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Abstract: This paper introduces an improved hybrid Aquila Optimizer (AO) and Harris Hawks 
Optimization (HHO) algorithm, namely IHAOHHO, to enhance the searching performance for global 
optimization problems. In the IHAOHHO, valuable exploration and exploitation capabilities of AO 
and HHO are retained firstly, and then representative-based hunting (RH) and opposition-based 
learning (OBL) strategies are added in the exploration and exploitation phases to effectively improve 
the diversity of search space and local optima avoidance capability of the algorithm, respectively. To 
verify the optimization performance and the practicability, the proposed algorithm is comprehensively 
analyzed on standard and CEC2017 benchmark functions and three engineering design problems. The 
experimental results show that the proposed IHAOHHO has more superior global search performance 
and faster convergence speed compared to the basic AO and HHO and selected state-of-the-art meta-
heuristic algorithms. 

Keywords: aquila optimizer; harris hawks optimization; hybrid algorithm; representative-based 
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1. Introduction  

Meta-heuristic optimization algorithms develop rapidly [1–3] because of its simple concept, 
flexibility and ability to avoid local optima, and have been widely used in solving various complex 
optimization problems in the real world [4,5]. According to different inspiration of the algorithms, 
meta-heuristics can be divided into three main categories: evolutionary, physics-based and swarm 
intelligence based techniques. The inspirations of evolutionary algorithms are the laws of evolution in 
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nature. There are some representative evolutionary algorithms such as Genetic Algorithm (GA) [6], 
Differential Evolution Algorithm (DE) [7], Evolution Strategy (ES) [8], Biogeography-Based 
Optimizer (BBO) [9] and Probability-Based Incremental Learning (PBIL) [10]. Inspired by the 
physical rules of the universe, physics-based techniques include Simulated Annealing (SA) [11], 
Gravity Search Algorithm (GSA) [12], Black Hole Algorithm (BH) [13], Multi-Verse Optimizer 
(MVO) [14], Sine Cosine Algorithm (SCA) [15], Arithmetic Optimization Algorithm (AOA) [16], 
Heat Transfer Relation-based Optimization Algorithm (HTOA) [17] and so forth. Swarm intelligence 
(SI) based methods belong to the most popular category, which are inspired by swarm behaviors of 
creatures in nature. The representative SI algorithms include Particle Swarm Optimization (PSO) [18], 
Ant Colony Optimization Algorithm (ACO) [19], Firefly Algorithm (FA) [20], Grey Wolf Optimizer 
(GWO) [21], Cuckoo Search Algorithm (CS) [22], Whale Optimization Algorithm (WOA) [23], Salp 
Swarm Algorithm (SSA) [24], Remora Optimization Algorithm [25], Slime Mould Algorithm 
(SMA) [26], and Horse herd Optimization Algorithm (HOA) [27]. 

The Aquila Optimizer (AO) [28] and Harris Hawks Optimization (HHO) [29] are both latest SI 
algorithms that simulate hunting behaviors of Aquila and Harris’ hawks respectively. Due to the short 
time for AO to be proposed, there is no research on the improvement of AO yet, but AO has been used 
to solve the real-world optimization problems. AlRassas et al. [30] applied AO to optimize parameters 
of Adaptive Neuro-Fuzzy Inference System (ANFIS) model to boost the prediction accuracy of oil 
production forecasting. This research revels the good practicable performance of AO. For another thing, 
once the HHO was proposed, it attracted a large number of researchers to improve or apply it to solve 
optimization problems in many fields. Chen et al. [31] proposed the first powerful variant of HHO by 
integrating chaos, topological multi-population, and differential evolution (DE) strategies. Chaos 
mechanism is for exploitation, multi-population strategy is for global search ability, and the DE 
mechanism is for increasing the accuracy of the solutions. Inspired by the survival-of-the-fittest 
principle of evolutionary algorithms, Al-Betar et al. [32] proposed three new versions of HHO 
incorporated tournament, proportional and linear rank-based strategies respectively to accelerate 
convergence. The proposed new versions show a better balance between the exploration and 
exploitation and enhance local optima avoidance as well. Song et al. [33] utilized dimension decision 
strategy in CS to improve the convergence speed, and Gaussian mutation to increase the convergence 
accuracy and premature convergence avoidance. Yousri et al. [34] improved the exploration 
performance of HHO using the fractional calculus (FOC) memory concept. The hawks move with a 
fractional-order velocity, and the escaping energy of prey is adaptively adjusted based on FOC 
parameters to avoid local optima stagnation. Gupta et al. [35] enhanced the search-efficiency and 
premature convergence avoidance of HHO by adding a nonlinear energy parameter, different settings 
for rapid dives, opposition-based learning strategy and a greedy selection mechanism. Akdag et al. [36] 
introduced seven types of random distribution functions to increase the performance of HHO, and then 
applied the modified HHO to solve optimum power flow (OPF) problem. Yousri et al. [37] applied 
HHO to optimize parameters of the Proportional-Integral controller for designing load frequency 
control (LFC). Jia et al. [38] proposed a dynamic HHO using a mutation mechanism to avoid local 
optima and enhance the search capability. This improved HHO was applied for satellite image 
segmentation as well.  

