (SWLS) is employed
to construct a global learning sample so that the particles learn more comprehensive information. In
addition, the parameters of the model are adjusted adaptively to adapt to the population status in differ-
ent periods. We have verified the effectiveness of these newly proposed strategies through experiments.
Sixteen benchmark functions and eight well-known particle swarm optimization algorithm variants are
employed to prove the superiority of MSPSO. The comparison results show that MSPSO has better
performance in terms of accuracy, especially for high-dimensional spaces, while maintaining a faster
convergence rate. Besides, a real-world problem also verified that MSPSO has practical application
value.

Keywords: particle swarm optimization; electric field force; comprehensive learning; segmented
learning; parameter adaptation

1. Introduction

In recent years, traditional optimization algorithms cannot optimally solve many complex prob-
lems in real life. On the contrary, the metaheuristic algorithm can give a feasible solution to the
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problem within a limited range and approach the optimal solution as much as possible. Therefore,
it has gradually become the first choice for solving these complex problems and is used to deal with
multi-dimensional, single-object or multi-objective, continuous, or combinatorial optimization prob-
lems. Metaheuristic algorithms deal with issues by abstracting some phenomena in nature and animals
into algorithms. Some representative algorithms have also appeared in this field, such as genetic algo-
rithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO), symbiotic organisms
search (SOS), simulated annealing (SA), salp swarm algorithm (SSA), and so on. To improve the
algorithm’s performance further, the hybrid metaheuristic algorithm that combines the advantages of
various algorithms has also received extensive attention. We can’t extravagantly expect an algorithm
to solve all optimization problems. Therefore, researchers always upgrade metaheuristic algorithms
for specific issues. Kaplan et al. [1] introduced GA in the field search of SA, which improves the
search performance and effectively solves the excitation current estimation of synchronous motors. To
solve complex multimodal functions and high-dimensional problems, Mohamed et al. [2] introduced
the concept of attraction and repulsion into the imperial competitive algorithm (ICA). They verified the
effectiveness of the algorithm through a multi-objective engineering problem. Çelik et al. [3] proposed
an improved slap swarm algorithm (mSSA) to avoid the premature convergence of SSA. They also
offered an improved stochastic fractal search (ISFS) algorithm, which replaced the first update process
of SFS with a chaos-based strategy to effectively deal with the automatic generation control problem
of the power system [4]. Lin et al. [5] proposed a comprehensive algorithm combining PSO and the
estimate distribution algorithm (EDA) to solve the maximum segmentation problem. In addition, con-
sidering the shortcomings of SOS premature, ISOS [6] combined the advantages of quasi-oppositional
based learning (QOBL) and chaotic local search (CLS), which balances exploration and exploitation.
hSOS-SA [7] integrated the SA into the SOS algorithm to improve the convergence accuracy of the
algorithm. Similarly, Singh et al. [8] proposed a hybrid metaheuristic algorithm (HSSAPSO), using
the velocity phase of PSO in SSA, which reduced the risk of PSO falling into a local optimum. The
abovementioned researches review that the metaheuristic algorithms have significantly developed.

Among the developing methods in the field of metaheuristic algorithms, the PSO algorithm has
attracted wide attention from researchers and practitioners for its advantages of easy implementation,
strong adaptability, and low complexity. PSO [9] is a metaheuristic algorithm proposed by Kennedy
and Eberhart to simulate the predation behavior of birds. The algorithm compares the problem’s search
space to the flight space of birds, and each bird is abstracted into a particle to represent a candidate so-
lution to the problem. According to the fitness value, all particles are randomly searched domain to find
a better solution. Therefore, the algorithm relies on a random process similar to evolution. Random-
ness makes the PSO algorithm generate uncertainty. Hence, researchers usually adopt new strategies
to make the particles move purposefully, thereby upgrading the PSO algorithm. Uncertainty modeling
has also made some progress over the years. Given the uncertainty of gene expression data, Tay-
lan et al. [10] introduced stochastic differential equations into uncertainty modeling for the first time.
Kropat et al. [11] used an interval algorithm to overcome the problem that given data is susceptible to
noise. Since the data for practical problems are usually discrete, CMARS [12] applied the framework
of conic quadratic programming to improve multivariate adaptive regression splines (MARS). Özmen
et al. [13] further improved the CMARS algorithm through a robust optimization technique to deal
with data uncertainty. A robust and flexible regulatory network regression model was introduced in
the literature [14] to determine unknown system parameters from uncertain data. Semialgebraic sets
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were used to express the uncertain state of genes and environmental factors in Reference [15], solving
the gene-environment network’s data uncertainty, which improved the model prediction accuracy. The
above researchers have adopted effective methods to address data uncertainty and reduce errors. As a
simple but powerful method, PSO is superior to deterministic algorithms in solving some specific prob-
lems. And PSO has shown good performance in many practical optimization tasks and has been used
in many research fields, including Function Optimization [16–18], Classification prediction [19, 20],
Neural network training [21–23], Feature selection [24–26], and Image encryption [27, 28].

Although PSO is simple and easy to implement, it still has the problems of easily falling into a local
optimum and slow convergence speed. To overcome these problems, many researchers have proposed
various PSO algorithm variants. To enhance the searchability of the algorithm, Liang et al. [29] offered
a dynamic grouping particle swarm optimization (DMSPSO) algorithm, which divides the population
into multiple subgroups. The members of the group exchange information for better local exploration,
and at the same time, frequently reorganize and change the learning samples to realize the information
exchange among the populations. HCLDMS-PSO [30] introduced a non-uniform mutation operator in
the PSO to enhance the global search ability and adjusts the global best position through the Gaussian
mutation operator, reducing the risk of falling into the local optimum. Zhang et al. [31] added two
constraint factors to the PSO through migration learning, namely the source domain factor and the
target domain factor, to balance the PSO algorithm’s search ability and search efficiency.

Furthermore, to avoid premature convergence, CMPSOWV [32] discarded the velocity component
in the particle velocity update formula and introduced a constraint processing method to guide the
particle search space with the best personal position and the global best position. Chen et al. [33]
also introduced chaos mapping in the PSO algorithm and adjusted the inertia weight through the sino-
gram, balancing local exploitation and global exploration effectively. To better deal with multi-modal
functions, Zhang et al. [34] introduced a local optimal topology (LOT) based on the comprehensive
learning particle swarm optimization (CLPSO) algorithm, which expanded the search space of parti-
cles and improved the convergence speed of the algorithm. To increase the convergence speed of the
algorithm, Zhu et al. [35] proposed a multi-ion particle swarm optimization algorithm (MIONPSO)
based on repulsive force and attractive force. They introduced the concept of charge in the PSO al-
gorithm and divided the population into multiple sub-populations, then the optimal solution of each
group guides the update of individuals. In addition, papers [36, 37] both adopted various strategies in
the PSO algorithm to make the particles search better in the feasible domain space, which improves
the accuracy of the solution.

Based on the above research, we can find that most of the articles on PSO algorithms have put
forward novel concepts to increase the diversified behavior of particles, thereby reducing the risk of
falling into a local optimum. Nevertheless, the matching update strategies of many new PSO algorithms
are not perfect, and they cannot take the convergence speed and accuracy into account simultaneously.
Additionally, when solving complex optimization problems, a single improvement strategy has no
advantage in improving convergence accuracy. On the contrary, adopting a variety of improvement
strategies can enhance the diversity of the algorithm and achieve higher convergence accuracy.

To further improve the performance of the PSO algorithm, inspired by MIONPSO, this paper pro-
poses a multi-sample particle swarm optimization algorithm based on electric field force. MSPSO
introduces the concept of the electric field into the PSO algorithm and makes it match more complete
strategies. We construct multiple learning samples to improve the performance of the particle swarm
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algorithm in solving unimodal and multimodal problems. Lots of experiments have verified the ef-
fectiveness of these additional strategies. We further evaluated the performance of MSPSO through
practical cases of design problems of multiphase codes for spread spectrum pulse radar. And the main
contributions of this paper can be summarized as follows.
• To show the diverse behavior of particles, we regard the feasible region of the population as

an electric field, and the particles suffer the electric field force of other charged particles in the
electric field.
• We propose an electric field force-based comprehensive learning strategy to construct the attrac-

tive sample and the repulsive sample to guide the particle movement purposefully. The interaction
of the two pieces directs the particles to areas that are more conducive to exploration.

• We use the historical experience information of elite particles and general particles obtained by
the tournament mechanism to update the corresponding weight coefficients adaptively, which
enhances the diversity of the population.

• To reduce the risk of falling into a local optimum, we construct a global learning sample by a
segment-based weighted learning strategy so that particles can learn more helpful information
from the elite particles.

The rest of the paper is organized as follows. Section 2 introduces related works. Section 3 describes
the details of MSPSO. The performance of newly introduced strategies is experimentally verified in
Section 4. In Section 5, sixteen benchmark functions and eight well-known PSO variants are employed
to verify the effectiveness of MSPSO. Finally, Section 6 summarizes the relevant conclusions.

