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Abstract: Multilevel thresholding is a reliable and efficacious method for image segmentation that has 

recently received widespread recognition. However, the computational complexity of the multilevel 

thresholding method increases as the threshold level increases, which causes the low segmentation 

accuracy of this method. To overcome this shortcoming, this paper presents a moth-flame optimization 

(MFO) established on Kapur’s entropy to clarify the multilevel thresholding image segmentation. The 

MFO adjusts exploration and exploitation to achieve the best fitness value. To validate the overall 

performance, MFO is compared with other algorithms to realize the global optimal solution to 

maximize the target value of Kapur’s entropy. Some critical evaluation indicators are used to determine 

the segmentation effect and optimization performance of each algorithm. The experimental results 

indicate that MFO has a faster convergence speed, higher calculation accuracy, better segmentation 

effect and better stability. 
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1. Introduction  

Image segmentation is an important connection from image handling to image investigation, and 

the intention is to segment a provided image into multiple and unique regions and extricate the objects 

of interest according to characteristic, color, grain, histogram, grayscale and margin [1–5]. The quality 

of image segmentation is critical for the accuracy of target feature extraction and target detection, and 

the processing quality required in image investigation, target identification and machine vision is high. 

The main image segmentation strategies include thresholding, region, edge, clustering and graphs [6–10]. 

Compared with other image segmentation strategies, thresholding has the advantages of simple 
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operation, high computational productivity, small capacity space and strong robustness, which have 

been utilized to illuminate image segmentation. Many algorithms have been applied to settle image 

segmentation, including the bat algorithm (BA) [11], flower pollination algorithm (FPA) [12], moth 

swarm algorithm (MSA) [13], particle swarm algorithm (PSO) [14] and water wave optimization 

(WWO) [15]. 

Yan et al. designed an improved water wave optimization algorithm to solve the underwater image 

segmentation, the proposed algorithm had a better segmentation performance [16]. Li et al. presented a 

fuzzy c-means method to clarify the image segmentation, the algorithm was practical and efficacious [17]. 

Bao et al. introduced an alternative crossover algorithm to illuminate the color image segmentation, 

the proposed algorithm had a better segmentation effect [18]. Gao et al. conducted a study on an 

improved artificial bee colony algorithm based on the Otsu segmentation method for multi-level 

threshold image segmentation, the results have demonstrated the productiveness and feasibleness of 

the method [19]. Akay et al. combined the particle swarm optimization with the artificial bee colony 

algorithm for multilevel thresholding, the mixed algorithm contained higher calculation precision 

and better segmentation effect [20]. Pare et al. proposed the cuckoo search algorithm to puzzle out 

the color image thresholding, the proposed algorithm produced a high feature of the segmented 

images [21]. Lu et al. designed a neutrosophic C-means clustering method to explain the image 

segmentation, the algorithm had an excellent effect [22]. Galdran et al. presented a red channel 

approach to resolve the underwater image restoration, the method handled smoothly falsely 

enlightened zones and achieved a characteristic color adjustment [23]. Vasamsetti et al. proposed a 

variational improvement mechanism to unravel the underwater image, the algorithm captured the 

better segmentation result [24]. Bohat et al. proposed novel thresholding heuristic algorithms to settle 

the multilevel thresholding of images, these algorithms obtained better fitness value and segmentation 

effect [25]. Ouadfel et al. applied the blended method to resolve the multilevel thresholding, the 

proposed algorithm was powerful and achievable [26]. Pare et al. designed the Lévy flight firefly 

algorithm to perform the color image segmentation, the algorithm had better optimization execution 

in terms of distinctive constancy parameters and estimation time [27]. Satapathy et al. combined the 

chaotic bat algorithm with the Otsu method to clarify the image thresholding, the algorithm obtained 

the optimum thresholds [28]. Emberton et al. recommended a novel algorithm to improve permeability 

by recognizing and portioning image districts, and the algorithm achieved better optimization 

execution [29]. Sambandam et al. introduced a self-adaptive dragonfly algorithm to perform the digital 

image multilevel segmentation, the algorithm gained the threshold values [30]. Sun et al. presented a 

novel compound algorithm to settle the multi-level thresholding, the proposed algorithm significantly 

reduced the computational complexity of the given segmented images [31]. Díaz-Cortés et al. 

employed the dragonfly algorithm to calculate the best thresholds of the segmented image, and the 

proposed algorithm provided a highly reliable clinical decision support [32]. Shen et al. proposed an 

adjusted flower pollination algorithm to multi-level image thresholding, the results illustrated the 

superiority of the algorithm in terms of image quality measures, fitness values and convergence 

calculation [33]. Hao et al. designed a variational pattern to solve the underwater image restoration 

and evaluate the effectiveness and robustness [34]. Zhou et al. proposed the moth swarm algorithm to 

optimize the thresholds and obtain a better segmentation effect [35]. Kalyani et al. introduced an 

exchange market algorithm to solve the image segmentation, and the results indicate that the proposed 

algorithm balances exploration and exploitation to find the global threshold values [36]. Duan et al. 

used a modified cuckoo search algorithm to solve the multilevel thresholding image segmentation, and 
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the proposed algorithm had strong robustness and stability to obtain the best results [37]. Elaziz et al. 

combined the improved volleyball premier league algorithm with the whale optimization algorithm for 

image segmentation, and the hybrid algorithm had the better segmentation accuracy [38]. Li et al. tried 

to solve the fuzzy multilevel image segmentation using an improved coyote optimization algorithm, 

and the proposed algorithm had better threshold levels and segmentation effect [39]. Luo et al. applied 

the enhanced moth swarm algorithm to address the global optimization problem, and the proposed 

algorithm had a fast convergence speed and higher calculation accuracy [40]. Li et al. presented Lévy-

flight moth-flame algorithm to solve the function optimization and engineering design problems, and 

the proposed algorithm balanced exploration and exploitation to obtain better optimization results [41]. 

Wang et al. designed eight complex-valued encoding metaheuristic optimization algorithms to solve 

the function optimization and engineering optimization problems, and the superiority of the algorithms 

has been proved [42]. 

Moth-flame optimization (MFO) simulates the transverse orientation navigation mechanism of moths 

and overcomes premature convergence to attain the global extremum in the optimization area [43]. MFO 

has some advantages of simple operation, easy implementation, few adjustment parameters, high 

search efficiency and strong robustness. MFO has a fast convergence speed and high calculation 

accuracy. MFO based on Kapur’s entropy strategy is utilized to achieve multilevel thresholding image 

segmentation. MFO can efficiently utilize exploration and exploitation to obtain a better segmentation 

effect and convergence precision. Ten test images are applied to evaluate the overall segmentation 

performance of the proposed algorithm. To prove the productivity and practicability of the MFO, the 

MFO is compared with BA, FPA, MSA, PSO and WWO. The experimental results show that MFO 

consumes less execution time to obtain a better optimization effect, and MFO is an efficient algorithm. 

The remaining sections are as follows: Section 2 provides multilevel thresholding. Section 3 

surveys MFO. Section 4 describes the MFO-based multilevel threshold method. Section 5 gives the 

experimental results and analysis. Finally, conclusions and future research are drawn in Section 6.   

