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Abstract：Background: Brain network can be well used in emotion analysis to analyze the brain 

state of subjects. A novel dynamic brain network in arousal is proposed to analyze brain states and 

emotion with Electroencephalography (EEG) signals. New Method: Time factors is integrated to 

construct a dynamic brain network under high and low arousal conditions. The transfer entropy is 

adopted in the dynamic brain network. In order to ensure the authenticity of dynamics and 

connections, surrogate data are used for testing and analysis. Channel norm information features are 

proposed to optimize the data and evaluate the level of activity of the brain.Results: The frontal lobe, 

temporal lobe, and parietal lobe provide the most information about emotion arousal. The 

corresponding stimulation state is not maintained at all times. The number of active brain networks 

under high arousal conditions is generally higher than those under low arousal conditions. More 

consecutive networks show high activity under high arousal conditions among these active brain 

networks. The results of the significance analysis of the features indicates that  there is a significant 

difference between high and low arousal. Comparison with Existing Method(s): Compared with 

traditional methods, the method proposed in this paper can analyze the changes of subjects' brain 

state over time in more detail. The proposed features can be used to quantify the brain network for 

accurate analysis. Conclusions: The proposed dynamic brain network bridges the research gaps in 

lacking time resolution and arousal conditions in emotion analysis. We can clearly get the dynamic 

changes of the overall and local details of the brain under high and low arousal conditions. 

Furthermore, the active segments and brain regions of the subjects were quantified and evaluated by 
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channel norm information.This method can be used to realize the feature extraction and dynamic 

analysis of the arousal dimension of emotional EEG, further explore the emotional dimension model, 

and also play an auxiliary role in emotional analysis. 

 

Keywords: EEG; dynamic brain network; arousal; emotion analysis; transfer entropy matrix 

 

1. Introduction  

In recent years, emotion analysis has gained great traction in many interdisciplinary research 

areas. It can explore different changes in the brain when emotions alter, and help to understand the 

emotion mechanism. Emotion analysis based on EEG signals studies the brain function information 

processing mechanism of different human emotions, and the signal analysis results allow people to 

better understand the human brain information processing and perceptual feedback mechanisms. A well-

structured emotion analysis can increase the accuracy of emotion recognition in research areas, like 

artificial intelligence, healthcare, therefore, greatly improving the efficiency of the applications. For 

instance, in the field of artificial intelligence, machines can better identify, explain and simulate 

human emotions with emotion analysis, to establish a better human-computer interaction [1]. 

Furthermore, emotion analysis can be used to diagnose and analyze the pathology of emotion-related 

diseases such as depression and autism [2], or assist in treating people’s mental illness.  

Electroencephalography (EEG) [3] is one of the widely used neuroimaging techniques in the 

research of brain information processing mechanisms [4]. It has the advantage of having no harm to 

humans and with a high temporal resolution. In emotion analysis, EEG can capture the brain signals 

that express and reflect human emotions.  

In emotion analysis, emotion dimension theory is used in most research to describe the emotion 

space, consisting of valence, arousal, and other dimensions in modern emotion dimension models. A 

valence-arousal model [5]—the circumplex model, as shown in Figure 1. The circumplex model of 

emotion classification proposed by Russell has always been a research focus. The two-dimensional 

emotion model divides emotion into two dimensions, namely Valence and Arousal. These two 

dimensions are a unity of continuous numerical changes. Various emotional states can be 

characterized as a linear combination of these two dimensions. The valence spans from unpleasant to 

pleasant of emotions, and the arousal indicates emotions from passiveness to activeness. Although the 

model of emotion is not unique, in many models, valence and arousal are the most important components. 

In current emotion analysis studies, researchers tend to focus on the valence of emotions but 

neglect the arousal of emotions, for the valence of emotions is easy to identify and quantify. However, 

emotion analysis is a series of extensive information processing, including analyses of emotion valence 

and arousal [6]. Deep processing of emotions arousal can improve the accuracy of emotion 

recognition. For instance, Andreas et al. [7] used experiments with the emotion arousal of subjects 

for emotion recognition with an accuracy of 89.7%. This showed that the role of emotion arousal is 

indispensable. Keil et al. [8] found that emotion arousing enhanced emotional processing in the 

higher gamma-band activity (46–65 Hz) on EEG at 500ms post-stimulus. In addition, the results of 

[9–11]verified the role of gamma band in emotional processing. And the results in [12,13] show that 
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gamma has also achieved a better effect in the emotion classification task. Therefore, it is meaningful 

to study the arousal dimension of emotions in gamma band to enhance emotion recognition and 

emotional processing. This paper will mainly be carried out in the arousal dimension to explore the 

dynamic changes of brain states under different effects of arousal. 

 

Figure 1. Valence-arousal model. The valence spans from negativity to positivity of 

emotions, and the arousal indicates emotions from passiveness to activeness. Different 

emotions can be expressed as a combination of different degrees of valence (x-axis) and 

arousal (y-axis). Some emotions (such as anger, sadness) can be represented in the 

valence-arousal model.  

Furthermore, time is another influential factor for emotional analysis since the active areas of the 

brain responsible for emotional processing change over time. The brain constantly changes over time, 

and its connections will vary over time in different processing tasks. Human brain function networks 

on multiple time scales ranging from milliseconds to seconds have such dynamic changes. Research 

has also found that in the whole brain network, not only the nodes and the nodes themselves are 

dynamic on different time scales[14].  