2. Related work

2.1. Basic PSO

PSO is a random optimization algorithm based on population, in which each particle represents a
potential problem solution. In the D-dimensional space, each particle has two attributes, the velocity
vector Vi =

(
vi,1, vi,2, . . . , vi,D

)
and the position vector Xi =

(
xi,1, xi,2, . . . , xi,D

)
. Xi is the candidate solu-

tion of the problem, and Vi represents the search direction and step size of ith particle. Each individual
adjusts its trajectory according to its own best historical experience pbesti =

(
pbi,1, pbi,2, . . . , pbi,D

)
and the best overall experience in history gbest = (g1, g2, . . . , gD) in the feasible domain space. The
speed and position update rules are defined as Equations (2.1) and (2.2) respectively.

vt+1
i, j = ωvt

i, j + c1r1

(
pbestt

i, j − xt
i, j

)
+ c2r2

(
gbestt

j − xt
i, j

)
, (2.1)

xt+1
i, j = xt

i, j + vt+1
i, j , (2.2)

where j = 1, 2, . . . ,D, ω represents the inertia weight which determines the proportion of the previous
speed; c1 and c2 are acceleration learning factors, respectively representing the weights learned from
pbesti and gbest; r1 and r2 are random numbers in the interval [0, 1).

2.2. Other improved PSO algorithms

The PSO algorithm mainly improves from four directions, including parameter adjustment, learning
modes adjustment, topology change, and hybrid algorithm. The proposed MSPSO mainly covers the
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two improvement directions of adjusting parameters and changing particle learning modes, so other
approaches will not be discussed.

For adjusting parameters, Shih and Eberhart [38] proposed a strategy of linearly reducing the inertia
weight from 0.9 to 0.4, changing the step length of the particle’s velocity component in different evo-
lutionary periods. XPSO [37] also adopted this method which effectively improves the performance of
the algorithm. However, the strategy of linear weight reduction does not perform well on the objective
function with multiple optimal solutions. To solve the above problem, Farooq et al. [39] proposed a
phased update strategy. In the first half of the iteration, the inertia weight was linearly reduced from 0.9
to 0.4. The same method is repeated in the second half of the iteration. Chatterjee et al. [40] proposed
a new nonlinear function to adaptively change the inertia weight, which effectively balances local ex-
ploitation and global exploration. Similarly, the sigmoid activation function in the neural network is
used to change the inertia weight in HCLDMS-PSO [30] non-linearly. The abovementioned researches
reveal that the adaptive adjustment of parameters will benefit the evolution of the population.

For changing particle learning modes, Liang et al. [41] proposed CLPSO, which encourages each
particle to learn from different particles of different dimensions to obtain more comprehensive informa-
tion. An opposition-based learning competitive particle swarm optimizer (OBL-CPSO) [42] introduced
two mechanisms of oppositional learning and competitive learning. Competitive learning allows parti-
cles with poor fitness to learn from particles with good fitness, and particles with moderate fitness are
updated through oppositional learning. To solve the problem of dimensionality disaster, Shi et al. [43]
proposed a segment-based learning strategy, which randomly divides the dimension into several seg-
ments. At the same time, a predominant learning strategy allows elite particles to guide each dimension
segment. Additionally, MPCPSO [36] introduced two new strategies: a dynamic segment-based mean
learning strategy (DSMLS) and a multidimensional comprehensive learning strategy (MDCLS), which
effectively improved the performance of the algorithm. DSMLS realizes the information exchange
between the elite population and the ordinary population, and MDCLS accelerates the convergence
speed. XPSO [37] extends the social learning part of each particle from one sample to two samples so
that the particles learn from the global best particle and the local best particle. The abovementioned
researches show that the dynamic selection of learning samples effectively maintains the diversity of
the population, which is conducive to solving complex multimodal problems.

3. The proposed MSPSO algorithm

In this part, we introduce the proposed MSPSO in detail. Section 3.1 gives the particle model,
and Section 3.2 explains the electric field force-based comprehensive learning strategy. The segment-
based weighted learning strategy is introduced in Section 3.3, and Section 3.4 lists the framework of
the MSPSO algorithm.

3.1. Learning model based electric field force

In MSPSO, the feasible region of particles is seen as an electric field, and every particle is regarded
as an electric charge. Hence, the electric field has a powerful effect on the particles. To put it simply,
when the particle velocity is updated, the electric field force around the particle will affect it. We hope
that the particle swarm can exhibit diverse behaviors by calculating the electric field force between
particles, which is beneficial to the evolution of the population. At the same time, we propose an elec-
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tric field force-based comprehensive learning strategy to construct attractive and repulsive samples and
utilize the historical knowledge of particles to adjust the weight coefficients adaptively. Additionally,
to increase the convergence accuracy of the algorithm, we adopt a segment-based weighted learning
strategy to construct a global learning sample. The proposed MSPSO is introduced in detail as follows.
The velocity update rule of positively charged particles:

Vt+1
i = ωt · Vt

i + αt
1 ·

(
PEt

1 − Xt
i
)
− βt

1 ·
(
PGt

1 − Xt
i

)
+ c · r ·

(
GMt

· fig − Xt
i

)
, (3.1)

The velocity update rule of negatively charged particles:

Vt+1
i = ωt · Vt

i + αt
2 ·

(
PEt

2 − Xt
i
)
− βt

2 ·
(
PGt

2 − Xt
i

)
+ c · r ·

(
GMt

· fig − Xt
i

)
, (3.2)

Update the position according to Equation (3.3).

Xt+1
i = Xt

i + Vt+1
i , (3.3)

where Vt
i =

(
vi,1, vi,2, . . . , vi,D

)
is the velocity of the ith particle at the tth time, and Xt

i =
(
xi,1, xi,2, . . . , xi,D

)
is the position of the ith particle at the tth time. ωt is tth inertia weight. PEt

1 and PGt
1 represent tth

attractive sample and repulsive sample of positively charged particles, respectively. PEt
2 and PGt

2
denote tth attractive sample and repulsive sample of negatively charged particles, respectively. αt

1, βt
1,

αt
2, and βt

2 represent tth weight coefficient of the corresponding learning sample. GMt denotes tth global
learning sample and fig is the electric field force of GMt on the current update particle Xt

i.
The particle’s velocity update equation consists of four parts. The first part is the velocity of the

particle itself. Attraction is reflected in the second part. To reduce the risk of falling into a local opti-
mum, we select elite particles to construct an attractive sample by EFCLS. The third part is repulsion.
For particles with poor fitness, their trajectory may not find the optimal value, and the particles should
be urged to explore the optimal value in other directions. Similarly, we choose general particles to con-
struct the repulsive sample by EFCLS. The last part is the global learning sample built by the SWLS
to guide particles’ movement and increase the convergence accuracy of the algorithm.

The inertia weight ω plays a vital role in the PSO algorithm. A larger ω in the early stage can en-
hance the global exploration ability, while a smaller ω in the later stage is beneficial to local exploita-
tion. Existing studies have shown that during the evolution of the population, the dynamic change of
the inertia weight can obtain a better optimization result than the fixed value. In MSPSO, a nonlinear
decreasing inertia weight based on the sigmoid function proposed by reference [30] is adopted. The
calculation method of ω is defined as Equation (3.4).

ωt = ωmax −
ωmax − ωmin

1 + e−5∗ t
T
, (3.4)

where ωmax is the maximum inertia weight, and ωmin is the minimum inertia weight, t is the current
iteration number. T represents the maximum number of iterations.

3.2. Electric field force-based comprehensive learning strategy

In MSPSO, all particles are in an electric field. Particles with opposite charges attract each other,
and particles with the same charge repel each other. To purposefully guide particles to a better area, we
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enable the attraction of particles with opposite charges to lead the particles to move in the direction of
the elite particles, thereby accelerating the convergence speed. At the same time, the repulsion of the
particles with the same charge drives the poorer particles to explore other better directions, reducing the
risk of falling into the local optimum. Therefore, we select elite particles and general particles through
the tournament mechanism and construct attractive sample PE and repulsive sample PG based on the
electric field force.

Firstly, We screen out the elite particles and general particles of the positively and negatively
charged subpopulation through the tournament mechanism. The tournament mechanism is to clas-
sify the particles of the population according to fitness ranking. The specific method is as follows.
We arrange all particles of the positively charged subpopulation in ascending order of fitness. After
sorting, the set of positively charged particles POS =

{
X1, X2, . . . , Xn1

}
satisfies f (X1) ≤ f (X2) ≤

· · · ≤ f
(
Xn1

)
, where f denotes fitness function, n1 is the number of positively charged particles.

Then we select the first ne particles as the elite particles to create set S 1. And the last ng par-
ticles are used as general particles in the positively charged subpopulation to form set S 2. Simi-
larly, we arrange all the particles of the negatively charged subpopulation in ascending order of fit-
ness. After sorting, the set of negatively charged particles NEG =

{
Xn1+1, Xn1+2, . . . , Xn1+n2

}
satisfies

f
(
Xn1+1

)
≤ f

(
Xn1+2

)
≤ · · · ≤ f

(
Xn1+n2

)
, where n2 represent the number of negatively charged parti-

cles. Then we select the first ne particles as the elite particles to create the set S 3. The last ng particles
are used as the general particles of the negatively charged subpopulation to form the set S 4. Finally,
we obtained the following four sets.
elite particle set of the positively charged subpopulation S 1 =

{
X1, X2, . . . , Xne

}
,

general particle set of the positively charged subpopulation S 2 =
{
Xn1−ng+1, Xn1−ng+2, . . . , Xn1

}
,

elite particle set of the negatively charged subpopulation S 3 =
{
Xn1+1, Xn1+2, . . . , Xn1+ne

}
,

general particle set of the negatively charged subpopulation S 4 =
{
Xn1+n2−ng+1, Xn1+n2−ng+2, . . . , Xn1+n2

}
.