2. Multilevel thresholding 

The bilevel thresholding method separates an allotted image into foreground and background and 

can only effectively process a simple image that contains an object. However, this is a poor choice to 

handle a complex image that contains multiple objects. Therefore, the multilevel thresholding method 

replaces the bilevel thresholding method to perform image segmentation and obtains the best threshold 

values in the solution space. Kapur’s entropy is a valuable and feasible metric for multilevel 

thresholding segmentation. Kapur’s entropy divides the image into different classes, and the size of 

the entropy determines whether the category is uniform. Kapur’s entropy has a low calculation process, 

easy implementation, strong stability, fast processing speed and high segmentation accuracy. The 

entropy of the original image is compactness and separateness between different classes. Kapur’s 

entropy finds the best threshold values by maximizing the fitness value. The selection of the 

segmentation threshold for MFO is manual. Gao et al. designed an effective genetic first-order 

statistical image segmentation method to solve quantitative crack detection. The proposed method can 

automatically determine the best statistical feature and threshold selection [44]. Assuming that 

1 2[ , ,..., ]nt t t  are the excellent threshold values, an image is separated into diverse classes [45]. The 

formula is described as 
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0 1, ,..., nH H H  denote the Kapur’s entropies of the distinct classes, and 0 1, ,..., n     denote the 

probabilities of each class.  

3. MFO 

The unique flight approach of moths at night is called transverse orientation. In MFO, the moths 

are regarded as a candidate solution, and the positions are regarded as the variables. The moth 

maintains a fixed flight angle relative to the moon, which is a powerful flight strategy that travels long 

distances along a straight line. Due to the presence of artificial light sources in nature, the flames are 

regarded not only as the optimal solutions but also as flags or pins in the search area. The position of 

each moth is refreshed by the logarithmic spiral movement formula. The transverse orientation is given 

in Figure 1, and the spiral flying path is given in Figure 2. The corresponding relationship between the 

algorithm’s description and moth-flame’s elements is given in Table 1. 
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Figure 1. Transverse orientation. 

 

Figure 2. Spiral flying path. 

Table 1. Correspondence between algorithm’s description and moth-flame’s elements. 

Algorithm’s description Moth-flame’s elements 

Decision variable  Moth’s position in each dimension 

Solutions Moth’s position 

Initial solutions  Random positions of moths 

Current solutions  Current positions of moths 

New solutions New positions of moths 

Best solution Flame’s position 

Fitness function Distance between moth and flame 

Process of generating a new solution Flying in a spiral path toward a flame 
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3.1. Generate the initial population of moths 

The moths fly in one-dimensional, two-dimensional, three-dimensional or n-dimensional space. 

MFO is a population-based optimization algorithm, the formula is described as 
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where n  denotes the number of moths and d  denotes the number of dimensions. 

The target values of the moths are sorted by an array.  
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The flames are the core component of the MFO, and its matrix is similar to the moth matrix.  
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The target values of the flames are sorted by an array.  
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Moths and flames are selected as candidate solutions. The main distinction is that the position 

update method is different during the iteration process. The moths are chosen as the actual search 

agents to move in the search area. The flames are chosen as flags or pins that crashed by moths, which 

is the best solution currently obtained by the moths. Therefore, the moths perform a global search 

around the flames until the moths find the optimal positions. With the flight mechanism, the moths 

never lose their best solutions.  

3.2. Update the moths’ positions  

The framework of MFO contains three-tuple approximation functions to realize the best solution. 

The location is described as 
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( , , )MFO I P T=                                    (11) 

where I  denotes a randomly generated moth swarm and the target function  ( : , )I M OM → , P  

denotes the central function of the moth ( : )P M M→  , and T   denotes the end of the search 

( : , )T M true false→ . The I  is used to implement the random distribution.  

( , ) ( ( ) ( )) () ( )M i j ub i lb i rand lb i= −  +                         (12) 

where lb  and ub  denote the lower and upper bounds of the search space, respectively. In MFO, the 

moths not only use the transverse orientation to fly but also adopt a logarithmic spiral function to 

update the flight mechanism. 

The logarithmic spiral function is described as 

( , )= D (cos 2 )bt

i j i jS M F e t F  +                             (13) 

where iD  denotes the length between the i-th moth and the j-th flame, b  denotes a fixed value of 

the logarithmic spiral, and t  denotes an arbitrary value in [-1,1]. 

D  is described as 

D =i j iF M−                                      (14) 

where iM  denotes the i-th moth and jF  denotes the j-th flame. 

3.3. Update the number of flames  

In MFO, n  different positions are used to update the positions of the moths, which will reduce 

the exploitation of the MFO. Therefore, decreasing the number of flames is beneficial to tackle this 

issue. The formula is described as 

1
( )

N
flame no round N l

T

−
= −                                (15) 

where N  denotes the number of flames, l  denotes the current number of iterations, and T  denotes 

the maximum number of iterations. 

The MFO is shown in Algorithm 1.  

Algorithm 1. MFO. 

Randomly initialize the position of moths and the parameters for Moth-flame 

While _iteration Max iteration  do 

Renew flame no utilizing Eq (15) 

( )OM FitnessFunction M=  

If 1iteration ==  then 

( )F sort M=  

( )OF sort OM=  
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else 

1( , )t tF sort M M−=  

1( , )t tOF sort M M−=  

end if 

for 1:i n=  do 

for 1:j d=  do 

Renew r  and t  

Estimate D  utilizing Eq (14)  

Renew ( , )M i j  utilizing Eq (13)  

end for 

end for 

end while 

Return the best solution 

4. MFO-based multilevel threshold method 

The position of each moth denotes the threshold value of the segmented image. The moth revises 

the position to determine the global optimal solution by the threshold level. The correspondence 

between the threshold segmentation and MFO is given in Table 2. The MFO-based Kapur’s entropy is 

shown in Algorithm 2. The flowchart of MFO for multilevel threshold is shown in Figure 3. 

Table 2. Correspondence between image segmentation and MFO. 

Threshold segmentation  MFO 

A collection 1 2( , ,..., )kx x x  scheduling schemes  A moth population 1 2( , ,..., )kn n n  moths 

An optimal scheme to resolve the image segmentation  An optimal flame’s position 

The objective function of the image segmentation  The fitness function of the MFO 

Algorithm 2. MFO-based Kapur entropy. 

Randomly initialize the position of moths and the parameters for Moth-flame 

While _iteration Max iteration  do 

Renew flame no utilizing Eq (15) 

Estimate the fitness value of each moth utilizing Eq (2) for the Kapur entropy and attain the best 

solution 

( )OM FitnessFunction M=  

If 1iteration ==  then 

( )F sort M=  

( )OF sort OM=  

else 

1( , )t tF sort M M−=  

1( , )t tOF sort M M−=  

end if 

for 1:i n=  do 

for 1:j d=  do 

Renew r  and t  



7118 

 

Mathematical Biosciences and Engineering Volume 18, Issue 6, 7110–7142. 

Estimate D  utilizing Eq (14)  

Renew ( , )M i j  utilizing Eq (13)  

end for 

end for 

end while 

Return the best solution or the optimal threshold value 

4.1. Computation complexity of MFO 

In this section, the time and spatial complexity of the MFO are studied.  

4.1.1. Time complexity 

The time complexity of MFO is based on the calculation workload and operational structure of 

the algorithm, which is used as an important indicator to estimate the optimization efficiency. In MFO, 

n   denotes the number of moths, t   denotes the maximum number of iterations, d   denotes the 

number of variables, and the sorting mechanism of flames in each iteration. MFO uses the quicksort 

method, the best time complexity of MFO is ( log )O n n , and the worst time complexity of MFO is 
2( )O n . Therefore, the total time complexity of MFO is described as 

( ) ( ( ( ) ( )))O MFO O t O Quick sort O position update= +                      (16) 

2 2( ) ( ( )) ( )O MFO O t n n d O tn tnd= +  = +                            (17) 

4.1.2. Spatial complexity 

The spatial complexity denotes the storage space that requires to be executed by an algorithm. 