For arousal, the time component also has an indispensable relevance. Balsam et al. [15]  examined 

the influence of emotional arousal and valence on estimating time intervals. The overestimation of 

the time interval of emotional arousal during encoding and reproduction indicates that emotional 

stimuli affect temporal information processing in qualitatively different ways at different stages of 

temporal information processing. Gil et al. [16] systematically examine the arousal effect on time 

perception when considering different discrete emotions and suggest that arousal is the basic 

mechanism that regulates the influence of emotion on time perception.To make a complete 

assessment of emotional processing, processes in different time periods should be considered.  

In this work, the role of arousal in emotion analysis is investigated by incorporating time 

conditions. Specifically, we represent emotions with different brain states and use brain functional 

networks to express the state of the brain in different periods of time. The essence of constructing a 

brain functional network is to analyze the complex brain by defining nodes and edges based on graph 

theory. Channels in EEG signals from the brain are generally chosen as nodes, while edges refer to 

the connections between nodes. We refer to brain functional network as brain network for short. 
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Brain network are one of the major collaborative working models to describe the relationships 

between different brain areas (macroscopically) [17]. For instance, Gonuguntla et al. [18] used EEG 

phase synchronization (PLV) connectivity analysis on 60 seconds of the DEAP dataset to identify 

emotion-related functional connectivity patterns and their different associated regions. Bartolomei et al. [19] 

used a nonlinear measure of SEEG signal interdependencies at different time periods for different 

patients. So the interactions between regions were analyzed to form ‘emotional networks’. Hou et al. [20] 

extracted a 2.5 seconds segment in the stimulus experiment. Then the phase lag index (PLI) between 

EEG channels was computed and an undirected network was constructed based on the PLI matrix.  

 However, as a method to analyze the brain states over a period of time, the traditional way of 

constructing a brain network is not enough to systematically study the effect of arousal during the 

whole stimulation process in detail [21]. Emotional processing is a series of broader information 

processing processes beyond emotional valence, including the deep processing of arousal [6,22]. 

Especially in terms of improving spatial and temporal memory [23], the increase in arousal can 

deepen memory more significantly, while the relative valence is not deeply affected. Although some 

studies have shown the importance of arousal, the effect of arousal under different conditions on the 

processing of emotional shadows is still unclear, especially for the dynamic changes of the brain 

state under arousal conditions over time. For example, in the high and low levels of arousal, the brain 

state changes over time, the activity of each brain area, the difference between subjects, and so on. In 

order to bridges the research gaps in lacking time resolution and arousal conditions in emotion analysis, a 

detailed display of the state of the brain over time under differrnt arousal conditon is necessary.  

Compared with the traditional brain network, it is an idea to build a well-structured dynamic 

brain network under the condition of arousal and combining the time factor. A new evaluation 

method should be considered to quantify the results of the brain network state. Therefore, a novel 

dynamic brain network in arousal is proposed in this paper. The main technical challenges can be 

summarized. First, the time dynamics of the brain network need be expressed. Second, it is necessary 

to ensure the true effectiveness of the established brain state. Third, the complex dynamic brain 

network structure should be optimized for better evaluation. To address these challenges, 

constructing a dynamic brain network with a certain time resolution should be adopted to guarantee 

reliable emotion analysis. We have mainly done the following four tasks： 

(1) Signal segmentation under different arousal levels with sliding time windows is applied to 

build dynamic brain network; 

(2) Surrogate data was to generated to ensure the reliability of the connection; 

(3) Features called channel norm information are proposed for better dynamic analysis and 

network structure optimization; 

(4) Based on the above quantitative features, the experimental states of some subjects were 

compared. The differences in brain activity under different arousal conditions and the 

dynamic changes of the brain were obtained. 

Through dynamic brain networks, dynamic changes and differences of the brain under different 

arousal conditions could be observed to analyze the role of arousal in emotional processing. 

According to the results of the analysis, we get the segments that we are interested in for more accurate 

emotional analysis. 
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2. Methodology 

2.1. Methodology overview 

The construction and analysis of a dynamic brain network in this paper are summarized in 

Figure 2. A dynamic brain network consists of several brain networks, each obtained from the 

gamma band of the EEG signal segment.  

 

Figure 2. The flowchart of constructing a dynamic brain network. 

In this paper, each sample is a multi-channel EEG signal of an emotional stimulation experiment 

by a single subject. It is dynamically divided into several EEG signal segments. In previous studies, 

the activity in the gamma band is proved significant [24, 25]. So the gamma band of each EEG signal 

segment is extracted and is used to construct the brain network. 

To establish a brain network, the relationship between two channels is evaluated by transfer 

entropy, and a correlation matrix is formed and then abstracted as a brain network. Each brain 

network is connected in chronological order to form a dynamic brain network for dynamic 

verification and analysis. 

Dynamic brain networks are obtained from different subjects during the experimental 

stimulation process under arousal conditions. Next, a number of surrogate data are generated for each 

connection and statistical tests are carried out to ensure the reliability of the connection to the 

maximum extent. 