In physics, we calculate the magnitude of the force between two charges through Coulomb’s law,
it is proportional to the distance between the charges. In the early stage of population evolution,
the distance between particles is so far that the force is small. On the contrary, particles are more
concentrated in the later stage, and the distance between the particles is small. Therefore, we calculate
the electric field force based on the distance between the particles. The electric field force of any two
charged particles Xi and X j is defined as Equation (3.5).

fi j = ε · e−di j , (3.5)

where fi j denotes the eletric field force of X j to Xi, di j represents the distance of Xi and X j. ε is a real
number distributed in (0, 1), avoiding too large search space for particles.

The distance of any two particles Xi =
(
xi,1, xi,2, . . . , xi,D

)
and X j =

(
x j,1, x j,2, . . . , x j,D

)
is calculated

by Euclidean distance:

di j =

√√
D∑

k=1

(
xi,k − x j,k

)2
, (3.6)

where D is the dimension of a particle, xi,k represents the value of Xi in the kth dimension, and x j,k

denotes the value of X j in the kth dimension.
This paper adopts the same method to build PE1 and PE2, but the selected population is

different. PG1 and PG2 are also constructed in the same way. Therefore, we take positively
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charged particles as an example to illustrate building PE1 =
(
PE1,1, PE1,2, . . . , PE1,D

)
and PG1 =(

PG1,1, PG1,2, . . . , PG1,D
)
.

ne elite particles are selected from the negatively charged subpopulation to construct the attractive
sample PE1 through the electric field force-based comprehensive learning strategy, directing the par-
ticles to a better area. The ne elite particles constitute the set S 3. For the currently updated positively
charged particle Xi, we calculate the electric field force fi j of each elite particle X j in S 3 to Xi, where
j represents the serial number of the elite particle in S 3.

PE1,d =
1
ne

∑
X j∈S 3

pbest j,d · fi j, (3.7)

where d = 1, 2, . . . ,D, PE1,d is the value of PE1 in the dth dimension, pbest j,d represents dth dimension
of the best historical of the elite particle X j in S 3. fi j is the electric field force of X j to Xi.

Similarly, ng general particles are selected from the positively charged subpopulation to construct
the repulsive sample PG1 through the electric field force-based comprehensive learning strategy. The
ng general particles constitute the set S 2. For the currently updated positively charged particle Xi, we
calculate the electric field force fik of each elite particle Xk in S 2 to Xi, where K represents the serial
number of the general particle in S 2.

PG1,d =
1
ng

∑
Xk∈S 2

pbestk,d · fik, (3.8)

where d = 1, 2, . . . ,D, PG1,d is the value of PG1 in the dth dimension, pbestk,d represents dth dimension
of the best historical of the general particle Xk in S 2. fik is the electric field force of the Xk to Xi.

Algorithm 1 lists the pseudo code of EFCLS, taking positively charged particles as an example.
And it is worth noting that when we construct PE2, Xi comes from S 1. When we build PG2, Xk comes
from S 4.

Algorithm 1 electric field force-based comprehensive learning strategy
1: Sort positively charged particles and negatively charged particles respectively by fitness value
2: for i = 1→ n1 do
3: for X j in S 3 do
4: Calculate the distance di j between Xi and X j by Eq (3.6)
5: Calculate the electric field force fi j of X j to Xi by Eq (3.5)
6: end for
7: Construct the attractive sample PE1 by Eq (3.7)
8: for Xk in S 2 do
9: Calculate the distance dik between Xi and Xk by Eq (3.6)

10: Calculate the electric field force fik of Xk to Xi by Eq (3.5)
11: end for
12: Construct the repulsive sample PG1 by Eq (3.8)
13: end for

In MSPSO, once the particle is updated, the selection of elite particles and general particles will
change according to the fitness value. To enhance the diversity of the population, we adaptively adjust
the weight coefficients α1, β1, α2 and β2 by the historical information of the particles.
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We assign a weight coefficient wi to each particle and initialize wi by a random real number gener-
ated byN

(
0.1, σ2

)
. Besides, real numbers randomly generated from Gaussian distributionN

(
µ1, σ

2
)
,

N
(
µ2, σ

2
)
, N

(
µ3, σ

2
)

and N
(
µ4, σ

2
)

are assigned to each α2, β1, α1 and β2. µ1, µ2, µ3 and µ4 are up-
dated according to the historical knowledge of elite particles and general particles of the subpopulations
as Equation (3.9).

µk = λ ·
1
|S k|

∑
Xi∈S k

wi, k = 1, 2, 3, 4, (3.9)

where λ represents the degree to which µk (k = 1, 2, 3, 4) learns from the historical knowledge of the
corresponding subpopulation. S k (k = 1, 2, 3, 4) represents the four sets that we have filtered through
the tournament mechanism. |S k| denotes the number of particles in S k. We update wi by an actual
random number generating by its corresponding N

(
µk, σ

2
)
. Based on experience, we set σ to 0.1.

3.3. Segment-based weighted learning strategy

Although the attraction and repulsion in the velocity update equation can disperse the particles and
facilitate exploration, the particles may fall into the locally optimal values of the two subpopulations.
Therefore, to reduce the risk of falling into the local optimum, we construct a global learning sample
GM by SWLS to guide particle motion. Algorithm 2 lists the pseudo-code of SWLS.

Algorithm 2 segment-based weighted learning strategy
1: Initialize the number of segments of particle dimensions m = D/10
2: Sort particles in ascending order by fitness value, and select some top particles to form an elite

population
3: for j = 1→ m do
4: E randomly select k particles from the elite population
5: for d = j→ j + 10 do
6: Construct the global elite sample GMd by Eq (3.10)
7: end for
8: end for

Firstly, The dimension of the global learning sample is divided into m segments evenly, and we
let each segment follow the elite particles of the entire population to construct the learning sample.
Specifically, we sort all particles in ascending order through the tournament mechanism and select a
part of top particles to form an elite population. For each segment, we select k particles randomly
from the elite population. Then we use a weighting strategy to construct the global learning sample
GM = (GM1,GM2, . . . ,GMD).

GMd =

k∑
i=1

f (Ei)∑k
j=1 f

(
E j

)
+ γ

Ei,d, (3.10)

where d = 1, 2, . . . ,D, GMd represents the value of GM in the dth dimension. E is the set of selected k
elite particles, and E j denotes the jth elite particle X j in E. Ei,d is the value of Ei in the dth dimension.
The fitness function is denoted by f , and γ is a small positive number that prevents the denominator
from being zero.
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In this way, the particles can obtain more comprehensive information, which is conducive to global
exploration, increasing the probability of finding the global best value. Based on SWLS, we calculate
the electric field force of the newly constructed sample on the currently updated particles, which rep-
resents the influence of the newly created global learning example GM on the particles in the electric
field.

3.4. Algorithm framework

By integrating the above strategies, Algorithm 3 shows the implementation process of MSPSO.

Algorithm 3 MSPSO algorithm
1: /*Initialization*/

2: Determine the size of two subpopulations: n1 = n2 = n/2, the first n1 particles are positively
charged particles, and the remaining n2 particles are negatively charged particles

3: for i = 1→ n do
4: Randomly initialize Vi and Xi

5: Evaluate f (Xi); pbesti = Xi

6: end for
7: Initialize all particles’ weight coefficient wi, set t=1
8: /*Main Loop*/

9: while t<Maxiter do
10: Compute ωt by Eq (3.4)
11: Compute µ1, µ2, µ3 and µ4 by Eq (3.9)
12: Update α1, β1, α2, β2

13: Construct the global elite sample GMt by SWLS
14: for i = 1→ n1 do
15: Construct PEt

1 and PGt
1 by EFCLS

16: Compute the electric field force fig of GMt to Xi by Eq (3.5)
17: Update Vi by (3.1)
18: end for
19: for i = (n1 + 1)→ (n1 + n2) do
20: Construct PEt

2 and PGt
2 by EFCLS

21: Compute the electric field force fig of GMt to Xi by Eq (3.5)
22: Update Vi by (3.2)
23: end for
24: Update all particles’ Xi by (3.3)
25: Update all particles’ weight coefficient wi and pbesti

26: t = t + 1
27: end while
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4. Performance of proposed strategies

In this section, we conducted experiments to evaluate the performance of MSPSO. Firstly, the per-
formance of the MSPSO algorithm optimizes with parameter adjustment. Then the diversity of the
algorithm search space is analyzed through experiments, and the effectiveness of the new proposed
strategies is verified.

4.1. Parameter sensitivity

We carry out experiments to analyze the influence of the parameters ne, ng and λ involved in MSPSO
on the algorithm’s performance. We set the number of particles in the positively charged subpopulation
to be the same as the number of particles in the negatively charged subpopulation, n1 = n2 = n/2. For
simplicity, we set ne = ηe · n/2, ng = ηg · n/2. The experimental setting is that the population size n=60
and the maximum number of function evaluation MaxFes=1000D. We change the parameter from 0
to 1, and the step amplitude is 0.1. One unimodal function (Schwefel’s P2.21) and three multimodal
functions (Quartic, Alpine, Penalized 1) are employed to evaluate the results. The evaluation standard
is the mean value after 30 independent runs, and the tests are performed on the problem of 50D. Note
that to analyze the influence of each parameter on the performance of the algorithm separately, we set
a default value for each parameter, namely ηe = 0.5, ηg = 0.5, λ = 0.5.

(a)Schwefel’s P2.21 (b) Quartic (c) Alpine (d) Penalized 1

Figure 1. Sensitivity of ηe, ηg and λ.