The total spatial complexity of MFO is 
2( )O tn tnd+ , which is valuable and achievable.  
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Figure 3. Flowchart of MFO for multilevel threshold. 
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5. Experimental results and analysis 

5.1. Experimental setup  

The numerical test is conducted on a computer with a 2.2 GHz Intel Core i7-8750H processor and 

8 GB of RAM using MATLAB R2018(b). 

5.2. Test images 

Image segmentation is an effective method for character extraction and object identification 

recognition. It is also an important step from image handling to image investigation. Image 

segmentation segments a provided preprocessed image to obtain a more intuitive target and 

background. The experiments select ten images to detect the overall segmentation effect, and they are 

given in Figure 4. 

 

                       (1)             (2)              (3)             (4)  

 

(5)             (6)             (7)              (8)  

 

(9)            (10) 

Figure 4. Original test images. 

5.3. Parameter setting  

To prove the effectiveness and practicability, the MFO is compared with BA, FPA, MSA, PSO 

and WWO. These control parameters are some representative empirical values and are derived from 

the original articles. The parameters of all algorithms are given in Table 3. 

Table 3. Parameters of all algorithms. 

Algorithm Parameter Value 

BA [11] Pulse frequency scope f  [0,2] 

 Echo loudness A  0.25 

Continued on next page 
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Algorithm Parameter Value 

 Reducing coefficient   0.5 

FPA [12] Switch probability   0.8 

MSA [13] An arbitrary value   [-2,1] 

 
An arbitrary value 2  

[0,1] 

 
An arbitrary value 3  

[0,1] 

 
An arbitrary value 1r  

[0,1] 

 
An arbitrary value 2r  

[0,1] 

PSO [14] Constant inertia   0.3 

 
First acceleration coefficient 1c  

1.4962 

 
Second acceleration coefficient 2c  

1.4962 

WWO [15] Wavelength   0.5 

 
Wave height maxh  

6 

 Wavelength attenuation factor   1.0026 

 Breaking factor   [0.001,0.25] 

 
Maximum value maxk  of breaking directions 

min(12, 2)D  

MFO [43] Logarithmic spiral b  1 

 An arbitrary value t  [-1,1] 

5.4. Segmented image quality measurements  

Five important indicators are used to estimate the image segmentation effect of different 

algorithms as follows: 

1) Fitness value. The fitness value shows the calculation precision of each algorithm. The fitness 

value is proportional to the segmented image information. 

2) Execution time. The algorithm consumes less time, which means that the algorithm has a faster 

calculation process. 

3) Peak signal-to-noise ratio (PSNR). The PSNR based on the intensity value is used to measure 

the variation between the processed image and the reference image. A larger PSNR indicates that the 

processed image has less distortion. The image segmentation effect of the higher PSNR may be lower 

than the image segmentation effect of the lower PSNR. The PSNR is described as [46] 

2

10

255
10logPSNR

MSE

 
=  

 
                                 (18) 
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where MSE denotes the mean squared error. It is described as follows: 

( ) ( )
2

1 1

1
, ,

M N

i j

MSE I i j K i j
MN = =

= −                            (19) 

where M  and N  denote the size of the provided image and the processed image, respectively.  

4) Structure similarity index (SSIM). The SSIM is a similarity measure between the provided 

image and the processed image. If the SSIM is close to 1, then the image segmentation result is better. 

The SSIM is described as [47] 

1 2

2 2 2 2

1 2

(2 )(2 c )
(x, y)

( c )( c )

x y xy

x y x y

c
SSIM

  

   

+ +
=

+ + + +
                       (20) 

where for the provided image and the processed image, x   and y  denote the mean intensity. 
2

x  

and 
2

y  denote the standard deviation. xy  denotes the covariance. 1c  and 2c  denote constants. 

5) Wilcoxon’s rank-sum test is utilized to identify whether there is a noteworthy distinction 

between the two algorithms [48]. There is a noteworthy distinction if the p value is lower than 0.05. 

There is no noteworthy distinction if the p value is higher than 0.05. 

5.5. Results and analysis 

To ensure the segmentation effect of the MFO, the population size of each algorithm is set to 30, 

the maximum number of iterations is set to 100, and the number of independent runs is set to 30. The 

threshold levels are defined as 2, 3, 4, 5 and 6. The effectiveness and feasibility of the MFO are verified by 

comparing it with other algorithms. The experimental results of the comparison algorithms are given in 

Tables 4–9, and the experimental results of some given segmented images are given in Figures 5–14. 

Table 4. The optimal fitness of each algorithm. 

Images k Fitness values 

  BA FPA MSA PSO WWO MFO Rank 

Test 1 2 12.3364 12.3198 12.2127 12.3479 12.3112 12.3487 1 

 3 15.2194 15.3081 15.2704 15.2018 15.1970 15.3172 1 

 4 17.7102 17.7705 17.8821 17.7208 17.8752 17.9921 1 

 5 20.3813 20.0295 20.2961 21.1111 20.2899 21.2798 1 

 6 22.4683 22.3940 21.9694 22.4280 22.4488 22.6422 1 

Test 2 2 12.5842 12.5331 12.5997 12.6346 12.5916 12.6346 1 

 3 15.6189 15.5130 15.6003 15.4587 15.4813 15.6531 1 

 4 18.1117 18.3233 18.1107 18.3061 18.2180 18.4397 1 

 5 20.5250 20.9349 20.9719 20.9611 20.9605 21.0539 1 

 6 23.1116 23.3068 23.3549 23.2826 23.2950 23.3837 1 

Test 3 2 12.1651 12.1623 12.1384 12.2017 12.0067 12.2061 1 

Continued on next page 
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Images k Fitness values       