In addition, the features called channel norm information are proposed to reflect the amount of 

information transfer in the electrode. It could optimize the complex structure of the brain networks 

and be used as features to observe the dynamics of the network and the activity of the channels. 
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In summary, the construction and analysis of a dynamic brain network consist of four main steps: 

(1) Dynamic segmentation: 3s sliding time windows are used to divide the EEG signals for 

modeling brain states at different periods; 

(2) Transfer entropy was calculated and tested to form brain networks: Transfer entropy is used 

to calculate the connections between nodes. The corresponding surrogate data are 

generated to test transfer entropy; 

(3) The dynamic analysis of brain network: The features of channel norm information are 

proposed to optimize the network structure by reducing the dimension.  

2.2. Dynamic segmentation 

The establishment of a dynamic brain network starts from dynamic signal segmentation. In 

dynamic brain networks, multi-channel EEG signals in each sample are segmented with a 3-second 

non-overlapping sliding time window as a segment to construct the brain network. The time window 

of 3-second is to ensure that the dynamic characteristics of the brain are captured under a certain 

amount of calculation and consumption, and this can be compared with the previous 3-second 

baseline state of the experiment. After segmentation, to better reflect the intensity of brain activity, 

the gamma band content of each segment is extracted. The resulted signals are used for subsequent 

transfer entropy calculation and network analysis. The brain network established in each window is a 

component of the dynamic brain network. 

If a brain network changes dynamically during stimulation [21] (high arousal and low arousal 

stimulation), a network divided by non-overlapping sliding time windows can represent one of the 

dynamic processes. After establishing the dynamic brain network, we will use K-means clustering to 

verify the dynamics. 

2.3. Transfer entropy calculation 

After dynamic signal segmentation, the brain network on each EEG signal segment is 

established. The EEG channel is selected as the node, and the transfer entropy is used to calculate the 

relationship between the nodes to get the edge. 

Transfer entropy (TE) [26] is based on information theory. It measures how much information 

transfer between two processes by observing the transfer probability from one process to another [27]. 

Transfer entropy is a model-free realization of the Wiener principle, which is independent of the 

established models and therefore used for nonlinear quantitative analysis. 

The estimation of transfer entropy is bi-directional and asymmetric. For instance, there are 

source process 𝑋 and target process 𝑌, and their corresponding time series are 𝑋 = {𝑥1, 𝑥2, ……𝑥𝑛} 

and 𝑌 = {𝑦1, 𝑦2, …… , 𝑦𝑛}, where n is the length of the time series. 𝑥𝑖 is the state variable of the i-th 

sampling point and 𝑦𝑗 is the same. The transfer entropy from the source process 𝑋 to the target process 𝑌 

can be described as: 

 𝑇𝐸𝑋→𝑌 = H(y𝑡+𝑢|y𝑡) − 𝐻(𝑦𝑡+𝑢|𝑥𝑡, 𝑦𝑡) 
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= ∑ 𝑝𝑥𝑡+𝑢,𝑦𝑡,𝑦𝑡
(𝑦𝑡+𝑢, 𝑥𝑡 , 𝑦𝑡) 𝑙𝑜𝑔2 (

𝑝(𝑦𝑡+𝑢|𝑥𝑡,𝑦𝑡)

𝑝(𝑦𝑡+𝑢|𝑦𝑡)
) (1) 

where 𝑡 is the discrete time index, 𝑢 is the prediction time. p(·) is the joint probability and 

conditional probability between variables. H(y𝑡+𝑢|y𝑡) is the conditional entropy of process Y, which 

depends on its past value.  𝑇𝐸𝑥→𝑌 is the transfer entropy value from the source process 𝑋 to the target 

process 𝑌. Similarly, the estimated transfer entropy from 𝑌 to 𝑋 can be obtained. 

𝑇𝐸𝑌→𝑋 = ∑ 𝑝𝑦𝑡+𝑢,𝑥𝑡,𝑥𝑡
(𝑥𝑡+𝑢, 𝑥𝑡 , 𝑦𝑡) 𝑙𝑜𝑔2 (

𝑝(𝑥𝑡+𝑢|𝑦𝑡,𝑥𝑡)

𝑝(𝑥𝑡+𝑢|𝑥𝑡)
) (2) 

For specific calculations, we need to first calculate the joint probability and conditional 

probability of the internal state variables of the corresponding variables, and then calculate according 

to the formula to obtain the transfer entropy between the variables. If the number of channels is 𝑁, 

after calculating the transfer entropy per two channels, the transfer entropy matrix of 𝑁 ∗ 𝑁 could be 

obtained. The values on the diagonal matrix of the transfer entropy matrix are 0.  

In the transfer entropy matrix of each segment, each element 𝑇𝐸𝑖𝑗 represents the information 

transfer value from i-th channel to j-th channel, and its corresponding row vector is the information 

transfer value from i-th channel to all channels. Similarly, the column vector represents the 

information transfer from all other channels to the i-th channel. 

2.4. Surrogate data generation and test for TE estimation 

Surrogate data are generated for each estimate of TE to preserve a more efficient connection. 

They are time series, which are as close as possible to the original data but have no information 

transfer. They are used to detect and reject false connections between two completely unrelated time 

series of finite data in the estimation bias (i.e., a non-zero TE value occurs even with no information 

transfer). The expected TE under limited data should be estimated by surrogate data [28]. 