Otherwise, there are also attempts of hybrid algorithm of HHO. Hussain et al. [39] integrated 
sine-cosine algorithm (SCA) in HHO for numerical optimization and feature selection. The SCA 
integration is used to cater ineffective exploration in HHO, moreover exploitation is enhanced by 
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dynamically adjusting candidate solutions for avoiding solution stagnancy in HHO. Bao et al. [40] 
proposed HHO-DE by hybridizing HHO and DE algorithms. The convergence accuracy, ability to 
avoid local optima and stability are greatly improved compared to HHO and DE. Houssein et al. [41] 
proposed a hybrid algorithm called CHHO-CS by combining HHO with CS and chaotic maps. The 
CHHO-CS achieves a better balance between exploration and exploitation phases, and effectively 
avoids premature convergence. Kaveh et al. [42] hybridized HHO with Imperialist Competitive 
Algorithm (ICA). Combination of the exploration strategy of ICA and exploitation technique of HHO 
helps to achieve a better search performance. The satisfactory outcomes of several HHO-based hybrid 
algorithms proposed in the literature show potential research direction. 

Thus, in view of defects in the slow convergence and local optima stagnation of HHO and inspired 
by the above researches, we try a hybridization to enhance the performance of HHO and AO. An 
improved hybrid Aquila Optimizer and Harris Hawks Optimization namely IHAOHHO is proposed. 
First of all, we combine the exploration phase of AO with the exploitation phase of HHO together. 
This operation extracts and retains the strong exploration and exploitation capabilities of basic AO and 
HHO. Then, in order to further improve the performance of IHAOHHO, the representative-based 
hunting (RH) and opposition-based learning (OBL) strategies are introduced into IHAOHHO. RH is 
mixed into the exploration phase to increase the diversification and OBL is added into the exploitation 
phase to avoid local optima stagnation, respectively. Thus, the capabilities of exploration, exploitation 
and local optima avoidance are effectively enhanced in the proposed algorithm. The standard and 
CEC2017 benchmark functions and three engineering design problems are utilized to test the 
exploration and exploitation capabilities of IHAOHHO. The proposed algorithm is compared with 
basic AO, HHO, and several well-known meta-heuristic algorithms, including HOA, SSA, WOA, 
GWO, MVO, IPOP-CMA-ES [43], LSHADE [44], Sine-cosine and Spotted Hyena-based Chimp 
Optimization Algorithm (SSC) [45] and RUNge Kutta Optimizer (RUN) [46]. The experimental results 
show that the proposed IHAOHHO algorithm outperforms other state-of-the-art algorithms.  

The rest of this paper is organized as follows: The Section 2, provides a brief overview of the 
related work: basic AO and HHO algorithms, as well as the RH and OBL strategies. The Section 3, 
describes in detail the proposed hybrid algorithm. The Section 4, conducts simulation experiments and 
results analysis. Finally, Section 5, concludes the paper. 