  BA FPA MSA PSO WWO MFO Rank 

 3 15.3462 15.3160 14.9498 15.2155 15.1669 15.5039 1 

 4 17.9605 18.1165 18.0610 17.8602 17.7274 18.3107 1 

 5 20.0693 20.3889 20.6938 20.7448 20.0828 20.8056 1 

 6 22.2665 22.6040 22.7055 23.0135 22.2510 24.1228 1 

Test 4 2 11.6162 11.0138 11.6151 11.6170 11.5649 11.6170 1 

 3 14.4375 14.1046 14.4277 14.4640 14.4074 14.6363 1 

 4 17.1661 17.1351 17.2543 17.2182 16.5648 17.5047 1 

 5 19.3315 19.0672 19.5998 19.9435 19.4292 20.0589 1 

 6 22.1115 21.7571 21.8045 21.9815 21.7166 22.1257 1 

Test 5 2 12.5987 9.17771 12.4965 12.6016 12.5880 12.6016 1 

 3 15.8446 15.6981 15.6613 15.7945 15.6387 15.9201 1 

 4 18.6330 18.5687 18.6837 18.7647 18.4739 18.8308 1 

 5 21.5729 21.4283 21.6418 21.3651 21.5618 21.6809 1 

 6 24.1845 24.0339 24.0773 23.7893 23.9359 24.3074 1 

Test 6 2 12.9609 12.9185 12.9393 12.9682 12.9668 12.9682 1 

 3 15.9835 16.0781 16.0526 16.1034 16.1034 16.1252 1 

 4 18.5746 18.7090 18.7443 18.6889 18.7069 19.0165 1 

 5 21.3011 21.1524 21.2343 21.0410 20.8741 21.4711 1 

 6 24.1403 23.8479 23.9266 23.7607 24.0573 24.1842 1 

Test 7 2 12.5779 12.3517 12.5367 12.5936 12.3939 12.5936 1 

 3 15.3831 15.4011 15.3516 15.3938 15.0022 15.4274 1 

 4 18.3603 18.0115 17.8258 17.9950 18.2520 18.4235 1 

 5 20.9092 20.9076 20.6714 20.5292 20.7942 21.0217 1 

 6 22.8604 23.3690 23.1421 22.9799 23.0124 23.5484 1 

Test 8 2 12.8868 12.8947 12.8930 12.9208 12.8957 12.9208 1 

 3 15.8248 15.9079 15.8297 15.8527 15.8992 16.0552 1 

 4 18.5661 18.7317 18.6622 18.7469 18.5391 19.0449 1 

 5 21.2946 21.1664 21.1186 21.1555 21.5266 21.5719 1 

 6 23.5705 23.8786 24.2027 23.8717 23.6695 24.3206 1 

Test 9 2 11.9271 11.8657 11.4150 11.9285 11.7951 11.9286 1 

 3 14.7762 14.7811 14.7560 14.8629 14.7074 14.9331 1 

 4 17.1365 17.2515 17.1703 17.3163 17.3681 17.4062 1 

 5 19.8132 19.5984 19.8790 19.7153 19.8422 19.8973 2 

 6 21.9515 22.0255 22.1325 21.8282 21.9971 22.2318 1 

Test 10 2 11.5248 11.4683 11.4326 11.5288 11.4273 11.5288 1 

 3 14.3849 13.9338 14.1944 14.4104 14.3475 14.5453 1 

 4 16.8579 17.2591 17.3456 17.3302 17.2842 17.3904 1 

 5 19.3943 19.2793 18.9721 19.3799 19.3881 19.8757 1 

 6 21.5514 21.6964 21.5692 21.3715 21.8951 22.2800 1 
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Table 5. The best threshold values of each algorithm. 

Images k Best threshold values 

  BA FPA MSA PSO WWO MFO 

Test 1 2 95,168 95,171 113,157 98,165 103,173 97,164 

 3 67,121,181 88,134,179 76,133,176 73,124,160 90,139,168 81,126,174 

 4 68,110,130,163 60,103,160,200 55,91,139,180 61,83,116,181 79,121,146,175 73,112,147,184 

 5 60,98,144,172, 

204 

46,65,109,142, 

176 

78,98,135,157, 

183 

39,100,163,165, 

239 

63,91,144,168， 

187 

65,101,125,165, 

239 

 6 38,58,98,140, 

171,195 

71,89,127,176, 

194,216 

44,91,101,133, 

155,200 

66,106,137,159, 

196,224 

66,115,140,162, 

178,193 

77,98,132,156, 

181,208 

Test 2 2 62,148 64,121 79,138 75,147 66,153 75,147 

 3 76,132,174 42,83,158 76,119,158 45,130,169 43,109,146 59,106,170 

 4 43,86,144,206 55,108,133,190 62,89,118,192 53,121,152,188 47,118,159,203 50,84,141,179 

 5 24,93,134,173, 

192 

35,93,126,155, 

191 

32,79,101,136, 

188 

34,73,95,129, 

176 

56,84,104,145， 

175 

50,80,119,163, 

204 

 6 35,80,106,137, 

191,203 

56,101,126,160, 

177,200 

44,76,122,162, 

177,196 

22,38,82,110, 

151,193 

65,83,107,145， 

179,199 

37,52,76,126, 

169,195 

Test 3 2 82,162 88,164 85,157 69,177 110,163 69,174 

 3 87,135,186 62,141,178 102,159,184 73,141,195 81,154,192 69,127,183 

 4 89,123,152,189 64,114,151,176 54,95,135,169 68,120,134,185 38,93,148,192 66,106,146,186 

 5 78,101,118,133, 

186 

67,98,135,149, 

174 

56,80,111,152, 

194 

34,87,165,182, 

231 

75,101,132,169, 

213 

70,104,132,160, 

190 

 6 82,114,131,154, 

174,212 

49,80,94,114, 

174,198 

41,53,73,113, 

146,181 

55,93,128,153, 

183,196 

58,71,78,118, 

147,181 

56,69,127,163, 

183,231 

Test 4 2 101,174 146,164 95,175 98,174 93,154 95,171 

 3 72,136,169 117,177,212 69,115,180 99,152,181 70,113,169 85,137,180 

 4 41,84,115,164 50,80,146,183 43,91,124,172 40,86,133,167 63,96,159,172 38,86,138,180 

 5 49,82,122,181, 

224 

29,75,104,120, 

205 

49,75,105,160, 

181 

32,91,125,171, 

208 

37,100,116,152, 

210 

43,98,125,173, 

245 

 6 75,102,125,161, 

188,237 

43,110,129,150, 

181,211 

79,120,135,167, 

221,237 

43,59,85,127, 

183,212 

32,61,78,122, 

148,211 

28,53,77,114, 

146,182 

Test 5 2 74,135 110,248 83,157 70,135 64,129 70,135 

 3 56,134,215 61,120,184 59,145,230 62,119,197 80,127,180 69,133,204 

 4 52,131,206,231 95,145,200,234 70,94,146,207 74,127,186,226 81,114,190,221 70,108,150,216 

 5 61,110,168,199, 

231 

33,71,97,154, 

225 

37,101,137,179, 

217 

21,79,150,195, 

231 

63,93,134,188, 

233 

41,94,131,177, 

225 

 6 29,62,117,143, 

188,211 

23,75,110,142, 

208,238 

38,61,127,167, 

212,233 

51,84,124,147, 

187,200 

32,72,91,116, 

192,228 

27,77,109,140, 

179,225 

Test 6 2 84,168 111,175 106,175 91,170 92,171 91,170 

 3 55,126,191 84,145,188 85,138,200 71,124,188 68,128,177 75,131,185 

 4 37,117,168,211 60,137,164,194 39,77,132,186 94,121,157,214 54,139,178,219 68,105,157,204 

 5 50,75,110,184, 

206 

41,82,122,189, 

234 

35,78,131,156, 

183 

37,124,154,182, 

208 

42,108,120,179, 

205 

80,111,132,163, 

204 

Continued on next page 
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Images k Best threshold values 

  BA FPA MSA PSO WWO MFO 

 6 59,89,114,146, 

187,207 

32,58,116,146, 

186,214 

60,80,105,135, 

168,189 

47,88,111,165, 

191,204 

44,65,113,146, 

170,199 

42,84,116,136, 

170,209 

Test 7 2 97,166 124,164 97,170 96,163 70,156 96,163 

 3 75,123,158 53,94,176 54,130,162 80,107,170 62,178,219 81,166,198 

 4 71,127,166,218 66,121,145,184 77,129,187,236 43,110,162,181 95,123,166,209 46,104,167,197 

 5 46,87,123,161, 

225 

40,99,130,175, 

198 

40,59,97,143, 

196 

24,73,137,166, 

214 

65,122,146,175, 

214 

79,107,137,166, 

212 

 6 37,69,131,145, 

174,236 

47,63,112,162, 

186,223 

53,101,125,160, 

202,214 

62,123,149,174, 

190,233 

62,110,167,193, 

204,233 

44,82,132,171, 

200,234 

Test 8 2 91,170 83,162 100,168 93,161 94,169 93,161 

 3 80,164,225 109,165,201 66,102,157 69,105,171 59,114,161 95,159,206 

 4 46,104,144,217 73,109,175,225 83,136,177,203 42,109,159,191 47,81,124,156 65,111,160,207 

 5 62,120,172,204, 

223 

36,55,115,157, 

217 

80,143,175,209, 

231 

55,112,132,173, 

194 

68,102,131,164, 

223 

74,107,159,196, 

223 

 6 29,47,87,110, 

157,212 

58,85,113,133, 

165,229 

52,75,102,131, 

160,205 

59,74,108,145, 

171,204 

58,98,144,157, 

181,201 

50,85,126,158, 

202,227 

Test 9 2 103,155 93,160 128,163 104,156 92,166 105,156 

 3 110,152,213 92,152,212 104,166,207 111,153,193 69,115,167 104,154,203 

 4 55,105,135,161 44,86,150,205 55,96,121,174 97,132,155,192 63,99,173,203 57,106,172,201 