Corresponding surrogate data for each estimation are generated, as shown in Figure 3. The 

surrogate data generation method is to randomly assign a cut-in point in the source process 𝑋 and 

exchange the two generated data segments. This method breaks the temporal precedence structure 

between the source and the target processes while having the same finite length and the same 

autocorrelation properties.  

 

Figure 3. The surrogate data generation process. 

Source

Target

Randomly cut point

surrogate data

Target

TE



7447 

Mathematical Biosciences and Engineering                                                                        Volume 18, Issue 6, 7440–7463. 

For each estimation of TE, 100 surrogate data are generated, and then the TE values of each 

surrogate data and the target process sequence are calculated. The original TE value is compared 

with the TE value distribution from the surrogate data by the Permutation test. The Permutation test 

is a nonparametric significance test [29] with the null hypothesis that two data samples come from 

the same population.  

If the result from the Permutation test shows that the original TE value is quite different from 

the TE distribution generated by the surrogate data, the original TE value is retained and considered 

as an edge of the brain network nodes. Otherwise, the original TE value is set to 0, indicating no 

edges between nodes. 

2.5. Channel norm information 

It can be expected that the structure of dynamic brain network is very complex, so effective and 

targeted analysis methods should be adopted. The information features of each channel are defined 

by using the TE matrix to observe the dynamic change process of the brain networks under the 

condition of different arousal degree. 

The information transfer values in the TE matrix are mapped to scalars by calculating the 𝐿𝑛 

norm represented by row vectors and column vectors corresponding to each channel. In this paper, 

this feature is referred to as channel norm information. This feature not only realizes the 

quantification of information transfer but also reduces data dimension.  

A norm is a function that assigns length or size to each vector in a vector space (or matrix). To 

some extent, this method also quantifies the sparsity of information transfer. The more connections 

and the higher the density, the greater its value. 𝐿2 norm is commonly used, which measures the 

length of the vector and can optimize the numerical calculation. It is expressed as 

𝐹𝑖𝑛𝑝𝑢𝑡/𝑜𝑢𝑡𝑝𝑢𝑡
(𝑘)

= √∑ (𝑇𝐸𝑚
(𝑘)
)²𝑛

𝑚=1

2
                 (7) 

Here these 𝐹𝑖𝑛𝑝𝑢𝑡/𝑜𝑢𝑡𝑝𝑢𝑡
(𝑘)

  are channel norm information. It is divided into input and output. It 

represents the information features of the k-th channel. 𝑇𝐸𝑚
(𝑘)

 represented the transfer entropy of the 

m-th channel and the k-th channel. The value of channel norm information is used to evaluate the 

activity of brain networks and channels. 

2.6. Method summary 

For this study, the proposed dynamic brain network construction is shown in Figure 4. A sliding 

time window is used to obtain each segment of the stimulation process, and the gamma band 

information is mainly extracted. The directed brain functional connections of each segment are 

established through transfer entropy (TE) for the brain network, and ‘0’ TE is excluded through 

corresponding surrogate data. Consequently, the brain networks are connected according to their 

time order to form a dynamic brain network.  



7448 

Mathematical Biosciences and Engineering                                                                        Volume 18, Issue 6, 7440–7463. 

 

Figure 4. Dynamic brain network construction. First, a sliding time window is used to 

divide the 3s segment in gamma frequency. The transfer entropy between nodes is 

calculated to form the transfer entropy matrix and is tested by surrogate data. Transfer 

entropy matrix could be abstracted as brain networks. Finally, the channel norm 

information is used to quantify the information transfer of the TE matrix for each row 

and column for exploring the details of the change. 

To verify and evaluate  the validity of the brain network in the sliding time windows, The 𝐿2 

norm method is proposed to define the input and output information features of channels for each 

established transfer entropy information matrix. It could help to reduce the dimension and show a 

positive change process dynamically. 

 

Figure 5. The locations of the channels of EEG signals. 
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3. Result 

3.1. Dataset 

In this paper, the public dataset in the Database for Emotion Analysis using Physiological 

Signals (DEAP) [30] is utilized. The DEAP dataset is a multimodal affective EEG dataset for 

emotion analysis. This DEAP dataset contains experimental data on physiological signals of 15 

women (average 25.4 years old) and 17 men (average 28.8 years old) during watching 40 music 

videos with different emotional markers. EEG signals are recorded at a sampling rate of 512 Hz from 

a 32-channel electrode cap according to the international 10–20 system, as shown in Figure 5. The 

electrode name represents the area and position where the electrode is located, FP stands for frontal 

pole, F for frontal, T for temporal, C for central, O for occipita, and P for parietal. The data is first 

downsampled to 128Hz. A bandpass frequency filter from 4–45Hz is applied. Experiments mainly 

include the following steps:  

(1) The serial number of the experiment progression. In the screen, it will last for 2 seconds to 

inform the participant's current video order; 

(2) Baseline recording. A cross prompt symbol appears on the screen for 5 seconds. At this time, 

the participants should keep calm, record the mark started; 

(3) Music video playback. This process lasts for 63 seconds, the first 3 seconds is the time for 

each video conversion, and the last 60 seconds is the time of music video truly play. 