(1) Sensitivity of ηe

ηe represents the proportion of elite particles that are attractive to the current update particle. And
its function is to guide particles to a better area. A smaller ηe will increase the convergence speed of
the algorithm, but it may also cause the particles to ignore the information of other better particles.
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Although a larger ηe can obtain more information from the oppositely charged particles, it may cause
the particles to evolve in a worse direction. From the first row of Figure 1, we can see that a smaller ηe

is more conducive to improving the accuracy, so we set ηe to 0.1.
(2) Sensitivity of ηg

ηg represents the proportion of general particles that repel the current update particle. And its
function is to disperse the particle swarm and drive the poorer particles to explore other directions,
increasing the ability of global exploration. A smaller ηg may increase the convergence speed of the
algorithm but may cause the particles to gather too much and weaken the global exploring ability. A
larger ηg would make the particles more dispersed but may change the direction of movement of better
particles. According to the experimental results in the second row of Figure 1, ηg is better in the range
of [0.1, 0.2], and we set ηg to 0.1.

(3) Sensitivity of λ
λ represents the degree to which the weight coefficients of attraction and repulsion learn from the

historical information of elite particles and general particles. If λ is small, the knowledge of elite
particles or general particles has less influence on the adjustment of µk, which may cause some useful
historical information of elite particles or general particles to be ignored. The greater the λ, the greater
the dependence of µk on elite or general experience. Experimental results based on the third row of
Figure 1, λ = 0.4 is adopted in this work.

According to the above experiment and analysis, we will set ηe, ηg and λ to 0.1, 0.1 and 0.4 in the
subsequent experiments.

4.2. Diversity analysis

MSPSO introduces electric field into PSO and proposes two learning strategies to improve the per-
formance of the algorithm, namely, an electric field force-based comprehensive learning strategy and
a segment-based weighted learning strategy. Additionally, we also adopted a parameter adaptation
strategy to update the attractive weight coefficient and the repulsive weight coefficient. To verify the
effectiveness of the proposed strategies, we selected four representative test functions for the popu-
lation diversity experiment: a unimodal function (Different power) and three multimodal functions
(Quartic, Ackley, Penalized 1). The diversity experiment settings are as follows: the overall size n=60,
the problem dimension D=50, and the maximum number of iterations MaxFes=1000D. Population
diversity is defined according to references [30].

diversity(n) =
1
n

n∑
i=1

√√√ D∑
j=1

(
xi, j − x̄ j

)2
, (4.1)

where xi, j represents the position of the ith particle in the jth dimension, and x̄ j represents the average
value of all positions of particles in jth dimension.

MSPSO-EFF, MSPSO-PA, and MSPSO-SEW represent the algorithm that the electric field force,
parameter adaptation, and segment-based weighted learning strategy are removed from MSPSO. The
experimental comparison results of the diversity are shown in the first row of Figure 2. In addition, to
further analyze the different effects of these strategies on the algorithm, we also experimented on the
accuracy, as shown in the second row of Figure 2.
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(a)Different power (b) Quartic (c) Ackley (d) Penalized 1

Figure 2. Comparison results on the new strategies.

As shown in Figure 2, MSPSO-SEW delivers the best performance in terms of the diversity on the
four test functions. However, MSPSO-SEW sacrifices the convergence accuracy of the algorithm and
cannot provide the best results in the accuracy of the solution. On the contrary, the loss of diversity of
MSPSO-PA is faster than other algorithms. Although MSPSO does not obtain the best performance
in terms of diversity, it is always better than MSPSO-EFF except for the Quartic function, which
shows that the electric field force is beneficial to enhance the diversity of the population. Addition-
ally, compared with MSPSO-SEW, MSPSO-EFF, and MSPSO-PA, MSPSO has fewer advantages on
convergence speed but always gets the highest accuracy.

We can get some preliminary conclusions about the newly introduced strategies based on the above
experimental results. Firstly, from the diversity, electric field force and the adaptive update of weight
coefficients both play an essential role. Secondly, the three strategies are all beneficial to improve the
accuracy of the algorithm.

5. Experimental results and analysis

5.1. Benchmark functions and baseline algorithms

To evaluate the performance of the MSPSO algorithm from multiple aspects, we selected sixteen
widely used benchmark functions and the detailed information is shown in Table 1. The third and fourth
columns of Table 1 respectively represent the search range and global best value of the benchmark
function. The benchmark functions include two categories: unimodal function ( f1- f8) and multimodal
functions ( f9- f16). Among the multimodal functions, f11- f16 are relatively more complicated than f9-
f10.

We selected eight well-known evolutionary algorithms based on particle swarm optimization algo-
rithm to verify the superiority of the MSPSO algorithm, including PSO, DMSPSO, CLPSO, OBL-
CPSO, CLPSO-LOT, MPCPSO, XPSO, and MIONPSO. And the specific information about the pa-
rameter settings of each algorithm is shown in Table 2. Note that each algorithm’s parameter settings
and experimental settings are the same as those of the corresponding original text for the fairness of
comparison.
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Table 1. Benchmark functions.

Name Benchmark Functions Search Range fm

Sphere f1(x) =
∑D

i=1 x2
i [−100, 100]D 0

Schwefel’s P2.21 f2(x) = max(|xi|), i = 1, 2, · · · ,D [−100, 100]D 0
Schwefel’s P2.22 f3(x) =

∑D
i=1 |xi| +

∏D
i=1 |xi| [−10, 10]D 0

Different power f4(x) =
∑D

i=1 |xi|
i+1 [−100, 100]D 0

Bent cigar f5(x) = x2
1 + 106 ∑D

i=2 x2
i [−100, 100]D 0

Discus f6(x) = 106x2
1 +

∑D
i=2 x2

i [−100, 100]D 0
Zakharov f7(x) =

∑D
i=1 x2

i + (
∑D

i=1 0.5x2
i )

2
+ (

∑D
i=1 0.5xi)

4
[−15, 10]D 0

Rosenbrock f8(x) =
∑D−1

i=1 [100(xi+1 − x2
i )2

+ (xi − 1)2] [−30, 30]D 0
Quartic f9(x) =

∑D
i=1 ix4

i + random[0, 1] [−1.28, 1.28]D 0
Alpine f10(x) =

∑D
i=1 |xi sin xi + 0.1xi| [−10, 10]D 0

Schwefel’s P2.26 f11(x) =
∑D

i=1 −(xi sin(
√
|xi|)) [−500, 500]D -12569.5

Rastrigin f12(x) =
∑D

i=1[x2
i − 10 cos(2πxi) + 10] [−5.12, 5.12]D 0

Ackley
f13(x) = − 20 exp(−0.2

√√
1
D

D∑
i=1

x2
i )

− exp(
D∑

i=1

cos 2πxi) + 20 + e

[−32, 32]D 0

Griewank f14(x) = 1/4000
∑D

i=1 x2
i −

∏D
i=1 xi/

√
i + 1 [−600, 600]D 0

Penalized 1

f15(x) =
π

D

10 sin2 (πyi) +

D−1∑
i=1

(yi − 1)2
·
[
1 + 10 sin2 (πyi+1)

]
+

(yD − 1)2
}

+

D∑
i=1

u (xi, 10, 100, 4) , where yi = 1+

0.25(xi + 1), u (xi, a, k,m) =


k (xi − a)m , xi > a
0,−a ≤ xi ≤ a
k (−xi − a)m , xi < −a

[−50, 50]D 0

Penalized 2

f16(x) =0.1

sin2 π3yi +

D∑
i=1

(yi − 1)2
·
[
1 + sin2 (3πyi+1)

]
+

(xn − 1)2
[
1 + sin2 (2πyD)

]]
+

D∑
i=1

u (xi, 10, 100, 4) ,

where yi = 1 + 0.25 (xi + 1) , u as Penalized1

[−50, 50]D 0

Table 2. The details of baseline algorithms.
Algorithm Year Parameter settings
PSO [44] 1998 ω = 0.7298, c1 = c2 = 1.49445
DMSPSO [29] 2005 ω = 0.7298, c1 = c2 = 1.49445,R = 10, L = 100
CLPSO [41] 2006 ω = [0.4, 0.9], c = 1.49445,m = 7
OBL-CPSO [42] 2016 ω = 0.2 ∼ 0.7
CLPSO-LOT [34] 2019 ω = [0.4, 0.9], c = 1.49445,m = 7, g = 30
MPCPSO [36] 2020 ω = 0.7298, c1 = c2 = 1.49445, F = 0.5, t = 0.5
XPSO [37] 2020 n = 50, ω = [0, 4, 0.9], η = 0.2, stagmax = 5, p = 0.5
MIONPSO [35] 2021 n = 200, c = 1.49445, S N = 50,R = 10, α = 0.2, β = 0.04
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5.2. Comparison on solutions accuracy

The experimental settings are as follows: the population size n=60, the maximum number of func-
tion evaluation MaxFes=1000D, each algorithm runs 30 times independently. We adopt the evaluation
indicators commonly used in the PSO algorithm: average and standard deviation. Additionally, to show
the performance characteristics of each algorithm on different dimensions, we conducted experiments
in 30D, 50D, and 100D.

Table 3, Table 4, and Table 5 show the results of different algorithms on different dimensions and
benchmark functions, including the running time of the CPU.