 5 96,117,150,179, 

298 

92,121,136,152, 

204 

56,91,114,165, 

220 

56,116,153,169, 

186 

92,129,154,172, 

201 

61,84,102,163, 

197 

 6 45,74,86,120, 

161,220 

66,84,96,128, 

156,184 

72,95,116,162, 

172,209 

78,96,107,133, 

151,199 

53,84,102,111, 

165,211 

56,82,115,164, 

187,198 

Test 10 2 74,148 72,138 77,133 75,153 96,168 75,153 

 3 86,154,184 75,104,213 84,129,211 71,154,196 97,143,196 83,143,187 

 4 76,95,171,222 83,125,164,203 77,123,164,213 74,112,138,177 74,123,156,210 72,116,151,181 

 5 94,132,147,188, 

222 

85,146,168,202, 

230 

71,88,101,179, 

213 

50,83,152,179, 

248 

81,132,174,214, 

230 

74,105,136,163, 

186 

 6 70,82,114,172, 

194,230 

74,110,126,163, 

194,203 

89,120,133,167, 

180,223 

64,81,128,162, 

202,230 

72,126,162,192, 

213,233 

75,103,144,176, 

191,222 

The optimal fitness of each algorithm is given in Table 4. The optimization goal is to achieve the best 

threshold levels by maximizing the desired value of Kapur’s entropy. For given segmented images, the 

threshold levels are set to 2, 3, 4, 5 and 6. The fitness value of each algorithm increases as the threshold 

level increases, and each algorithm can achieve a better fitness value under a relatively high threshold level. 

The processed images embody more segmentation information. The ranking based on the fitness value is 

applied to reflect the optimization performance and segmentation ability of the MFO. The fitness value and 

ranking of MFO are better than those of the other algorithms, which indicates that MFO can utilize 

exploration and exploitation to realize the maximum fitness value. The processed images of the MFO have 

more segmentation information. The best threshold values of each algorithm are given in Table 5. The 

choice of the threshold level directly affects the effect and quality of the processed image. MFO finds the 

optimal objective value according to the best threshold level. To summarize, MFO can dodge immature 



7126 

 

Mathematical Biosciences and Engineering Volume 18, Issue 6, 7110–7142. 

convergence to achieve better segmentation accuracy and effect. 

Table 6. The average execution time of each algorithm. 

Images k Execution time (in second) 

  BA FPA MSA PSO WWO MFO Rank 

Test 1 2 2.0504 2.5449 4.1430 3.2668 2.6219 1.8838 1 

 3 2.1806 2.4652 3.6404 3.7600 3.0271 2.1470 1 

 4 2.3493 2.5466 3.6591 4.2612 3.5488 2.3476 1 

 5 2.3526 2.4754 3.6553 4.4621 4.1037 2.3232 1 

 6 2.4534 2.5140 3.6961 4.7721 4.6332 2.4476 1 

Test 2 2 2.0546 2.2233 3.5972 3.0943 2.4066 1.9862 1 

 3 2.2834 2.4729 3.7247 3.7189 3.0388 2.2371 1 

 4 2.4856 2.4565 3.5933 4.0514 3.7730 2.3832 1 

 5 2.6244 2.5519 3.6495 13.892 4.2132 2.5896 2 

 6 2.7085 2.6344 3.6366 4.6383 4.9811 2.6217 1 

Test 3 2 2.0428 2.1661 3.5012 10.081 2.3834 2.0128 1 

 3 2.1067 2.2636 3.6970 3.5344 2.9690 2.1931 2 

 4 2.3168 2.4309 3.6582 4.1890 3.5014 2.2318 1 

 5 2.4964 2.4430 3.6781 4.2050 4.1567 2.4421 1 

 6 2.5751 2.5232 3.7181 4.4494 4.7794 2.5211 1 

Test 4 2 2.1245 2.2784 3.5689 3.1980 2.4759 1.8874 1 

 3 2.2841 2.3142 3.6728 3.9206 3.1605 2.1235 1 

 4 2.4620 2.4784 3.7133 4.4914 3.6540 2.4128 1 

 5 2.5981 2.5782 3.7064 4.5182 4.2552 2.5252 1 

 6 2.5760 2.6113 3.7157 4.6266 4.6624 2.5645 1 

Test 5 2 2.1369 2.3193 3.6874 3.3801 2.5160 1.9748 1 

 3 2.3770 2.4655 3.8206 3.9882 3.1202 2.1927 1 

 4 2.6246 2.5708 3.7468 4.6477 3.7042 2.4725 1 

 5 2.6867 2.6756 3.7018 4.8451 4.2924 2.6573 1 

 6 3.0574 2.6619 3.7099 5.2076 4.9496 2.6989 2 

Test 6 2 2.0659 2.2878 3.7082 3.4298 2.4881 1.8933 1 

 3 2.3009 2.4216 3.7141 3.7289 3.1803 2.1388 1 

 4 2.5690 2.5297 3.7186 4.4016 3.6365 2.5144 1 

 5 2.7012 2.7481 3.8449 4.6251 4.4892 2.5788 1 

 6 2.7363 2.6549 3.5908 5.0158 5.0763 2.6390 1 

Test 7 2 2.1999 2.2860 3.7677 3.4719 2.5184 1.7930 1 

 3 2.3913 2.4617 3.8282 4.4295 3.1260 2.1823 1 

 4 2.5758 2.5069 3.6892 4.5830 3.6773 2.5712 2 

 5 2.8661 2.6928 3.7420 4.9113 4.3654 2.6331 1 

 6 2.8314 2.7552 3.8166 4.7869 4.8823 2.7347 1 

Test 8 2 2.1196 2.2375 3.5308 3.2347 2.6986 1.8208 1 

 3 2.1790 2.4691 3.6472 4.1744 3.2448 2.0801 1 

 4 2.4523 2.5377 3.6976 4.4788 3.7100 2.3825 1 

Continued on next page 
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Images k Execution time (in second) 

  BA FPA MSA PSO WWO MFO Rank 

 5 2.5949 2.5873 3.7993 4.6852 4.3499 2.5537 1 

 6 2.6545 2.6189 3.7323 5.1430 4.7387 2.5936 1 

Test 9 2 2.1158 2.2435 3.7132 3.0533 2.3750 1.8010 1 

 3 2.2377 2.3223 3.7861 3.8355 2.9901 2.1133 1 

 4 2.3979 2.4493 3.6818 4.1490 3.5694 2.3356 1 

 5 2.4748 2.4971 3.6920 4.3074 4.2244 2.4209 1 

 6 2.4707 2.5587 3.7407 4.6462 4.5649 2.5010 2 

Test 10 2 2.0775 2.1429 3.4231 3.0237 2.3839 1.6726 1 

 3 2.2550 2.2918 3.5819 3.4502 2.9528 2.2082 1 

 4 2.3523 2.3987 3.6269 4.0056 3.4883 2.3009 1 

 5 2.3653 2.4887 3.7718 4.1497 4.0963 2.3358 1 

 6 2.42209 2.5584 3.7138 4.3912 4.6485 2.4192 1 

The average execution time of each algorithm is given in Table 6. The execution time reflects 

the computational complexity of each algorithm and the realization ability of the problem.  At the 

same threshold level, the algorithm consumes less time and has a better optimization performance. 

As the segmentation threshold level increases, the time consumption gradually increases. 

Compared with other algorithms, the execution time of the MFO is better. MFO consumes less 

time to address image segmentation. 

Table 7. The PSNR of each algorithm. 