2. Preliminaries 

2.1. Aquila Optimizer (AO) 

AO is a latest novel swarm intelligence algorithm proposed by Abualigah et al. in 2021. There 
are four hunting behaviors of Aquila for different kinds of prey. Aquila can switch hunting strategies 
flexibly for different prey, and then uses its fast speed united with sturdy feet and claws to attack prey. 
The brief description of mathematical model can be described as follows. 
Step 1: Expanded exploration: high soar with a vertical stoop  

In this method, the Aquila flies high over the ground and explorers the search space widely, and 
then a vertical dive will be taken once the Aquila determines the area of the prey. The mathematical 
representation of this behavior is written as: 

( 1) ( ) (1 ) ( ( ) ( ) )best M best

t
X t X t X t X t rand

T
                             (1) 
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( ) ( )

N

M i
i

X t X t
N 

                                      (2) 

where ( )bestX t  represents the best position obtained so far, and ( )MX t  denotes to the average position 
of all Aqulias in current iteration. t  and T  are the current iteration and the maximum number of 
iterations, respectively. N  is the population size and rand  is a random number between 0 and 1. 
Step 2: Narrowed exploration: contour flight with short glide attack  

This is the most commonly used hunting method for Aquila. It uses short gliding to attack the 
prey after descending within the selected area and flying around the prey. The position update formula 
is represented as: 

( 1) ( ) ( ) ( ) ( )best RX t X t LF D X t y x rand                          (3) 

where, ( )RX t   represents a random position of the hawk, and D   is the dimension size. ( )LF D  
represents Levy flight function, which is presented as follows: 

1
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| |
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                                     (4) 
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                               (5) 

where, s  and   are constant values equal to 0.01 and 1.5 respectively, u  and v  are random 
numbers between 0 and 1. y and x are used to present the spiral shape in the search, which are 
calculated as follows: 

1 1

1

sin( )
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0.00565
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x r
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r r D

D




 
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  

  
     


                                (6) 

where, 1r  means the number of search cycles between 1 and 20, 1D  is composed of integer numbers 
from 1 to the dimension size ( D ), and   is equal to 0.005. 
Step 3: Expanded exploitation: low flight with a slow descent attack  

In the third method, when the area of prey is roughly determined, the Aquila descends vertically 
to do a preliminary attack. AO exploits the selected area to get close to and attack the prey. This 
behavior is presented as follows: 

( 1) ( ( ) ( )) (( ) )best MX t X t X t rand UB LB rand LB                          (7) 

where    and    are the exploitation adjustment parameters fixed to 0.1, UB   and LB   are the 
upper and lower bounds of the problem. 
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Step 4: Narrowed exploitation: walking and grab prey 
In this method, the Aquila chases the prey in the light of its escape trajectory, and then attacks the 

prey on the ground. The mathematical representation of this behavior is as follows: 
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                   (8) 

where ( )X t  is the current position, and ( )QF t  represents the quality function value which used to 
balance the search strategy. 1G   denotes the movement parameter of Aquila during tracking prey, 
which is a random number between [-1,1]. 2G  denotes the flight slope when chasing prey, which 
decreases linearly from 2 to 0. 

The flowchart of AO is shown in Figure 1. 

Start

Set the initial value of 
parameters and population

t<(2/3)*T
YES NO

rand<0.5YES
NOrand<0.5

Update Xnewi 
using Eq. (1) 

Update Xnewi 

using Eq. (3) 

NOYES

Calculate the fitness 
of Xnewi and Xi

Update Xi

Return Xbest End

Update Xnewi 
using Eq. (7) 

Update Xnewi 

using Eq. (8) 

Calculate the fitness 
of Xnewi and Xi

Update Xi

Termination criteria?
YESNO

Check boundaries, calculate 
fitness and update Xbest

 

Figure1. AO algorithm flowchart. 
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2.2. Harris Hawks Optimization(HHO) 

HHO is a new meta-heuristic optimization algorithm proposed by Heidari et al. in 2019. It is 
inspired by the unique cooperative foraging activities of Harris’ hawk. Harris’ hawk can show a variety 
of chasing patterns according to the dynamic nature of the environment and the escaping patterns of 
the prey. These switching activities are conducive to confuse the running prey, and the cooperative 
strategies can help Harris’ hawk chase the detected prey to exhaustion, which increases its vulnerability. 
The brief description of mathematical model is as follows. 
2.2.1. Exploration phase 

The Harris’ hawks usually perch on some random locations, wait and monitor the desert to detect 
the prey. There are two perching strategies based on the positions of other family members and the 
prey, which are selected in accordance with the random q  value. 