Table 3. Comparison results of all algorithms on benchmark functions (30D).
MSPSO MIONPSO XPSO MPCPSO CLPSO-LOT OBL-CPSO CLPSO DMSPSO PSO

f1 Mean 0.00E+00 0.00E+00 1.88E-14 1.30E-62 1.24E+00 9.93E-32 3.17E+01 9.10E+00 3.09E-20
Std 0.00E+00 0.00E+00 7.08E-14 4.36E-62 6.63E+00 3.65E-31 1.50E+01 3.64E+00 4.01E-20

Time(s) 11.03 18.94 10.89 42.03 53.77 1.48 52.64 2.46 0.38
f2 Mean 4.10E-198 0.00E+00 3.20E-04 1.63E-32 3.41E+01 2.89E-16 4.29E+01 2.86E+00 1.32E-01

Std 0.00E+00 0.00E+00 4.96E-04 2.61E-32 7.07E+00 1.48E-15 4.96E+00 8.55E-01 1.00E-01
Time(s) 10.99 19.52 10.85 40.85 55.26 1.44 54.17 2.50 0.36

f3 Mean 1.32E-197 0.00E+00 2.91E-07 3.42E-33 9.17E-03 9.06E-17 6.58E-01 1.25E+00 3.52E-08
Std 0.00E+00 0.00E+00 6.53E-07 6.12E-33 6.11E-03 2.84E-16 3.03E-01 4.06E-01 6.29E-08

Time(s) 11.18 19.94 10.91 40.46 53.41 1.79 52.69 2.70 0.54
f4 Mean 0.00E+00 1.28E+21 2.79E-07 2.78E+24 9.99E+28 3.36E-47 5.87E+27 1.57E+07 3.33E+12

Std 0.00E+00 6.75E+21 1.06E-06 1.23E+25 5.33E+29 1.46E-46 1.73E+28 5.04E+07 1.80E+13
Time(s) 14.40 41.72 14.60 45.81 56.02 8.19 58.02 6.74 3.48

f5 Mean 0.00E+00 0.00E+00 3.54E-02 1.10E+09 3.46E+04 2.69E-26 2.62E+07 7.56E+06 3.33E+02
Std 0.00E+00 0.00E+00 1.91E-01 2.02E+08 7.82E+04 1.13E-25 1.56E+07 2.89E+06 1.80E+03

Time(s) 11.03 18.19 10.89 41.98 54.36 1.66 54.42 2.64 0.46
f6 Mean 0.00E+00 1.52E+03 1.08E-03 4.18E-32 5.26E-02 9.92E-31 2.47E+02 2.66E+01 9.54E-18

Std 0.00E+00 9.33E+02 5.12E-03 2.23E-31 1.30E-01 5.09E-30 2.36E+02 9.28E+00 3.84E-17
Time(s) 11.00 17.77 11.08 41.16 55.72 1.76 52.92 2.70 0.47

f7 Mean 0.00E+00 1.17E+02 6.25E-17 1.25E-64 4.55E+00 3.52E+02 6.20E+00 3.70E-01 3.44E+00
Std 0.00E+00 3.18E+01 1.78E-16 5.03E-64 3.85E+00 7.18E+01 2.23E+00 1.21E-01 1.85E+01

Time(s) 11.80 21.99 11.57 41.90 59.73 4.67 53.98 3.40 1.12
f8 Mean 2.88E+01 2.90E+01 2.51E+01 2.71E+01 9.60E+02 2.81E+01 1.94E+04 2.50E+02 3.71E+01

Std 2.98E-02 1.16E-03 4.27E-01 2.05E-01 1.54E+03 3.70E-01 9.59E+03 1.18E+02 3.23E+01
Times 16.45 53.71 16.44 47.26 60.28 12.17 58.41 9.29 5.67

f9 Mean 1.47E-05 1.63E-02 3.12E-03 1.45E-03 9.37E-02 1.92E-05 1.96E-01 9.06E-03 7.93E-03
Std 1.46E-05 9.37E-03 1.33E-03 1.49E-03 5.40E-02 2.11E-05 5.96E-02 2.91E-03 2.75E-03

Time(s) 11.77 23.35 12.00 42.99 52.05 3.38 55.42 3.62 1.33
f10 Mean 4.98E-198 0.00E+00 2.11E-04 1.09E-33 2.95E+00 1.12E-17 1.27E+00 1.40E-01 5.18E-08

Std 0.00E+00 0.00E+00 3.19E-04 3.39E-33 9.23E-01 2.80E-17 4.15E-01 8.01E-02 1.76E-07
Time(s) 11.04 18.12 10.96 41.13 51.79 1.73 55.74 2.60 0.53

f11 Mean -2.17E+03 -5.98E+03 -7.61E+03 -1.25E+04 -8.09E+03 -3.18E+03 -8.15E+03 -7.18E+03 -6.75E+03
Std 3.31E+02 5.36E+02 2.25E+03 6.57E+01 3.08E+02 9.77E+02 3.31E+02 8.10E+02 8.68E+02

Time(s) 11.07 17.81 11.44 41.89 51.04 1.81 57.05 2.58 0.50
f12 Mean 0.00E+00 0.00E+00 1.37E-01 4.74E-16 1.69E+01 0.00E+00 4.33E+01 1.90E+01 4.63E+01

Std 0.00E+00 0.00E+00 7.39E-01 1.65E-15 4.33E+00 0.00E+00 9.11E+00 3.72E+00 1.24E+01
Time(s) 10.97 18.66 11.01 47.17 49.79 2.04 54.65 2.70 0.63

f13 Mean 0.00E+00 7.11E-15 3.41E-10 7.58E-15 2.66E+00 2.37E-16 3.46E+00 2.18E+00 4.98E-01
Std 0.00E+00 0.00E+00 5.85E-10 6.27E-15 1.51E+00 8.86E-16 6.09E-01 3.61E-01 6.95E-01

Time(s) 11.50 21.34 11.39 51.93 52.98 2.83 52.25 3.25 1.01
f14 Mean 0.00E+00 0.00E+00 5.36E-02 0.00E+00 1.58E-01 0.00E+00 1.60E+00 1.09E+00 1.04E-02

Std 0.00E+00 0.00E+00 1.61E-01 0.00E+00 1.91E-01 0.00E+00 3.27E-01 4.40E-02 2.16E-02
Time(s) 14.88 44.28 15.52 49.33 56.73 10.08 55.81 7.33 4.30

f15 Mean 3.24E-01 1.55E+00 1.84E-07 3.38E-04 3.33E+00 2.02E-01 4.23E+01 2.25E-01 5.53E-02
Std 1.06E-01 6.45E-02 5.85E-07 1.02E-04 5.09E+00 4.91E-02 7.02E+01 1.95E-01 1.44E-01

Time(s) 16.98 60.12 17.03 49.10 60.03 14.09 58.79 10.14 6.24
f16 Mean 2.13E+00 5.51E+00 7.35E-04 1.17E-01 5.95E-01 2.59E+00 4.22E+00 9.67E-01 3.66E-03

Std 4.96E-01 6.43E-01 2.74E-03 4.68E-01 1.14E+00 3.19E-01 2.58E+00 3.81E-01 1.03E-02
Time(s) 26.06 123.38 27.23 59.60 70.05 33.51 71.04 21.66 15.10
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(1) Unimodal functions ( f1- f8)
It can be seen from Table 3 that when MSPSO solves the problem of 30D, it shows a better mean

value and standard deviation on most unimodal functions. Except for the functions f2, f3 and f8,
MSPSO can find the optimal value of other unimodal functions, and it also has strong stability. On
functions f2 and f3, the accuracy of MSPSO is slightly lower than MIONPSO, but better than the other

Table 4. Comparison results of all algorithms on benchmark functions (50D).
MSPSO MIONPSO XPSO MPCPSO CLPSO-LOT OBL-CPSO CLPSO DMSPSO PSO

f1 Mean 0.00E+00 0.00E+00 2.13E-10 3.09E-64 1.94E-01 2.80E-32 9.27E-01 1.02E+02 9.59E-08
Std 0.00E+00 0.00E+00 9.02E-10 8.52E-64 1.76E-01 9.54E-32 4.91E-01 3.53E+01 2.58E-07

Times 15.22 18.86 17.40 67.17 107.23 1.53 85.96 3.50 0.44
f2 Mean 1.99E-198 0.00E+00 1.21E-03 4.27E-33 3.42E+01 1.30E-17 4.64E+01 7.86E+00 5.30E+00

Std 0.00E+00 0.00E+00 2.25E-03 6.15E-33 5.94E+00 5.65E-17 2.70E+00 1.39E+00 9.98E-01
Times 14.98 19.04 17.70 67.49 107.36 1.48 85.18 2.44 0.41

f3 Mean 2.20E-198 0.00E+00 1.59E-04 3.16E-34 1.11E-01 1.86E-15 2.14E-01 6.27E+00 6.91E-03
Std 0.00E+00 0.00E+00 3.50E-04 4.54E-34 3.61E-02 7.38E-15 3.75E-02 1.14E+00 9.49E-03

Times 15.07 20.36 17.48 67.52 106.16 1.89 87.51 2.74 0.60
f4 Mean 0.00E+00 4.95E+36 3.16E+05 2.54E+27 3.44E+28 7.23E-43 1.65E+33 6.25E-01 3.33E+28

Std 0.00E+00 2.63E+37 1.69E+06 1.32E+28 1.85E+29 3.90E-42 8.40E+33 1.95E+00 1.80E+29
Times 21.42 56.22 24.02 73.94 124.31 13.57 90.84 9.67 5.84

f5 Mean 0.00E+00 0.00E+00 1.68E+01 1.14E+09 1.71E+05 1.74E-26 8.11E+05 9.50E+07 2.02E-01
Std 0.00E+00 0.00E+00 8.95E+01 2.68E+08 1.32E+05 8.16E-26 3.15E+05 2.98E+07 4.42E-01