Images k PSNR values 

  BA FPA MSA PSO WWO MFO Rank 

Test 1 2 54.2052 54.0193 52.6804 53.9194 53.3728 54.2052 1 

 3 55.2116 54.7434 55.5773 55.8071 54.6025 56.2391 1 

 4 56.1645 56.9214 55.8071 56.8053 55.3545 57.8253 1 

 5 56.9214 57.2139 55.4283 67.4037 56.5877 61.6781 2 

 6 57.5946 55.9464 63.0931 56.3249 56.3249 68.3558 1 

Test 2 2 56.8302 55.6667 55.2570 55.6667 56.4413 56.8496 1 

 3 55.5716 55.8390 55.5716 56.9284 58.4671 58.5125 1 

 4 56.8302 57.5587 56.8302 57.7738 57.7738 58.6671 1 

 5 60.8783 57.6678 59.6180 57.5587 57.4521 58.5125 3 

 6 58.7405 57.4521 58.5890 61.3621 56.5356 59.3017 2 

Test 3 2 61.6543 60.6947 61.1888 59.1452 57.4414 63.7976 1 

 3 60.8653 64.1985 58.3970 63.3619 61.8294 65.2923 1 

 4 60.5327 65.0068 64.6841 64.3602 66.0216 66.2020 1 

 5 62.3681 65.6347 65.9875 70.5641 62.9357 67.5475 2 

 6 61.6543 66.8489 65.6347 66.0853 65.7478 68.2531 1 

Test 4 2 53.7298 51.8359 53.9307 53.8281 53.3635 54.0080 1 

 3 55.7727 53.2812 56.2939 53.7936 54.4415 56.3931 1 

Continued on next page 
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Images k PSNR values       

  BA FPA MSA PSO WWO MFO Rank 

 4 69.8724 64.0939 68.4585 70.6684 57.7874 70.6684 1 

 5 64.6339 76.5339 64.6339 75.2461 54.0512 72.8879 3 

 6 55.3686 68.4585 62.6342 59.8785 71.2461 71.5255 1 

Test 5 2 55.9353 54.4501 55.5723 56.1030 56.1944 56.3859 1 

 3 56.1489 56.5395 56.6408 56.1489 55.6932 56.7947 1 

 4 56.0035 55.0787 56.1030 55.9353 55.6534 56.4888 1 

 5 57.1093 57.6783 57.8691 59.3191 56.4366 58.1327 2 

 6 58.4300 59.0280 57.8027 57.0566 57.3278 59.0280 1 

Test 6 2 52.4037 50.9764 51.2852 52.4037 52.3196 52.9992 1 

 3 53.7675 52.9992 52.9146 54.0808 54.3233 55.5443 1 

 4 56.9588 55.0405 54.3233 52.1517 55.6405 57.5981 1 

 5 55.2454 54.8447 55.8429 57.9588 56.4138 58.3841 1 

 6 55.1430 57.0950 54.9352 56.4138 56.7949 59.1946 1 

Test 7 2 52.1853 50.1439 52.1853 52.2305 52.2305 53.6248 1 

 3 53.1369 52.7825 54.3929 52.8286 54.1279 54.4252 1 

 4 53.5238 53.9356 52.9913 54.1279 52.2737 54.9081 1 

 5 54.7169 55.1408 54.7169 52.7825 53.9928 57.7724 1 

 6 54.4130 54.6643 54.4252 54.4600 54.1279 55.1408 1 

Test 8 2 51.2625 51.1401 50.7696 51.1401 51.0819 51.8484 1 

 3 52.1217 50.3589 53.9395 53.4810 51.0247 55.1889 1 

 4 58.3667 52.9207 51.8484 52.6689 58.1344 59.3198 1 

 5 54.6097 54.7941 52.1217 60.9018 53.6305 61.3007 1 

 6 62.1126 55.4021 56.8943 55.1889 55.4021 64.4974 1 

Test 9 2 54.7684 56.0844 50.9610 54.6524 54.5365 56.2376 1 

 3 53.9616 56.2376 54.6524 53.8444 54.6524 61.7530 1 

 4 67.6683 73.5879 67.6683 55.5133 58.1149 68.0342 2 

 5 62.8685 59.5786 67.1721 67.1721 56.2376 73.5879 1 

 6 72.9963 62.8685 68.6413 57.8977 68.6413 79.2437 1 

Test 10 2 49.4261 49.4702 49.3850 49.4109 49.2129 49.4809 1 

 3 49.3039 49.4109 49.3191 49.3437 49.2012 49.4261 1 

 4 49.3976 49.3267 49.3850 49.4261 49.4261 49.5080 1 

 5 49.2362 49.3115 49.4261 49.1974 49.3437 49.5080 1 

 6 49.5634 49.4261 49.2816 49.3850 49.4702 50.5952 1 

The PSNR of each algorithm is given in Table 7. The selection of the threshold level is crucial for 

the accuracy and effect of image segmentation. The overall segmentation performance improves if the 

threshold level increases. The PSNR is an effective criterion to determine the distortion between the 

provided image and the processed image and the segmentation ability of the multilevel thresholding 

image. The PSNR increases accordingly when the threshold level becomes larger, and the algorithm 

has lower distortion. To demonstrate the advantage of the MFO, the ranking is based upon the PSNR. 

For a given image, the threshold levels are defined as 2, 3, 4, 5 and 6; each algorithm has 50 PSNR 

values; and 43 PSNR values of the MFO are better. The PSNR values and ranking of the MFO are 
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better than those of other algorithms, which indicates that the MFO has better overall segmentation 

performance and better superiority. The experimental results indicate that MFO has stable 

practicability and robustness to obtain a better segmentation effect. 

Table 8. The SSIM of each algorithm. 