Participants need to keep their body balance and reduce movement;  

(4) Self-assessment points. After watching a video, participants fill in the Self-

assesSmentmanikins(SAM). This process will last for nearly 15 seconds. Participants need 

to evaluate the real emotional experience after reading music videos;  

(5) Repeat steps (3) ~ (4) until 40 music video materials are all played.  

Each participant needs 40 experiments and to perform a timely self -assessment t on the 

SAM questionnaire. 

 

Figure 6. The description of scores. In the valence dimension (the first row), the scores 

below 5 indicate unpleasant, and the scores above 5 indicate positive. In the arousal 

dimension (the second row), the scores below 5 are low arousal (passive), and the scores 

above 5 are high arousal (active). 
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Figure 7. The experimental result under the condition of high arousal of S1 subject. (a), 

(b), (c), (d) divide the 20 brain networks into four consecutive groups in time. The color 

of each node indicates the number of connections (blue: fewer connections; red: more 

connections). The red boxes mark some brain networks with more red nodes, and the 

blue boxes mark some brain networks with more blue nodes. 

3.2. Dynamic brain network topology 

To construct a dynamic brain network, the TE between two channels is calculated in each 3s 

gamma band of EEG signals. After these values are tested with surrogate data, the TE matrix of 

this segment is obtained.  

According to the TE matrix of each segment, the corresponding brain network topology could be 

constructed. In the time length of 0–60s, a total of 20 brain networks are obtained in each experiment. 

This means that the dynamic brain network of a sample contains 20 brain networks. For these 20 
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brain networks, use the numbers from 1 to 20 as their label in chronological order. An experimental 

result under high arousal condition is shown in Figure 7.  

Compared with the method of threshold selection (i.e., to select a threshold to keep the edges 

with strong connections) based on sparsity, more effective connections are obtained by using 

surrogate data to test in the high arousal dynamic brain network. Besides, the activities of some 

channels and brain regions could be simply observed from the distribution of color blocks. For 

instance, segments 4, 8, 16 with many red nodes, marked by red boxes, have more connections 

among channels. Some consecutive segments (like 12, 13, 14, 15) with most blue and green nodes 

have fewer connections among channels.  

It can be seen that even under the condition of high arousal, the brain would not be in an active 

state of information transfer all the time during the whole experiment. 

By comparing with the brain topology of the experimental stimulation, the obvious changes are 

observed in the subjects’ brain network in the resting state. Figure 8 shows the brain network before 

starting the first 3s stimulation (resting state). Significant activation occurred in the central area and 

temporal lobe under high arousal stimulation.  

 

Figure 8. Brain network in the resting state before the start of the first 3s stimulation，In 

the 3s brain network, the number of connections between nodes in the central area and 

the temporal lobe is very low (with many blue and green nodes), which is in contrast 

with the brain networks after the high arousal stimulation in Figure 7. 

In these brain network topology under low arousal in Figure 9, more blue nodes and fewer red 

nodes than the phenomenon under high arousal conditions are shown in Figure 7. This indicates the 

degree of information transfer is not as high as that under high arousal conditions. In this way, 

compared with low arousal, high arousal is more likely to produce brain networks with more 

connections and more efficient information transfer. But the central part is still a relatively active 

area under low arousal in Figure 9.  
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Figure 9. The experimental results under the condition of low arousal of S1 subject. 

Under the condition of low arousal, the density of red nodes in the dynamic brain 

network is smaller than that under the condition of high arousal, indicating the decrease 

of the number of connections between nodes. 

From the results of Figure 7 and Figure 9, the nodes with the largest number of connections are 

observed near the center under both conditions (high and low arousal). The darker node indicates that 

it has more connections, indicating that it has more information exchange. The prefrontal lobe 

function related to cognition does not show strong function at the beginning of the experiment. And 

at the two moments at the beginning and end of the experiment under the two conditions, more light-

colored nodes are presented, indicating the potential state changes of the subject during the 

experiment and the different activation of the brain. 

Although the brain network topology gives an intuitive observation, the quantization effect is not 

enough. Therefore, active brain networks and active channels are analyzed in Sections 3.3 and 3.5. 

 

time

(a).1-15S

(b).15-30S

(c).30-45S

(d).45-60S

（2） （3） （4）（1） （5）

（6） （7） （8） （9） （10）

（11） （12） （13） （14） （15）

（16） （17） （18） （19） （20）
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3.3. Active brain networks in dynamic brain networks 

To further explore the changes of each brain network in a dynamic brain network, the input and 

output channel norm information on 32 channels of each brain network is obtained after the TE 

matrix is calculated. The mean of channel norm information in 32 channels is regarded as the 

information feature of the network to indicate the degree of information transfer of the brain network. 

Different from the intuitive display of the brain network topology, the features are applied to 

quantify numerically to reflect the differences.  