Times 15.69 19.74 17.44 67.82 105.71 1.70 84.22 2.69 0.52
f6 Mean 0.00E+00 3.87E+03 7.66E-01 2.43E-29 1.38E-01 3.07E-27 2.03E+00 2.86E+02 3.40E-06

Std 0.00E+00 2.02E+03 1.37E+00 1.31E-28 5.11E-02 1.46E-26 1.00E+00 8.78E+01 1.64E-05
Times 15.64 19.50 17.84 66.37 105.17 1.71 84.58 2.62 0.53

f7 Mean 0.00E+00 3.06E+02 4.13E-10 1.35E-65 1.42E+00 1.04E+03 2.23E+00 6.76E+00 1.51E+02
Std 0.00E+00 7.55E+01 1.09E-09 5.17E-65 5.57E-01 2.43E+02 5.91E-01 1.74E+00 1.90E+02

Times 15.64 23.62 18.13 67.09 107.24 3.04 87.26 3.61 1.17
f8 Mean 4.87E+01 4.90E+01 4.55E+01 2.72E+01 3.50E+02 4.82E+01 1.02E+03 2.45E+03 1.00E+02

Std 4.61E-02 3.76E-04 4.02E-01 2.35E-01 1.33E+02 3.37E-01 4.92E+02 1.05E+03 4.32E+01
Times 24.22 80.51 27.19 76.74 118.10 22.21 100.35 14.25 9.66

f9 Mean 1.60E-05 2.09E-02 5.70E-03 1.22E-03 1.32E-01 1.71E-05 2.22E-01 3.88E-02 2.46E-02
Std 1.45E-05 1.35E-02 2.97E-03 1.08E-03 2.77E-02 2.03E-05 4.53E-02 1.25E-02 1.07E-02

Times 16.58 30.26 19.62 69.16 104.76 5.01 90.74 4.67 2.20
f10 Mean 3.88E-199 0.00E+00 1.71E-03 2.00E-34 6.15E+00 3.80E-17 2.99E+00 1.37E+00 4.36E-03

Std 0.00E+00 0.00E+00 1.99E-03 4.12E-34 2.99E+00 7.95E-17 8.70E-01 4.74E-01 8.39E-03
Times 15.05 19.66 17.52 65.92 104.91 1.79 87.64 2.64 0.59

f11 Mean -3.24E+03 -7.98E+03 -8.84E+03 -1.25E+04 -1.20E+04 -7.40E+05 -1.22E+04 -1.11E+04 -1.10E+04
Std 6.01E+02 1.07E+03 3.54E+03 2.12E+02 4.60E+02 3.55E+06 3.58E+02 1.20E+03 9.82E+02

Times 15.19 19.53 18.27 67.04 102.54 1.78 84.37 2.63 0.57
f12 Mean 0.00E+00 0.00E+00 7.32E-09 4.14E-16 2.89E+01 0.00E+00 9.66E+01 5.73E+01 8.01E+01

Std 0.00E+00 0.00E+00 1.47E-08 1.35E-15 8.48E+00 0.00E+00 1.07E+01 1.03E+01 1.52E+01
Times 15.12 20.34 17.57 71.85 99.92 2.02 85.52 2.80 0.70

f13 Mean 0.00E+00 7.11E-15 3.79E-06 7.46E-15 1.83E+00 1.18E-16 1.67E+00 3.74E+00 2.19E+00
Std 0.00E+00 0.00E+00 7.64E-06 4.53E-15 1.55E+00 6.38E-16 3.20E-01 3.88E-01 8.50E-01

Times 15.52 23.00 18.05 67.31 105.04 2.90 85.03 3.56 1.12
f14 Mean 0.00E+00 0.00E+00 1.90E-01 2.59E-17 2.69E-01 0.00E+00 9.61E-01 1.97E+00 3.06E-02

Std 0.00E+00 0.00E+00 2.03E-01 1.40E-16 1.36E-01 0.00E+00 9.62E-02 3.01E-01 4.43E-02
Times 21.50 62.78 25.19 79.22 111.73 15.99 91.82 12.13 6.89

f15 Mean 3.19E-01 1.40E+00 7.33E-05 3.22E-04 8.63E-02 3.42E-01 7.31E-01 1.73E+00 4.34E-01
Std 8.57E-02 6.81E-02 1.01E-04 8.90E-05 1.68E-01 4.85E-02 5.25E-01 7.54E-01 7.55E-01

Times 25.42 92.85 28.01 78.90 118.17 23.04 97.69 15.90 10.65
f16 Mean 3.98E+00 9.34E+00 1.26E-02 2.85E-02 3.02E-01 4.96E+00 8.10E-01 1.07E+01 9.52E-03

Std 8.36E-01 1.08E+00 1.37E-02 1.67E-02 3.60E-01 6.85E-01 2.71E-01 3.09E+00 1.19E-02
Times 41.15 206.59 45.55 96.25 139.44 54.44 117.62 35.18 26.35

seven algorithms. All algorithms have similar performance on the function f8 while XPSO performs
best, and no optimal value is found. Besides, MSPSO also shows similar performance to the 30D
problem with high dimensions (Table 4 and Table 5), almost finding the optimal value. And it won first
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place five times both on 50D and 100D.
(2) Multimodal functions ( f9- f16)
The results in Table 3 indicate that for the eight multimodal functions, MSPSO can easily jump out

of the local optimal values on functions f12, f13 and f14. None of the algorithms finds the optimal value
on function f9, but MSPSO achieves the highest accuracy. Although MSPSO does not reach the global
best value on function f10, it has a small difference from the MIONPSO, and is better than the other

Table 5. Comparison results of all algorithms on benchmark functions (100D).
MSPSO MIONPSO XPSO MPCPSO CLPSO-LOT OBL-CPSO CLPSO DMSPSO PSO

f1 Mean 0.00E+00 0.00E+00 5.8647E-07 5.46E-60 2.46E+02 1.40E-27 2.01E+03 1.31E+03 1.05E+01
Std 0.00E+00 0.00E+00 1.6439E-06 2.94E-59 1.75E+02 7.53E-27 4.46E+02 2.02E+02 1.98E+01

Times 24.91 23.63 33.54 128.20 205.09 1.59 174.23 2.63 0.56
f2 Mean 7.10E-199 0.00E+00 1.62E-01 7.19E-32 5.26E+01 2.67E-16 6.95E+01 1.37E+01 2.04E+01

Std 0.00E+00 0.00E+00 8.63E-01 1.35E-31 1.04E+01 1.35E-15 2.64E+00 1.35E+00 1.99E+00
Times 25.55 22.96 33.52 127.58 207.50 1.67 174.20 2.69 0.53

f3 Mean 1.93E-197 0.00E+00 4.24E-03 1.26E-32 9.39E+00 5.19E-15 2.66E+01 3.19E+01 4.61E+00
Std 0.00E+00 0.00E+00 9.01E-03 4.07E-32 4.46E+00 1.32E-14 2.79E+00 3.12E+00 2.35E+00

Times 25.87 24.14 33.66 127.61 204.80 1.98 174.48 2.92 0.73
f4 Mean 0.00E+00 1.45E+83 9.47E+28 1.09E+103 2.54E+108 7.67E-51 3.78E+112 5.29E-05 3.33E+106

Std 0.00E+00 7.79E+83 5.10E+29 5.86E+103 1.34E+109 2.64E-50 2.02E+113 1.72E-04 1.80E+107
Times 37.89 96.83 47.00 141.20 231.71 26.96 193.48 17.58 11.51

f5 Mean 0.00E+00 1.33E+01 4.06E+01 5.53E+09 2.08E+08 1.26E-24 2.03E+09 1.20E+09 1.45E+07
Std 0.00E+00 7.18E+01 9.91E+01 3.96E+08 9.54E+07 5.88E-24 4.57E+08 2.24E+08 4.33E+07

Times 25.73 23.58 33.59 129.36 205.84 1.72 173.17 2.73 0.63
f6 Mean 0.00E+00 8.80E+03 7.93E+01 1.05E-46 2.08E+02 7.16E-27 3.10E+03 3.07E+03 3.02E+01

Std 0.00E+00 3.82E+03 4.10E+01 5.65E-46 1.08E+02 3.85E-26 5.46E+02 5.33E+02 8.20E+01
Times 25.70 23.67 34.05 128.51 206.93 1.76 172.96 2.79 0.65

f7 Mean 0.00E+00 9.46E+02 4.56E-07 7.64E-65 2.39E+02 4.03E+03 3.40E+02 1.29E+02 9.21E+02
Std 0.00E+00 2.63E+02 1.38E-06 1.97E-64 5.93E+01 8.93E+02 4.31E+01 3.05E+01 3.61E+02

Times 26.05 28.02 33.92 130.75 209.66 3.09 174.00 3.73 1.33
f8 Mean 9.85E+01 9.90E+01 9.58E+01 9.72E+01 4.01E+04 9.84E+01 8.15E+05 8.52E+04 6.66E+02

Std 5.70E-02 1.76E-03 6.41E-01 2.34E-01 4.01E+04 2.71E-01 2.09E+05 2.63E+04 4.61E+02
Times 43.94 149.08 53.27 149.15 227.81 40.76 196.59 27.57 19.68

f9 Mean 1.40E-05 3.66E-02 1.64E-02 1.61E-03 8.55E-01 1.55E-05 2.50E+00 3.28E-01 1.56E-01
Std 1.30E-05 3.14E-02 7.67E-03 1.75E-03 2.48E-01 1.86E-05 3.53E-01 7.57E-02 3.32E-02