( ) | ( ) 2 ( ) | q 0.5
( 1)

( ( ) ( )) ( ( )) q<0.5
R r

best M

X t rand X t rand X t
X t

X t X t rand LB rand UB LB

   
      

          (9) 

where q  is random number between 0 and 1. 

2.2.2. Transition from exploration to exploitation phase 

The HHO algorithm has a transition mechanism from exploration to exploitation phase based on 
the escaping energy of the prey, and then changes the different exploitative behaviors. The energy of 
the prey is modeled as follows, which decreases during the escaping behavior. 

02 (1 )
t

E E
T

                                   (10) 

where E   represents the escaping energy of the prey, 0E   is the initial state of the energy. When 
| | 1E  , the algorithm performs the exploration stage, and when | | 1E  , the algorithm performs the 
exploitation phase. 

2.2.3. Exploitation phase 

In this phase, four different chasing and attacking strategies are proposed on the basis of the 
escaping energy of the prey and chasing styles of the Harris’ hawks. Except for the escaping energy, 
parameter r  is also utilized to choose the chasing strategy, which indicates the chance of the prey in 
successfully escaping ( 0.5r  ) or not ( 0.5r  ) before attack. 
i. Soft besiege 

When 0.5r   and | | 0.5E  , the prey still has enough energy and tries to escape, so the Harris’ 
hawks encircle it softly to make the prey more exhausted and then attack it. This behavior is modeled 
as follows: 

( 1) ( ) | ( ) ( ) |bestX t X t E JX t X t                             (11) 
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( ) ( ) ( )bestX t X t X t                                 (12) 

2(1 )J rand                                   (13) 

where ( )X t   indicates the difference between the position of prey and the current position, J  
represents the random jump strength of prey. 
ii. Hard besiege 

When 0.5r   and | | 0.5E  , the prey has a low escaping energy, and the Harris’ hawks encircle 
the prey readily and finally attack it. In this situation, the positions are updated as follows: 

( 1) ( ) | ( ) |bestX t X t E X t                               (14) 

iii. Soft besiege with progressive rapid dives 
When | | 0.5E   and 0.5r  , the prey has enough energy to successfully escape, so the Harris’ 

hawks perform soft besiege with several rapid dives around the prey and try to progressively correct 
its position and direction. This behavior is modeled as follows: 

( ) | ( ) ( ) |best bestY X t E JX t X t                             (15) 

( )Z Y S LF D                                   (16) 

           ( ) ( ( ))
( 1)

          ( ) ( ( ))

Y if F Y F X t
X t

Z if F Z F X t


   

                        (17) 

where S  is a random vector. Note that, only the better position between Y and Z is selected as the 
next position. 
iv. Hard besiege with progressive rapid dives 

When | | 0.5E   and 0.5r  , the prey has no enough energy to escape, so the hawks perform a 
hard besiege to decrease the distance between their average position and the prey, and finally attack 
and kill the prey. The mathematical representation of this behavior is as follows: 

( ) | ( ) ( ) |best best MY X t E JX t X t                           (18) 

( )Z Y S LF D                                 (19) 

           ( ) (X( ))
(t 1)

          ( ) ( ( ))

Y if F Y F t
X

Z if F Z F X t


   

                       (20) 

Note that only the better position between Y and Z will be the next position for the new iteration. 
The flowchart of HHO is displayed in Figure 2. 
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Update Xi 
using Eq. (17)
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Update Xi 
using Eq. (11)
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YES NO

YES NO

NOYES

Update Xi 
using Eq. (9) 

Update Xi 
using Eq. (20)

Return Xbest EndTermination criteria?
YESNO

 

Figure 2. HHO algorithm flowchart. 