 

Figure 10. (a) Channel norm information under high arousal; (b) Channel norm 

information under low arousal. The Abscissa is a series of 20 brain networks, each of 

which is in a different period of time, so the graph shows the value of channel  norm 

information that changes over time. 
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As shown in Figure 10, the degree of information processing in the brain varies over time in the 

stimulation experiment. It can be seen from the figure that the brain states at different moments have 

different special values. And similar to the results observed by the topological map, the brain state of 

the subjects showed a lower active state at the beginning and end of the experiment. For both high 

arousal and low arousal, the changes in Figure10 show a smaller value of information feature at the 

beginning of the experiment, which rises and fluctuates as the stimulation continues. In the latter part 

of the stimulation, the information feature value decreased. Even with the same stimulation, there are 

a variety of changes. Our information feature greatly reduces the data dimension from the original 

32×32 dimensions to 32×1 dimensions compared with the brain network topology. It makes the 

results easier to analyze and observe the following active brain networks and channels. 

To make a complete assessment of emotional processing in the brain, the time process of 

activation should be considered. Through this information feature, the active brain networks could be 

analyzed. Thus, each of the 20 networks is processed separately, and its TE matrix is analyzed. For 

each TE matrix, the information feature of each channel is calculated by the method in Section 2.5, 

and its mean value is taken as the evaluation of the brain network. In this way, we would get a total 

evaluation value of 20 brain networks. If the brain network has an evaluation value larger than its 

average value, it is considered an active network; otherwise, it is an inactive one. All results of the 

active networks are shown in Table 1. Here we continue to use the labels given to each brain network 

in Section 3.2. 

Table 1. The active networks in different subjects under high and low arousal. 

Subject Video Arousal     Labels of active networks Number of active networks 

S1 

18 high 3 5 7 9 10 12 14 15 16 9 

24 high 2 4 5 6 7 8 10 12 14 16 19 20 12 

7 low 4 5 7 8 9 11 12 13 14 15 10 

22 low 2 5 6 7 8 9 12 15 16 9 

S5 

2 high 1 3 6 9 10 11 12 13 14 16 17 19 12 

6 high 1 2 4 5 6 9 10 13 16 18 19 20 12 

26 low 1 2 7 8 9 12 14 18 19 20 10 

27 low 6 8 9 10 13 14 17 19 20 9 

S6 

5 high 1 2 4 5 6 8 10 11 12 16 18 20 12 

7 high 2 3 4 5 6 7 8 9 10 14 10 

8 low 4 6 7 8 9 11 13 15 16 17 19 11 

12 low 1 7 10 12 13 17 19 20 8 

S7 

7 high 2 3 4 8 10 11 13 14 15 17 18 19 12 

10 high 1 2 4 5 6 10 13 15 18 19 20 11 

17 low 1 4 6 10 12 13 16 18 20 9 

29 low 4 7 8 9 10 12 14 16 17 20 10 

 

From the result of Table 1, it could be observed that there are more active brain networks under 

high arousal conditions than under low arousal conditions, indicating that subjects have more brain 

activities under high arousal conditions. Among these active brain networks, more consecutive 

networks show high activities under the condition of high arousal.  
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3.4. Statistical analysis 

Furthermore, the features are statistically analyzed under high and low arousal. Non-parametric 

test was applied on the eigenvalue arrangement (Figure 10) of each subject under the two conditions 

of high and low arousal to determine whether the features of high and low arousal were significantly 

different. As can be seen from the results in Table 2, there is a significant difference between high 

and low arousal(P < 0.05). In addition, we counted the number of active brain networks of each 

subject based on Table 1, and the results were listed in Table 2. The number of all subjects under 

different arousal conditions was counted to form a test with different arousal conditions. The 

significance test results showed that P = 0.0091 < 0.01, and the results showed significant differences. 

Table 2. Statistical analysis results under different arousal. 

Subject Video Arousal Number of active networks P 

S1 

18 high 9 

0.021 
24 high 12 

7 low 10 

22 low 9 

S5 

2 high 12 

0.045 
6 high 12 

26 low 10 

27 low 9 

S6 

5 high 12 

0.037 
7 high 10 

8 low 11 

12 low 8 

S7 

7 high 12 

0.041 
10 high 11 

17 low 9 

29 low 10 

3.5. Channel analysis of active brain networks 

After observing the dynamics of the dynamic brain network, the specific changes of the relevant 

brain regions and channels are further analyzed in the study. We focus on these highly active 

networks and the activities of their specific channels.The mean values of channel norm information 

of input and output are used to evaluate the importance of the channel. The higher the mean value, 

the more information is involved in the process, the more active and important the channel is. After 

normalization, we use 0.6 as the threshold of the mean values of channel norm information. The 

active channel is defined with a mean value of channel norm information larger than the threshold. 

For example, in the high arousal experiment of subject S1, from the results in Table 1, its active 

segments are 3, 5, 7, 9, 10, 12, 14, 15, 16, a total of 9 segments. They are renumbered as network 1 

to network 9. 

After sorting out the active distribution of the nine-segment high-state brain network channels, 

to make the difference more obvious, normalization is applied in Figure 11. 
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Finally, the active channels selected are F4, FC2, FC5, T7, C3, Cz, T8, CP6, CP2, P7, PZ, P8, 

PO3. Combining the experiments of all the subjects, it reflected the active situation of different 

numbers of channels in different subjects. The result of active channels of all subjects that we chose 

is shown in Table 3. The results in the table show the active channels of different subjects. It can be 

seen that different subjects have different numbers of active channels. For example, subject S1 has 

more than 6 active channels under high arousal conditions, but subject S6 has 3. Moreover, FC and 

CP channels are frequently found between subjects, which indicates the activity of the frontal and 

parietal regions. A more detailed analysis of the results will be carried out in the discussion section. 