Images k SSIM values 

  BA FPA MSA PSO WWO MFO Rank 

Test 1 2 0.5811 0.5630 0.4666 0.5589 0.5389 0.5827 1 

 3 0.6174 0.6028 0.6291 0.6196 0.5792 0.6677 1 

 4 0.6275 0.6713 0.6450 0.6841 0.6040 0.6962 1 

 5 0.6706 0.6692 0.6240 0.6779 0.6761 0.7428 1 

 6 0.6579 0.6752 0.7295 0.6565 0.6272 0.7853 1 

Test 2 2 0.5934 0.5618 0.5486 0.5624 0.5854 0.5951 1 

 3 0.5849 0.5892 0.5737 0.6229 0.6440 0.6549 1 

 4 0.6118 0.6431 0.6084 0.6336 0.6302 0.6680 1 

 5 0.6700 0.6321 0.6721 0.6239 0.6315 0.6953 1 

 6 0.6764 0.6305 0.6926 0.7184 0.6484 0.7095 2 

Test 3 2 0.7776 0.7700 0.7735 0.7433 0.7326 0.7782 1 

 3 0.7694 0.7963 0.7380 0.7321 0.7388 0.8075 1 

 4 0.7661 0.8171 0.8107 0.7983 0.7966 0.8286 1 

 5 0.8008 0.7352 0.8087 0.7841 0.7682 0.8266 1 

 6 0.7468 0.7928 0.8434 0.7941 0.8482 0.8560 1 

Test 4 2 0.5682 0.4613 0.5752 0.5724 0.5494 0.5840 1 

 3 0.6295 0.5643 0.6447 0.5538 0.5765 0.6573 1 

 4 0.7995 0.7457 0.8018 0.7963 0.7050 0.8387 1 

 5 0.8021 0.7892 0.7802 0.8431 0.5767 0.8509 1 

 6 0.6250 0.8207 0.8056 0.7640 0.8148 0.8493 1 

Test 5 2 0.5874 0.5694 0.5478 0.5923 0.5947 0.6025 1 

 3 0.6513 0.6167 0.6558 0.6536 0.5760 0.6752 1 

 4 0.6629 0.5762 0.6594 0.6147 0.6122 0.6669 1 

 5 0.6686 0.6775 0.6918 0.7207 0.6737 0.7221 1 

 6 0.7354 0.7299 0.7183 0.6835 0.7114 0.7593 1 

Test 6 2 0.3856 0.3073 0.3285 0.3856 0.3823 0.4098 1 

 3 0.4862 0.4423 0.4438 0.5025 0.5060 0.5417 1 

 4 0.6023 0.5147 0.5425 0.4154 0.5323 0.6141 1 

 5 0.5798 0.5765 0.5771 0.5794 0.6314 0.6562 1 

 6 0.6170 0.6676 0.6141 0.6412 0.6737 0.7035 1 

Test 7 2 0.5412 0.2944 0.5452 0.5357 0.5357 0.6049 1 

 3 0.5439 0.5643 0.6308 0.5533 0.6497 0.6713 1 

 4 0.5819 0.5867 0.5474 0.6396 0.5011 0.6571 1 

 5 0.6752 0.6858 0.6817 0.5044 0.5725 0.7308 1 

 6 0.6826 0.6776 0.6360 0.6650 0.5908 0.6938 1 

Test 8 2 0.3781 0.3656 0.3403 0.3656 0.3661 0.4100 1 

Continued on next page 
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Images k SSIM values       

  BA FPA MSA PSO WWO MFO Rank 

 3 0.4250 0.2956 0.4948 0.4927 0.3533 0.5583 1 

 4 0.6528 0.4934 0.3981 0.4760 0.6109 0.6803 1 

 5 0.5484 0.5568 0.3853 0.4986 0.5249 0.6793 1 

 6 0.7181 0.5974 0.6489 0.6071 0.5787 0.7293 1 

Test 9 2 0.5502 0.6010 0.2334 0.5494 0.5547 0.6075 1 

 3 0.4929 0.5707 0.5475 0.4852 0.5360 0.6251 1 

 4 0.5860 0.6949 0.6196 0.4427 0.5586 0.7198 1 

 5 0.6465 0.6827 0.7318 0.6505 0.4812 0.7441 1 

 6 0.7208 0.6556 0.7322 0.5454 0.7166 0.7698 1 

Test 10 2 0.1722 0.1666 0.1571 0.1729 0.1502 0.1733 1 

 3 0.1611 0.1719 0.1644 0.1708 0.1475 0.1772 1 

 4 0.1822 0.1678 0.1775 0.1753 0.1804 0.1927 1 

 5 0.1486 0.1511 0.1786 0.6364 0.1645 0.1915 2 

 6 0.2091 0.1812 0.1565 0.1697 0.1755 0.2901 1 

The SSIM of each algorithm is given in Table 8. SSIM based on the brightness, contrast and 

structural information is used to determine the visual similarity between the provided image and the 

processed image. When the threshold level increases, the SSIM value becomes larger. The optimization 

algorithm obtains the processed image with less distortion, and the processed image is close to the 

provided image. The ranking based on the SSIM value is used to detect the segmentation ability. The 

ranking of the MFO is better, which indicates that the segmented images of the MFO contain more 

segmentation information. Each algorithm has 50 SSIM values, the first-place ranking of MFO is 48 

and the second-place ranking of MFO is 2. The SSIM values and segmentation effect of the MFO are 

better than those of other algorithms. MFO obtains a segmented image that is close to the original 

image. The experimental results indicate that MFO has better calculation precision and overall 

segmentation performance. 

Table 9. The p-value of Wilcoxon rank-sum. 

Images k Wilcoxon test 

  MFO vs BA MFO vs FPA MFO vs MSA MFO vs PSO MFO vs WWO 

Test 1 2 4.1486E-08 2.9135E-07 3.7215E-07 1.0905E-02 4.9558E-08 

 3 4.1406E-03 8.8674E-01 2.7328E-02 5.9956E-04 1.8056E-02 

 4 3.9271E-03 6.8298E-03 2.3871E-05 5.2530E-04 5.9054E-05 

 5 3.5064E-03 4.4599E-02 7.7394E-06 2.5972E-04 7.7394E-06 

 6 1.5429E-04 1.6017E-04 2.1821E-11 1.6475E-04 2.1821E-11 

Test 2 2 1.5649E-11 4.1040E-11 4.5618E-11 5.7016E-03 2.6819E-11 

 3 3.7061E-02 1.4931E-03 4.5940E-02 1.5957E-02 7.3007E-03 

 4 2.1572E-02 7.2382E-04 1.1435E-02 9.2276E-03 1.8454E-02 

 5 3.0221E-07 1.2754E-02 4.4680E-10 3.9238E-02 4.4680E-10 

 6 2.1287E-05 6.0511E-04 4.8389E-10 1.9143E-02 4.8389E-10 

Continued on next page 
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Images k Wilcoxon test     