2.3. Representative-based hunting(RH) 

The strategy of representative-based hunting was first proposed to improve the exploration and 
diversification of GWO algorithm in 2021 [47]. To achieve this, an archive called representative 
archive (RA) is constructed to maintain the representative solutions. A random representative search 
agent is selected from the five-best search agents archived by the RA, and a random search agent is 
selected from the RA. Meanwhile, two random search agents are selected from the population. These 
four selections efficiently improve the diversity, exploration capability and premature convergence 
avoidance. The mathematical model of RH is as follows: 

_ _ 1 2( +1)= ( ( ) ) ( )R best R archive rand randX t X cd X t X X X                  (21) 

where XR_best and XR_archive are randomly selected from the five-best representative search agents and 
the whole archive, respectively. 1randX  and 2randX  are randomly selected from the whole population. 
  and the Cauchy distribution cd  are calculated by: 

=( ) ( )
1

Exponent
initial final final

T t

T
   

  


                    (22) 
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0= 0.1 tan( ( 0.5))cd z rand                            (23) 

  is a nonlinearly decreasing parameter form 1 to 0, which leads to decrease the exploration to 
exploitation over the course of iterations, forming a transition from exploration to exploitation. The 
cd  coefficient assists to enhance the random behavior, preferring exploration and escaping from the 
local optima. 

2.4. Opposition-based learning(OBL) 

Opposition-based learning (OBL) is a powerful optimization tool proposed by Tizhoosh in 2005 [48]. 
The main idea of OBL is simultaneously considering the fitness of an estimate and its corresponding 
counter estimate to obtain a better candidate solution (Figure 3). An optimization process usually starts 
at a random initial solution. If the random solution is near the optimal solution, the algorithm converges 
fast. However, it’s possible that the initial solution is far away from the optimum or just at exact 
opposite position. In this case, it might take quite long time to converge or not converge at all. Thus, 
considering the opposite direction of the candidate solution in each step increases the probability of 
finding a better solution. We can choose the opposite point as the candidate solution once the opposite 
solution is beneficial and then proceed to the next iteration. The OBL concept has successfully been 
used in varieties of meta-heuristics algorithms [49–53] to improve the convergence speed. OBL is 
defined by: 

, 1,2, ,jOBL j j jx l u x j n                              (24) 

where xjOBL represents the opposite solution, jl and ju are the lower and upper bounds of the problem 
in jth dimension. The opposite solution described by Eq (24) can effectively help the population jump 
out of the local optima. 

 

Figure 3. Diagram of OBL. 

3. The proposed IHAOHHO algorithm 

3.1. The detail design of IHAOHHO 

The AO simulates hunting behaviors for fast-moving prey within a wide flying area in exploration 
phase. The characteristics of these behaviors make AO have a strong global search ability and fast 
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convergence speed. However, the selected search space is not exhaustively searched during the 
exploitation phase. The role of Levy flight is weak in the late iterations, which tends to result in 
premature convergence. Thus, the AO algorithm possesses good exploration capability and fast 
convergence speed, but it is hard to escape from local optima in the exploitation stage. For the HHO 
algorithm, the experimental results show that deficiencies of insufficient diversification of the 
population and low convergence speed exist in the exploration phase. On the basis of the energy and 
escape probability of the prey, four different hunting strategies are used to implement various position 
updating methods in the exploitation phase. In addition, the transition mechanism from exploration to 
exploitation is a good way to adapt to animal characteristics. As a whole, the energy of prey decreases 
with the increase of iterations, making the algorithm enter the exploitation stage. 

E

|E|=1

 

Figure 4. Different phases of IHAOHHO. 