 

Figure 11. The normalization result of active distribution of the nine-segment high-state 

brain networks channels. 

Table 3. The result of active channels of all subjects. 

Subject 
Video  

(high arousal) 
Active channels 

Video  

(low arousal) 
Active channels 

S1 
18 

F4, FC2, FC5 , T7, C3, Cz, T8, CP6, 

CP2, P7, PZ, P8, PO3 
7 

FC2, FC1, FC5, T7, CZ, T8, 

CP6, CP1, P8 

24 F7, FC1, FC5, T7, CZ, CP2 22 F4, T7, CZ, CP6, CP2, CP1 

S5 
2 AF3, CZ, C4, CP1, O1, OZ 26 AF3, AF4, CP1, O1  

6 AF3, C4, T8, CP1, O1, OZ. 27 AF3, C4, CP1, O1 

S6 
5 Fz, T7, P8 8 Fz, T7, P8 

7 Fz, T7, P8 12 Fz, T7, P7, P8 

S7 
7 AF3, F7, FC6, FC5, CP1, O1 17 AF3, F7, FC6, FC2, FC5, CP1 

10 AF3, F7, FC6, FC2, FC5, CP2, CP1, O1 29 F7, F3, FC6, FC5, T8, CP1 
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4. Discussion 

In this study, the dynamic brain network of each subject is constructed, which shows the brain 

states in different time periods during the whole experimental stimulation process. The dynamics of 

consecutive brain networks are verified by channel norm information. It is found that high active 

states are not always maintained even in high arousal conditions. However, compared with low 

arousal, subjects have more consecutive active networks under high arousal conditions. The results 

of statistical analysis of the features show that there are significant differences. And in these active 

networks, the frontal lobe, temporal lobe, and parietal lobe are highly active regions. 

4.1. Brain network topology 

The differences between different brain regions could be observed intuitively from the brain 

network topology of high arousal and low arousal conditions, as in Figure7 and Figure9. Compared 

with low arousal, there are more connections (more red nodes) in the occipital lobe in the brain 

network with high arousal. It indicates that the information transfer in this region is more intensive.  

In the visual perception experiment, Sutherland et al. [32] indicated that the degree of arousal is 

the key factor in enhancing the visual perception of significant targets. The experiment showed that 

sounds rated as more emotional arousal would result in more recognition of highly significant letters, 

and the sound’s valence rating did not affect the significance bias. Furthermore, combined with the 

results in Section 3.2, the channel color of the occipital region in the early stage of the experiment is 

mostly dark, showing that functional areas such as vision have a better activation effect under high 

arousal. In other words, the high arousal stimulation in the experiment triggered the enhancement of 

occipital lobe function. 

In addition, a similar phenomenon can be found in the prefrontal lobe between high and low 

arousal. Dolcos et al. [33] investigated the activity of the prefrontal cortex (PFC) related to emotional 

assessment and subsequent memory through event-related functional MRI (fMRI). The results have 

shown that the dorsal area of the prefrontal cortex is sensitive to arousal. Nielen et al. [34] studied 

the brain mechanism of arousal by FMRI data and found that high arousal images significantly 

activated brain regions in the middle temporal region, hippocampus, and ventral prefrontal cortex. 

Therefore, the prefrontal lobe is more significantly activated under the condition of high arousal.  

However, it is noted that although the occipital lobe function of the brain under high arousal is 

slightly stronger than that under low arousal, the occipital lobe is not activated as significantly as 

other regions, such as the parietal lobe, for all brain regions. 

4.2. Active brain networks based on channel norm information  

In these dynamic brain networks, these active brain networks are of interest because the highly 

active states are not always maintained. The active networks are calculated through the channel norm 

information. Different active brain networks occupy different time segments, and they constitute 

active time segments under a sample. According to the results of the significance analysis of features, 
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the distribution of features of high and low arousal has significant difference. Indicates a tendency 

for different brain states under different arousal conditions. 

The number of active brain networks (Section 3.3) proves that the number of active brain 

networks under high arousal is larger than that under low arousal. This means the subjects have more 

brain activities under the stimulation of the high arousal experiment. Many active brain networks are 

consecutive under high arousal. Leite et al. [35] used pictures with shock stimuli in the ERP 

experiment; the subjects’ response to high stimuli might indicate an increase in motivational 

attention. According to their experimental results, the amplitude of pleasant high arousal pictures (M 

= 6.051, SE = 0.868) is greater than that of pleasant low arousal pictures (M = 2.533, SE = 0.598). 

We also found in our results that, for example, S5 subjects got 12 active brain networks under high 

arousal conditions. Therefore, the increase in arousal might increase the subjects’ attention. 

BRADLEY and LANG [36] found in the study of high attention and low attention motivational 

stimuli that different levels of arousal represent different levels of motivation. For example, high 

attention stimuli generally induce high levels of arousal and arouse strong arousal. Therefore, the 

stimulation caused by some irritating pictures and videos is related to the high arousal state. 

4.3. Active channel performance at different brain regions 

In the active brain networks, we further study the active channels. Even under the same 

conditions (high arousal or low arousal), some subjects have more active channels than others due to 

individual differences. For example, for subject S1, there are more active channels. But for subject 

S6, even if the threshold for determining active channels is lower, the number of active channels is 

still small.  