Times 28.56 48.02 37.46 134.62 204.35 9.25 177.02 7.24 4.30
f10 Mean 8.29E-198 1.62E-03 1.14E-02 1.59E-33 2.73E+01 2.79E-15 3.51E+01 1.24E+01 1.30E+00

Std 0.00E+00 8.42E-03 1.08E-02 2.93E-33 1.01E+01 1.45E-14 3.60E+00 2.05E+00 1.36E+00
Times 25.19 25.23 33.77 128.85 203.92 1.86 169.35 2.83 0.74

f11 Mean -4.56E+03 -1.13E+04 -1.41E+04 -4.18E+04 -2.05E+04 -2.44E+04 -2.10E+04 -1.79E+04 -2.01E+04
Std 8.04E+02 1.63E+03 7.81E+03 1.77E+02 7.73E+02 9.82E+04 5.67E+02 2.32E+03 1.91E+03

Times 25.27 25.01 34.60 129.76 191.74 1.88 168.23 2.73 0.72
f12 Mean 0.00E+00 0.00E+00 1.52E-04 6.51E-16 2.00E+02 0.00E+00 4.50E+02 2.54E+02 1.74E+02

Std 0.00E+00 0.00E+00 6.59E-04 2.88E-15 3.86E+01 0.00E+00 2.28E+01 3.02E+01 2.19E+01
Times 24.69 25.88 33.19 139.98 186.87 2.12 169.19 2.88 0.86

f13 Mean 0.00E+00 7.11E-15 6.71E-05 9.12E-15 6.02E+00 0.00E+00 8.83E+00 6.29E+00 4.16E+00
Std 0.00E+00 0.00E+00 2.03E-04 8.44E-15 2.53E+00 0.00E+00 5.39E-01 4.25E-01 1.07E+00

Times 25.32 28.79 33.96 126.64 194.72 3.05 168.16 3.41 1.24
f14 Mean 0.00E+00 0.00E+00 9.99E-01 4.07E-17 3.62E+00 0.00E+00 4.06E+01 1.27E+01 9.42E-01

Std 0.00E+00 0.00E+00 2.11E-01 1.27E-16 1.74E+00 0.00E+00 9.52E+00 1.67E+00 4.95E-01
Times 38.60 113.30 48.74 149.56 210.19 28.63 181.40 19.10 15.16

f15 Mean 3.42E-01 1.30E+00 7.31E-03 3.67E-03 3.64E+02 5.46E-01 3.35E+03 8.09E+00 4.06E+00
Std 9.73E-02 2.85E-02 2.44E-03 7.74E-04 1.81E+03 4.45E-02 3.79E+03 2.37E+00 1.46E+00

Times 46.11 174.66 54.43 149.66 226.42 44.88 193.01 29.62 22.45
f16 Mean 8.59E+00 1.98E+01 8.47E-01 1.53E+00 1.18E+02 1.01E+01 2.03E+02 9.71E+01 2.46E+01

Std 1.53E+00 3.16E-02 2.35E-01 2.82E+00 8.32E+01 6.89E-01 3.89E+01 1.76E+01 1.84E+01
Times 77.33 393.10 89.59 183.75 280.93 114.62 255.71 69.21 56.40

seven algorithms. However, MSPSO performs poorly on function f15 and f16. The reason is that the
global learning sample guides the movement of particles and makes their convergence speed faster,
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which causes particles to fall into the local optimum. In addition, it can be seen from Table 4 and Table
5 that MSPSO has won first place 4 times and 5 times in the 50D and 100D multimodal functions,
respectively. The results show that as the dimension increases, the performance of MSPSO is getting
better and better.

To further illustrate the comprehensive performance of comparison algorithms, in terms of the ac-
curacy of the solution, Table 6 performs a Friedman test of mean values with a significance level of
α = 0.05 on sixteen benchmark functions of all algorithms on different dimensions. The result shows
that MSPSO takes first place on unimodal functions with an obvious advantage and ranks third on
multimodal functions. Although MSPSO is slightly worse than MPCPSO and OBL-CPSO in han-
dling multimodal problems, it still ranks first overall. MSPSO has the best overall performance on
benchmark functions, followed by MPCPSO and OBL-CPSO.

Table 6. Friedman test of mean values on benchmark functions of different dimensions.

Average Rank Algorithm Ranking Unimodal Multimodal
Algorithm Ranking Algorithm Ranking

1 MSPSO 2.51 MSPSO 1.73 MPCPSO 2.90
2 MPCPSO 3.30 MPCPSO 3.71 OBL-CPSO 3.21
3 OBL-CPSO 3.58 OBL-CPSO 3.96 MSPSO 3.29
4 XPSO 4.17 XPSO 4.13 XPSO 4.21
5 MINOPSO 4.40 MIONPSO 4.27 MIONPSO 4.52
6 PSO 5.60 PSO 5.63 PSO 5.58
7 CLPSO-LOT 6.67 CLPSO-LOT 6.75 CLPSO-LOT 6.58
8 DMSPSO 6.96 DMSPSO 6.83 DMSPSO 7.08
9 CLPSO 7.81 CLPSO 8.00 CLPSO 7.63

The above experimental results show that the performance of MSPSO is better than the other eight
comparison algorithms. And it can effectively deal with high-dimensional unimodal and multimodal
optimization problems, which have high robustness and convergence accuracy. The better performance
of MSPSO benefits from the following advantages. Firstly, the interaction of attraction and repulsion
disperses particles instead of gathering them at one point, enhances the capability of global exploration.
The attraction between particles exchanges the information of the two subpopulations, making the par-
ticles co-evolve in a better direction. Secondly, the attractive sample and repulsive sample constructed
by EFCLS make particles move purposefully and lead them to a better area. At the same time, the
global learning sample created by SWLS enables particles to obtain more comprehensive information
of the elite particles, which is conducive to global exploration. Thirdly, the adaptive adjustment of
the weight coefficients enhances the diversity of the population, which is beneficial to the evolution of
the population. Finally, the non-linear decrease of the inertia weight makes particles focus on global
exploration in the early stage and local exploitation later, which improves the accuracy of convergence.

5.3. Statistical significance test of experimental results

Table 3, Table 4, and Table 5 record the CPU time consumed by each algorithm in sixteen test
functions, and Table 7 shows the comprehensive ranking results of CPU time. The top three are PSO,
DMSPSO, and OBL-CPSO. And MSPSO is close behind.

Figure 3 is the comprehensive performance diagram of MSPSO and other comparison algorithms.
It is a comprehensive ranking diagram based on accuracy and CPU time on benchmark functions. The
closer to the lower-left corner, the better the performance of the algorithm. From Figure 3, we can

Mathematical Biosciences and Engineering Volume 18, Issue 6, 7464–7489.



7482

Table 7. Ranking of CPU time consumption on different dimensions.
MSPSO MIONPSO XPSO MPCPSO CLPSO-LOT OBL-CPSO CLPSO DMSPSO PSO

30D 4.44 6.44 4.44 6.81 8.44 2.50 8.31 2.63 1.00
50D 3.94 6.31 4.94 6.81 8.94 2.50 7.94 2.63 1.00
100D 4.31 5.25 5.56 6.88 8.94 2.50 7.94 2.63 1.00

Ave rank 4.23 6.00 4.98 6.83 8.77 2.50 8.06 2.63 1.00
Final rank 4 6 5 7 9 3 8 2 1

see that MSPSO and OBL-CPSO are the best among all algorithms and show similar performance.
Although the accuracy of MSPSO is higher than that of OBL-CPSO, the CPU takes longer. This result
indicates that MSPSO has a higher solution accuracy and performs well in algorithm complexity.

Figure 3. Comprehensive performance of all algorithms.

To further prove the superiority of the performance of the proposed MSPSO, a Nemenyi test was
performed based on the Friedman test, shown in Figure 4. CD denotes the critical difference. It
can be seen from Figure 4 that the performance of the MSPSO algorithm is significantly higher than
that of PSO, CLPSO-LOT, DMSPSO, and CLPSO. Compared with MPCPSO, OBL-CPSO, XPSO,
and MIONPSO, MSPSO has the best performance on the Friedman test, but there is no significant
difference.

Figure 4. Friedman rankings-based Nemenyi test result.

In addition, we use the Wilcoxon signed-rank test with a significant level of α=0.05 to represent the
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magnitude of the difference between MSPSO and the baseline algorithms on different dimensions, as
shown in Table 8. It can be seen from Table 8 that MSPSO has a significant improvement compared
with CLPSO-LOT, CLPSO, DMSPSO, and PSO. It is worth noting that there is no significant differ-
ence between MSPSO and PSO on the problem of 30D. However, the significant level of MSPSO and
PSO changes from 0.1 to 0.01 with increased dimension. There is no statistically significant difference
between MSPSO and MIONPSO, XPSO, MPCPSO, OBL-CPSO. However, MSPSO shows better re-
sults than these baseline algorithms on most of the test functions. Therefore, the statistical data of
Friedman test, Nemenyi test, and Wilcoxon signed rank-test verify the consistent validity of MSPSO
on the benchmark problems. And MSPSO performs better in high-dimensional spaces.

Table 8. Wilcoxon Signed Rank Test of benchmark functions.
D MSPSO MIONPSO XPSO MPCPSO CLPSO-LOT OBL-CPSO CLPSO DMSPSO PSO
30 P-value 0.084 0.605 0.427 0.013 0.300 0.004 0.017 0.070
50 P-value 0.084 0.352 0.352 0.039 0.084 0.023 0.006 0.026
100 P-value 0.050 0.379 0.570 0.008 0.101 0.008 0.005 0.009

5.4. Analysis of the algorithm on convergence

The dynamic convergence curve of each benchmark function in the complete iteration cycle is
employed to illustrate the convergence effect. We select the convergence of the first 1000 rounds to
observe the difference in the convergence speed of each algorithm, as shown in Figure 5 and Figure 6.