In this work, we retain the exploration phase of AO and the exploitation phase of HHO, and 
combine them together through the transition mechanism. The exploration phase of HHO is highly 
dominant with randomization that seems clueless search mechanism. In contrast, the position updating 
in exploration phase of AO is based on the best solution and average position with some randomness, 
which is more reasonable. And the four exploitation strategies based on the different values of E and r 
help the algorithm fully exploit the search space. This hybridization is beneficial to give full play to 
the advantages of these two basic algorithms. The global search capability, faster convergence speed, 
and detailed exploitation of the algorithms are all reserved. However, the diversity of the population 
in the exploration phase is insufficient due to the lack of randomness. As described in Section 2.3, RH 
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is designed for improving the exploration and diversification of an optimization algorithm. Selections 
from different sub-population can efficiently improve the diversity and exploration capability. Thus, 
RH strategy is utilized to further improve the diversification of the population in exploration phase, 
which is conducive to find the most promising region quickly. Besides, AO and HHO possess a 
common defect of local optima stagnation. The OBL strategy can utilize the opposite solution to make 
the population jump out of the local optima. Therefore, OBL strategy is added to the exploitation phase 
to enhance the ability to jump out of the local optima as well. All these strategies effectively improve 
the convergence speed, convergence accuracy and the overall optimization performance of the hybrid 
algorithm. This improved hybrid Aquila Optimizer and Harris Hawks Optimization algorithm is named 
IHAOHHO. Different phases of IHAOHHO are illustrated in Figure 4. The pseudo-code of 
IHAOHHO is given in Algorithm 1, and the summarized flowchart is shown in Figure 5. 

Start

Set the initial value of 
parameters and population

Check boundaries, calculate 
fitness and update Xbest

|E|≥1
YES NOAO with RH

HHO with OBL

r≥0.5

|E|≥0.5

Update the 
position of Xi 
using Eq. (11)

|E|≥0.5

Update the 
position of Xi 
using Eq. (15)

Update the 
position of Xi 
using Eq. (18)

YES NO

YESNO

NOYES
rand<0.5

Update Xnewi 
and X_Ri 

using Eq. (1) 
and Eq. (21)

Update Xnewi 
and X_Ri 

using Eq. (3) 

and Eq. (21)

NOYES

Calculate the 
fitness of Xnewi 

and X_Ri

Update Xi

Representative 
archive 

Update Xnewi 
using Eq. (24)

f(Xnewi)<f(Xi)

Update the 
position of Xi 
using Eq. (14)

Xi=Xnewi

Return Xbest End

YES

NO

Termination criteria?
YESNO

OBL

 

Figure 5. IHAOHHO algorithm flowchart. 
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Algorithm 1 Pseudo-code of IHAOHHO 
1:   Set the initial values of the population size N and the maximum number of iterations T 
2:   Initialize positions of the population X 
3:   While t < T 
4:     Update x, y, cd 
5:     For i = 1 to N 
6:       If t < T/2                   % Exploration part of AO 
7:       Archiving 
8:         If rand < 0.5 
9:           Update the position of Xnewi and X_Ri using Eqs (1) and (21), respectively 
10:          Calculate the fitness of Xnewi and X_Ri  
11:          Update the position of Xi 
12:        Else 
13:          Update the position of Xnewi and X_Ri using Eqs (3) and (21), respectively 
14:          Calculate the fitness of Xnewi and X_Ri  
15:          Update the position of Xi 
16:        End if 
17:      Else                      % Exploitation part of HHO 
18:        If r ≥ 0.5 and |E| ≥ 0.5 
19:          Update the position of Xi using Eq (11)   
20:        End if 
21:        If r ≥ 0.5 and |E| < 0.5 
22:          Update the position of Xi using Eq (14)   
23:        End if  
24:        If r < 0.5 and |E| ≥ 0.5 
25:          Update the position of Xi using Eq (15)  
26:        End if 
27:        If r < 0.5 and |E| < 0.5 
28:          Update the position of Xi using Eq (18)  
29:        End if 
30:        Update the position of Xnewi using Eq (24)   % Opposition-based learning (OBL) 
31:        If f(Xnewi) < f(Xi) 
32:          Xi = Xnewi 

33:        End if 
34:      End if 
35:      t = t + 1 
36:    End for 
37:    For i = 1 to N 
38:      Check if the position goes out of the search space boundary and bring it back. 
39:      Calculate the fitness of Xi 
40:      Update Xbest 

41:    End for  
42:  End while 
43:  Return Xbest 
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Table 1. Unimodal benchmark functions. 