In general, under high arousal conditions, the frontal lobe, temporal lobe, and parietal lobe are 

highly active regions. Aydın [37] used the wavelet correlation (WC) method is used to estimate the 

non-linear inter-hemispheric synchrony level of emotional dysfunction. In its classification 

experiment, gamma has the highest classification accuracy rate, the highest is 88.06%. Their results 

show the fronto-central lobes are the most activated brain regions during emotional stimu-lation. 

Similarly, a large number of channels in fronto-central also appeared in our results like FC2,FC5 (in 

Table 3). Zheng [38] applied machine learning methods to study the stable EEG patterns of emotion 

recognition over time and found that the lateral temporal area activates more positive emotions than 

negative emotions. In our experimental results, except for the temporal lobe, the channels related to 

the parietal lobe also occupy a large proportion, and their importance cannot be ignored. 

According to the active channel results (Section 3.5), the active brain regions tend to be in the 

left hemisphere in both high arousal (25 active channels in the left, 15 in the right) and low arousal 

(24 active channels in the left, 15 in the right). The value specificity theory holds a different division 

of labor in processing emotion information with different values in the brain’s left and right 

hemispheres. The right hemisphere is mainly responsible for processing unpleasant emotions, while 

the left hemisphere is mainly responsible for processing pleasant emotions [39]. According to this 

theory, the result of active brain regions in the hemisphere corresponds to the pleasant emotion 

sample we choose. 
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Through the results of channels and networks, it can also be found that in the whole brain 

network, the functional connection between nodes dynamic at different time scales. During the 

experiment, the brain showed dynamic changes in various task states. This dynamic brain network 

has also been widely used in the fields of normal people's cognition [14], the common cognitive 

model of working memory [40], and emotional perception [41]. 

4.4. Dataset segments for classification 

Among the studies that use the DEAP dataset for emotion recognition and classification, many 

select the best data segments based on trials [2]. There is no guideline to select the date segments. 

Some choose the whole 60-second data; the others intercept partial data at the beginning, the end, or 

even in the middle. For instance, Zhang et al. [42] removed the first 33 seconds and the last 21 

seconds of each EEG signal and select 9-second signals (from 34 s to 42 s) for feature extraction and 

performance evaluation.  

 

Figure 12. The dynamic changes of brain network segments from 45s to 60s (a), and the 

corresponding information feature values in 15-20 segments (b). The feature values show 

a decrease, and the nodes in the brain network map also show some blue areas (inactive). 
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In this paper, after dividing the 60s data into 3s segments, some segments that are in a high 

active state in stimulation are obtained. High active brain network may be more suitable for 

representing brain states, so it is more conducive to classification and recognition. We can choose the 

appropriate segments to analyze according to the needs. On the whole, our approach provides some 

insights on data selection.  

In the stimulation of some subjects (both high and low arousal), the brain network activity is low 

in the last few seconds, which may indicate that the subjects gradually enter the inactive state, as 

shown in Figure12. Also, in some subjects, brain activity in the latter part of the stimulation 

experiment is not as active as before, to some extent, indicating a possible state of tiredness. It is 

reasonable for some authors to give up the latter part of the data because of subjects’ fatigue. 

5. Conclusions 

In this paper, dynamic brain networks are constructed by calculating the transfer entropy from 

EEG signal segments and applying channel norm information for emotion analysis on the arousal 

dimension. It adds both time scope and arousal dimension in emotion research. Therefore, the 

dynamics of the dynamic brain networks under emotional stimulation show the changes in brain 

states. In addition, the transfer entropy test ensure the reliability of connection. The features and 

significance analysis based on the transfer entropy matrix also show the differences of different 

arousal conditions. This method complements the role of arousal in emotional processing, and 

observes the dynamic changes of the whole and local details of the brain. 

The dynamic changes of brain networks for different subjects under high and low arousal 

conditions over time are observed. In the whole process of stimulation, the corresponding stimulation 

state is not maintained at all times. The number of active brain networks under high arousal 

conditions is generally higher than those under low arousal conditions. More consecutive networks 

show high activity under high arousal conditions among these active brain networks. We evaluated 

and analyzed the channels in highly active brain regions of the subject’s areas in more detail, so as to 

understand the whole emotional processing process. In general, this method can quantify and 

dynamically analyze the brain state of the subjects to get the fragments we want. In addition, it 

further explores the emotional dimension model to provide reference for emotional analysis. 

In order to explore the changes of the brain state over time under different arousal conditions, 

this paper uses dynamic brain networks to analyze the state changes of some subjects’ brains in the 

emotional arousal dimension. On the one hand, it describes the details of the subject's status in more 

detail. This provides some explanations for the processing of the emotional arousal dimension. On 

the other hand, the features information quantifies the state of the brain, which makes the changes in 

the state of brain more intuitive.Although it provides more detailed status information, it inevitably 

increases the difficulty and cost of analysis. And this article provides some preliminary observation 

methods under the set conditions, and there is still some work to be further studied for its related 

research and analysis. In the future, we will work on emotion classification and recognition built on 

the current results to verify further the valid time period of emotion classification and recognition. 
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