  MFO vs BA MFO vs FPA MFO vs MSA MFO vs PSO MFO vs WWO 

Test 3 2 1.6510E-11 1.2118E-12 1.2118E-12 2.7793E-03 1.2118E-12 

 3 1.7047E-02 7.9323E-05 9.8208E-03 5.1474E-03 3.8910E-02 

 4 1.5568E-02 4.8012E-02 6.1697E-05 6.0010E-03 1.8438E-03 

 5 1.2075E-04 1.1553E-03 8.9553E-08 8.6976E-06 8.9553E-08 

 6 4.2458E-05 1.6691E-02 3.9562E-10 1.4187E-05 3.9562E-10 

Test 4 2 1.4119E-10 3.6912E-11 4.5618E-11 2.7605E-02 1.5672E-11 

 3 9.6851E-08 1.0617E-03 1.3782E-02 1.8815E-02 2.0296E-11 

 4 2.3687E-03 2.6206E-03 3.3040E-02 2.2534E-02 1.8354E-02 

 5 1.3187E-02 6.9403E-03 6.0393E-02 3.3072E-02 1.3187E-02 

 6 1.0490E-02 3.1661E-03 6.3076E-09 6.0661E-05 3.0311E-04 

Test 5 2 4.7773E-09 1.4148E-08 1.8780E-09 6.9419E-03 1.0569E-09 

 3 1.0226E-06 1.5514E-03 9.3662E-04 1.7753E-02 2.8427E-10 

 4 1.2338E-04 6.8037E-03 9.0570E-05 6.0755E-04 6.6120E-03 

 5 1.9974E-02 1.5408E-02 1.9284E-05 1.8299E-02 1.1010E-02 

 6 2.3675E-02 1.9315E-02 9.3069E-08 2.8298E-02 2.0096E-02 

Test 6 2 5.4162E-09 5.4162E-09 2.4736E-08 2.8298E-02 8.3512E-09 

 3 1.2298E-07 1.5879E-06 3.6108E-02 7.8961E-03 7.6552E-10 

 4 1.3692E-02 1.2204E-02 6.7678E-04 3.3418E-02 N/A 

 5 1.5319E-02 1.3228E-05 3.7759E-02 8.2918E-03 8.0670E-03 

 6 7.9518E-01 7.6105E-05 8.8807E-06 1.6308E-03 7.6285E-03 

Test 7 2 1.1999E-12 1.2118E-12 1.2118E-12 5.5398E-03 1.2118E-12 

 3 1.0043E-08 3.2704E-04 1.7181E-04 4.5838E-04 1.8783E-11 

 4 2.2155E-05 1.3080E-04 2.0545E-03 1.8360E-02 1.8586E-03 

 5 9.2817E-05 5.9629E-04 2.6611E-02 2.7791E-02 7.1075E-03 

 6 8.1845E-01 1.8944E-02 1.0237E-07 7.3815E-04 2.6871E-02 

Test 8 2 1.1067E-08 1.2380E-09 1.2377E-09 9.5909E-03 1.2377E-09 

 3 5.0104E-03 5.7108E-04 7.4568E-04 2.5069E-02 7.4568E-03 

 4 6.0746E-03 7.7156E-05 4.5418E-04 1.2662E-02 7.5196E-03 

 5 1.2619E-02 7.7958E-05 4.3177E-10 5.6943E-07 4.3177E-10 

 6 1.0049E-02 1.1403E-02 2.5562E-11 9.6312E-05 2.5562E-11 

Test 9 2 4.1906E-10 7.2256E-10 1.2384E-09 4.5164E-02 1.1236E-09 

 3 2.0185E-02 5.6566E-03 6.7067E-03 8.2284E-02 N/A 

 4 1.7717E-02 8.1726E-03 2.2107E-06 2.0015E-02 7.4528E-03 

 5 1.2740E-02 3.7302E-05 4.5563E-10 2.6262E-05 4.5563E-10 

 6 1.4911E-02 1.7368E-03 4.3348E-10 9.9941E-04 4.3348E-10 

Test 10 2 2.5301E-10 1.2384E-09 1.2384E-09 N/A 7.5947E-10 

 3 8.1850E-03 1.5376E-02 1.4949E-02 9.7602E-01 6.5949E-04 

 4 1.3894E-02 1.3909E-02 3.7115E-05 1.2287E-02 1.8341E-03 

 5 9.3482E-01 1.5129E-02 1.2758E-05 6.5560E-03 3.6908E-04 

 6 2.4276E-02 1.5559E-02 3.9225E-08 4.9250E-04 2.3328E-05 

The p value of the Wilcoxon rank-sum is given in Table 9. Wilcoxon’s rank-sum is utilized to 
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identify whether there is a noteworthy distinction between the two algorithms. If 0.05p  , then there 

is a noteworthy distinction between MFO and other algorithms. If 0.05p   is expressed in bold, 

then there is no noteworthy distinction between MFO and other algorithms. There is a noteworthy 

distinction in most cases, and the experimental data are valid. 

BA           FPA          MSA         PSO        WWO        MFO 

 

 

 

 

 

Figure 5. Segmentated images of Test 1 for different algorithms using Kapur method at levels 2, 3, 4, 5 and 6. 
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BA           FPA          MSA         PSO        WWO        MFO 

 

 

 

 

 

Figure 6. Segmentated images of Test 2 for different algorithms using Kapur method at levels 2, 3, 4, 5 and 6. 

BA           FPA          MSA         PSO        WWO        MFO 

 

continued on next page 

Figure 7. Segmentated images of Test 3 for different algorithms using Kapur method at levels 2, 3, 4, 5 and 6. 
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Figure 7. Segmentated images of Test 3 for different algorithms using Kapur method at levels 2, 3, 4, 5 and 6. 

BA           FPA          MSA         PSO        WWO        MFO 

 

 

 

continued on next page 

Figure 8. Segmentated images of Test 4 for different algorithms using Kapur method at levels 2, 3, 4, 5 and 6. 
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Figure 8. Segmentated images of Test 4 for different algorithms using Kapur method at levels 2, 3, 4, 5 and 6. 
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Figure 9. Segmentated images of Test 5 for different algorithms using Kapur method at levels 2, 3, 4, 5 and 6. 
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BA           FPA          MSA         PSO        WWO        MFO 

 

 

 

 

 

Figure 10. Segmentated images of Test 6 for different algorithms using Kapur method at levels 2, 3, 4, 5 and 6. 

BA           FPA          MSA         PSO        WWO        MFO 

 

 

 

 

continued on next page 

Figure 11. Segmentated images of Test 7 for different algorithms using Kapur method at levels 2, 3, 4, 5 and 6. 
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Figure 11. Segmentated images of Test 7 for different algorithms using Kapur method at levels 2, 3, 4, 5 and 6. 

BA           FPA          MSA         PSO        WWO        MFO 

 

 

 

 

 

Figure 12. Segmentated images of Test 8 for different algorithms using Kapur method at levels 2, 3, 4, 5 and 6. 

BA           FPA          MSA         PSO        WWO        MFO 
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Figure 13. Segmentated images of Test 9 for different algorithms using Kapur method at levels 2, 3, 4, 5 and 6. 
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Figure 13. Segmentated images of Test 9 for different algorithms using Kapur method at levels 2, 3, 4, 5 and 6. 

BA           FPA          MSA         PSO        WWO        MFO 

 

 

 

 

 

Figure 14. Segmentated images of Test 10 for different algorithms using Kapur method at levels 2, 3, 4, 5 and 6. 

The segmented images of Tests 1–10 for different algorithms using the Kapur method at levels 2, 

3, 4, 5 and 6 are given in Figures 5–14. The segmentation quality of the provided images is closely 

related to the threshold level. A segmented image with a higher threshold level includes more 

segmentation information. MFO has a strong enhancement and optimization performance to obtain 
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better segmented images that are close to the original images. The MFO can find excellent fitness 

values and higher calculation accuracy under a given threshold level. The population size of each 

algorithm is set to 30, the maximum number of iterations is set to 100 and the number of independent 

runs is set to 30. MFO consumes less execution time to achieve a smaller computational complexity. 

The PSNR value and SSIM value of the MFO are better than those of other algorithms so that the MFO 

has better distortion and structural similarity. Wilcoxon’s rank-sum can effectively verify the 

noteworthy distinction between MFO and other algorithms. In summary, MFO has stronger robustness 

and a better segmentation effect to solve the multilevel thresholding image segmentation problem. 

Statistically, the MFO simulates the transverse orientation navigation behavior of the moths to 

effectively search for the global optimal solution in the search space. MFO resolves multilevel 

thresholding image segmentation for the following reasons. First, for MFO, the algorithm framework 

is simple, the amount of calculation is small, the control parameters are few and the algorithm is easy 

to implement. The MFO has better search ability and strong robustness. Second, MFO has a better 

position update strategy and overall optimization performance. MFO can effectively avoid falling into 

a local optimal solution or premature convergence. MFO balances the global search ability and the 

local search ability in the optimization space to improve the convergence speed and calculation 

accuracy. Third, the combination of MFO and Kapur’s entropy method realizes complementary 

advantages to enhance the segmentation effect and optimization performance. To summarize, MFO is 

the optimal choice to solve the multilevel thresholding image segmentation problem. 

6. Conclusions and future research 

The objective of image segmentation is to consume less time to attain the best threshold values 

by maximizing the objective value of Kapur’s entropy. This paper proposes an MFO based on Kapur’s 

entropy to resolve multithreshold image segmentation. The MFO simulates the transverse orientation 

navigation mechanism of moths to perform global search optimization. MFO has high search 

efficiency and strong robustness to avoid immature convergence or falling into the local solution, 

which balances exploration and exploitation to find the best solution in the optimization space. For 

image segmentation, as the threshold level increases, the difference between the MFO and other 

algorithms is significant. To verify the overall segmentation performance, compared with other 

algorithms, MFO has a faster convergence rate and higher calculation precision to obtain segmented 

images that contain more useful segmentation information. The experimental results indicate that the 

MFO has strong stability and a better segmentation effect in terms of the fitness value, threshold values, 

execution time, PSNR, SSIM and Wilcoxon’s rank-sum. Meanwhile, MFO has stronger robustness 

and better practicality to effectively achieve the image segmentation problem. 

In future research, we will develop a system that can automatically detect the optimal number of 

levels for the input image. MFO will be applied to settle complicated high-threshold or color image 

segmentation. Meanwhile, different segmentation methods will be introduced into the MFO such as 

Tsallis entropy, Renyi entropy, cross entropy, fuzzy entropy and Otsu. These research works will 

further demonstrate the effectiveness and feasibility of MFO. 
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