Function  Dim Range fmin 

2
1 1
( )

n

ii
F x x


  30 [-100, 100] 0 

2 1 1
( )

nn

i ii i
F x x x

 
    30 [-10, 10] 0 

2

3 1 1
( ) ( )

n i

ji j
F x x

 
    30 [-100, 100] 0 

4 ( ) max { ,1 }i iF x x i n    30 [-100, 100] 0 

1 2 2 2
5 11
( ) [100( ) ( 1) ]

n

i i ii
F x x x x




     30 [-30, 30] 0 

2
6 1
( ) ( 5)

n

ii
F x x


   30 [-100, 100] 0 

4
7 1
( ) [0,1)

n

ii
F x ix random


   30 [-1.28,1.28] 0 

Table 2. Multimodal benchmark functions. 

Function  Dim Range fmin 

8 1
( ) sin( )

n

i ii
F x x x


   30 [-500, 500] -418.9829 × 30 

2
9 1
( ) [ 10cos(2 ) 10]

n

i ii
F x x x


    30 [-5.12, 5.12] 0 

2
10 1 1

1 1
( ) 20exp( 0.2 ) exp( cos(2 )) 20

n n

i ii i
F x x x e

n n


 
        30 [-32, 32] 0 

2
11 1 1

1
( ) cos( ) 1

4000

nn i
ii i

x
F x x

i 
     30 [-600, 600] 0 

21 2 2
12 1 11

1

( ) {10sin( ) ( 1) [1 10sin ( )] ( 1) }

1
( ,10,100, 4) where  1 ,

4

( )

( , , , ) 0

( )

n

i i ni

n i
i ii

m
i i

i i
m

i i

F x y y y y
n

x
u x y

k x a x a

u x a k m a x a

k x a x a

  





     


  

  
   
    



 ，

 
30 [-50, 50] 0 

2 2 2
13 1 1

2 2

1

( ) 0.1(sin (3 ) ( 1) [1 sin (3 1)]

( 1) [1 sin (2 )]) ( ,5,100,4)

n

i ii

n

n n ii

F x x x x

x x u x

 






    

   




 
30 [-50, 50] 0 

3.2. Computational complexity analysis 

The computational complexity is an important indicator for an algorithm, which is used to 
evaluate its time consumption during operating. The computational complexity of the IHAOHHO 
depends on three rules: initialization, evaluation of fitness, and updating of hawks. In the initialization 
stage, the computational complexity of positions generated of N hawks is O(N). Then, the 
computational complexity of fitness evaluation for the best solution is O(N) during the iteration 
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process. Finally, the computational complexities of position updating of hawks and fitness comparison 
in one iteration are O(2 × N × D) and O(N) respectively, where D is dimension size of the problem. 
Therefore, the total computational complexity of the proposed IHAOHHO algorithm is O(N × (1 + 2 
× D × T + 2 × T)). As described in the literature, the computational complexity of AO and HHO are 
both O(N × (1 + D × T + T)). Compared to the basic AO and HHO, the computational complexity of 
IHAOHHO is slightly increased due to the RH and OBL strategies, which is acceptable for improving 
the convergence accuracy and speed of the algorithm. 

4. Experimental results and discussion 

In this section, we implement four main experiments to evaluate the performance of the proposed 
IHAOHHO algorithm. Standard benchmark function experiment is carried out firstly, which is used to 
evaluate the performance of the algorithm in solving 23 simple numerical optimization problems. 
Secondly, the CEC2017 benchmark functions are tested to assess the performance of the algorithm in 
solving complex numerical optimization problems. Then, sensitivity analysis is performed to 
investigate the effect of the control parameters. The last one is engineering design problems, which 
aims to assess the performance of IHAOHHO in solving real-world problems. All experiments are 
implemented in MATLAB R2016a on a PC with Intel (R) core (TM) i5-9500 CPU @ 3.00GHz and 
RAM 16GB memory on OS windows 10. 

Table 3. Fixed-dimension multimodal benchmark functions. 