(a) f1 (b) f2 (c) f3 (d) f4

(e) f5 (f) f6 (g) f7 (h) f8

Figure 5. Convergence curves of all algorithms on unimodal functions.

For the eight unimodal functions shown in Figure 5, MSPSO maintains a high convergence speed
and has a high convergence accuracy. Other PSO algorithms most converge faster in the early stage,
then tend to be slow. In the initial stage of function f8, although MSPSO has a high convergence speed,
the convergence accuracy is relatively poor. As shown in Figure 6, for most multimodal functions,
MSPSO has obvious advantages in terms of convergence speed and convergence accuracy. But on the
functions f11, f15 and f16, although MSPSO converges faster in the early stage and then tends to be flat,
it does not converge to the global optimal solution.

Based on the above analysis, MSPSO, compared with other PSO algorithms, has the best conver-
gence speed and accuracy on unimodal functions and multimodal functions, mainly due to the fol-
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(a) f9 (b) f10 (c) f11 (d) f12

(e) f13 (f) f14 (g) f15 (h) f16

Figure 6. Convergence curves of all algorithms on multimodal functions.

lowing reasons. Firstly, the learning samples constructed by the two strategies proposed by MSPSO
guide the movement of particles no longer blind, avoiding particles from exploring in other poor di-
rections, and accelerate the convergence speed. At the same time, the learning samples guide particles
to possible exploration and development areas, reducing the risk of falling into the local optimum.
Additionally, the introduction of the electric field force and the adaptive update of parameters increase
the diversity of the population and make the convergence speed faster.

5.5. MSPSO performance for a real-word problem

In this section, MSPSO will verify its performance against a practical optimization problem that
is widely used. Dukic et al. [45] proposed a design method of multiphase code for spread spectrum
pulse radar(SSPR) based on the characteristics of the non-periodic autocorrelation function, which is
used in the design of multiphase pulse compression code. Gil-López et al. [46] formulated SSRP as a
nonlinear maximum-minimum optimization problem, which is defined as follows.

global x∈Xmin f (x) = max {ϕ1(x), . . . , ϕ2m(x)} , X =
{
(x1, . . . , xn) ∈ Rn | 0 ≤ x j ≤ 2π, j = 1, . . . , n

}
,

where m = 2n − 1, and

ϕ2i−1(x) =

n∑
j=i

cos

 j∑
k=|2i− j−1|+1

xk

 , i = 1, . . . , n,

ϕ2i(x) = 0.5 +

n∑
j=i+1

cos

 j∑
k=|2i− j|+1

xk

 , i = 1, . . . , n − 1,

ϕm+i(x) = −ϕi(x), i = 1, . . . ,m.
(5.1)

Table 9 shows the comparison results of MSPSO and other algorithms in solving the SSRP coding
design problem. The fifth row of Table 9 represents the final ranking of all algorithms on the SSRP
problem of different dimensions. Although the performance of MSPSO on SSRP is slightly lower than
MPCPSO, it is better than the other seven algorithms. The experiment result shows that the proposed
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MSPSO also has a better performance in solving practical problems and has a practical application
value.

Table 9. Comparison results on SSRP coding design problem.
MSPSO MIONPSO XPSO MPCPSO CLPSO-LOT OBL-CPSO CLPSO DMSPSO PSO

30D 4.98E-06 1.80E-03 1.40E-03 8.55E-16 4.32E-04 1.84E-04 7.45E-02 4.95E-02 3.21E-03
50D 1.32E-05 3.08E-03 1.31E-03 2.80E-15 3.28E-04 2.86E-04 9.52E-02 6.76E-02 6.75E-03
100D 2.69E-07 5.12E-03 2.10E-03 1.45E-14 4.73E-04 4.30E-04 1.56E-01 1.43E-01 7.19E-03

Ave rank 2.00 6.00 5.00 1.00 4.00 3.00 9.00 8.00 7.00
Final Rank 2 6 5 1 4 3 9 8 7

5.6. Comparison with other metaheuristic algorithms

This section further compares MSPSO with other recently released metaheuristic algorithms,
namely MOMICA [2] and mSSA [3]. MOMICA is an improved ICA algorithm, which is conducive
to solving the multimodal problem. mSSA is an improved SSA, which solves optimization problems
more widely. The unimodal functions cannot evaluate the ability of the algorithm to fall into the local

Table 10. Comparisons between MSPSO and other two metaheuristic algorithms.
MSPSO MOMICA mSSA

f1 Mean 0.00E+00 6.72E-28 0.00E+00
Std 0.00E+00 6.34E-15 0.00E+00

Rank 1 3 1
f3 Mean 1.32E-197 7.16E-17 1.07E-210

Std 0.00E+00 3.39E-08 0.00E+00
Rank 2 3 1

f8 Mean 2.88E+01 2.67E+01 2.84E+01
Std 2.98E-02 2.65E-02 2.97E-01

Rank 3 1 2
f12 Mean 0.00E+00 2.98E-01 0.00E+00

Std 0.00E+00 7.45E+00 0.00E+00
Rank 1 3 1

f13 Mean 0.00E+00 1.06E-13 8.88E-16
Std 0.00E+00 1.02E-06 2.04E-31

Rank 1 3 1
f14 Mean 0.00E+00 4.00E-03 0.00E+00

Std 0.00E+00 1.32E-04 0.00E+00
Rank 1 3 1

f15 Mean 3.24E-01 5.30E-02 1.35E-11
Std 1.06E-01 2.00E-02 4.04E-12

Rank 3 2 1
f16 Mean 2.13E+00 6.54E-01 1.60E-10

Std 4.96E-01 9.38E-06 5.61E-11
Rank 3 2 1

Avg rank 1.88 2.50 1.25
Friedman 2.06 2.50 1.44
p-value - 0.779 0.138

optimum well. Therefore, we chose three unimodal functions ( f1, f3, f8) and five more complex mul-
timodal functions ( f12, f13, f14, f15, f16) for experiments. The experimental parameter configurations of
MOMICA and mSSA are the same as the original text, and the experimental results can be found in the
respective original texts. Table 10 lists the comparison results of algorithms independently running 30
times on the 30D problem. In addition, we performed the Friedman test and Wilcoxon signed-rank test
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on the experimental results, as shown in the penultimate row and last row of Table 10. The third-to-last
row of Table 10 represents the average rank of the algorithm on the eight test functions.

From Table 10, we can see that MSPSO and mSSA are effective for unimodal problems and achieve
good performance on multimodal functions. The Wilcoxon signed-rank test shows that there is no
significant difference between MSPSO and the other two algorithms. However, mSSA offers the best
performance on test functions in terms of solution accuracy and Friedman test results. The proposed
MSPSO follows closely behind. It is worth noting that MSPSO is inferior to the other two algorithms
on the multimodal functions f15 and f16. The reason may be that the global learning sample guides
the particles to move too fast, which increases the probability of falling into the local optimum. The
experimental results show that the proposed MSPSO needs to be further improved to improve the
ability to jump out of the local optimum, which is more conducive to solving complex optimization
problems.

6. Conclusions

In this study, we propose a multi-sample particle swarm optimization algorithm based on electric
field force. In the proposed MSPSO, electric field force-based comprehensive learning strategy and
segment-based weighted learning strategy are employed to construct learning samples, enhancing the
ability of global exploration. Additionally, the adaptive changes of inertia weights and weight coef-
ficients strengthen the diversity of the population and help the particles get rid of the local optimum.
The experimental results of MSPSO and eight PSO algorithms demonstrate the superiority of MSPSO
performance. It can obtain faster convergence speed and higher convergence accuracy when dealing
with unimodal and multimodal problems. MSPSO is also effective in solving practical problems.

Nevertheless, the proposed MSPSO algorithm still has some problems, and further research and
improvement are needed. On the one hand, although the MSPSO algorithm can obtain a faster conver-
gence rate, the accuracy of the multimodal function is not ideal. For example, the optimal value cannot
be found on the multimodal function f11. Secondly, adjusting the parameters through the normal distri-
bution function has a certain degree of randomness, which affects the algorithm’s accuracy. Therefore,
our subsequent work will further explore the local exploitation features of MSPSO, such as matching
appropriate strategies for the specific dimension of particles to improve search efficiency. On the other
hand, the application selected in this article is relatively single. Next, we will extend the application of
the proposed MSPSO algorithm.
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22. J. Rojas-Delgado, R. Trujillo-Rasúa, Training Neural Networks by Continuation Particle Swarm
Optimization, in International Workshop on Artificial Intelligence and Pattern Recognition,
Springer, (2018), 59–67 .

23. T. L. Dang, Y. Hoshino, Hardware/software co-design for a neural network trained by particle
swarm optimization algorithm, Neural Process Lett., 49 (2019), 481–505.

24. L. M. Abualigah, A. T. Khader, E. S. Hanandeh, A new feature selection method to improve
the document clustering using particle swarm optimization algorithm, J. Comput. Sci., 25 (2018),
456–466.

25. M. A. Tawhid, K. B. Dsouza, Hybrid binary bat enhanced particle swarm optimization algorithm
for solving feature selection problems, Appl. Comput. Inform., 16 (2018), 117–136.
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