Function  Dim Range fmin 
25 1

14 21 6

1

1 1
( ) ( )

500 ( )j
i iji

F x
j x a






 
 




 2 [-65, 65] 1 

2
11 21 2

15 21
3 4

( )
( ) [ ]i i

ii
i i

x b b x
F x a

b b x x


 

   4 [-5, 5] 0.00030 

2 4 6 2 4
16 1 1 1 1 2 2 2

1
( ) 4 2.1 4

3
F x x x x x x x x       2 [-5, 5] -1.0316 

2 2
17 2 1 1 12

5.1 5 1
( ) ( 6) 10(1 )cos 10

4 8
F x x x x x

  
        2 [-5, 5] 0.398 

2 2 2
18 1 2 1 1 2 1 2 2

2 2 2
1 2 2 1 2 1 2 2

( ) [1 ( 1) (19 14 3 14 6 3 )]

[30 (2 3 ) (18 32 12 48 36 27 )]

F x x x x x x x x x

x x x x x x x x

        

        
 2 [-2, 2] 3 

4 3 2
19 1 1

( ) exp( ( ) )i ij j iji j
F x c a x p

 
      3 [-1, 2] -3.86 

4 6 2
20 1 1

( ) exp( ( ) )i ij j iji j
F x c a x p

 
      6 [0, 1] -3.32 

15

21 1
( ) [( )( ) ]T

i i ii
F x X a X a c




      

4 [0, 10] -10.1532 

17

22 1
( ) [( )( ) ]T

i i ii
F x X a X a c




      

4 [0, 10] -10.4028 

110

23 1
( ) [( )( ) ]T

i i ii
F x X a X a c




      

4 [0, 10] -10.5363 
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4.1. Standard benchmark function experiments 

We utilize 23 standard benchmark functions to test the performance of the IHAOHHO algorithm, 
which are divided into three types including unimodal, multimodal and fixed-dimension multimodal 
benchmark functions. The main characteristic of unimodal functions is that there is only one global 
optimum but no local optima. This kind of functions can be used to evaluate the exploitation capability 
and convergence rate of an algorithm. Unlike unimodal functions, multimodal and fixed-dimension 
multimodal functions have one global optimum and multiple local optima. These types of functions 
are utilized to evaluate the exploration and local optima avoidance capabilities. The benchmark 
function details are listed in Tables 1–3. 

Table 4. Parameter settings for the comparative algorithms. 

Algorithm  Parameters  

IHAOHHO σinitial = 1; σfinal = 0; Exponent = 2 

AO U = 0.00565; r1 = 10; ω = 0.005; α = 0.1; δ = 0.1; G1∈[-1, 1]; G2 = [2, 0] 

HHO q∈[0, 1]; r∈[0, 1]; E0∈[-1, 1]; E1 = [2, 0]; E∈ [-2, 2]; 

HOA hβ = 0.9; hγ = 0.5; sβ = 0.2; sγ = 0.1; iγ = 0.3; dα = 0.5; dβ = 0.2; dγ = 0.1; rδ = 0.1; rγ = 0.05 

SSA c1 = [1, 0]; c2∈[0, 1]; c3∈[0, 1] 

WOA a1 = [2, 0]; a2 = [-1, -2]; b = 1 

GWO a = [2, 0] 

MVO WEP ∈ [0.2,1]; TDR ∈ [0,1]; r1, r2, r3 ∈ [0,1] 

For verification of the results, IHAOHHO is compared with the basic AO, HHO, and HOA, SSA, 
WOA, GWO, MVO as several well-known meta-heuristic algorithms. For all tests, we set the 
population size N = 30, dimension size D = 30, maximum number of iterations T = 500, and run 30 
times independently. The parameter settings of each algorithm are shown in Table 4. After all, the 
average and standard deviation results of these test functions are exhibited in Table 5. Figure 6 shows 
the convergence curves of 23 test functions. The partial search history, trajectory and average fitness 
maps are shown in Figure 7. The Wilcoxon signed-rank test results are also listed in Table 6. 

4.1.1. Results of the algorithms on unimodal test functions (F1–F7) 

Unimodal test functions are usually used to investigate the exploitation capability of the algorithm 
since they have only one global optimum and no local optima. As seen from Table 5, the IHAOHHO 
performs much better than other selected algorithms exclude F6. For all unimodal functions exclude 
F6, IHAOHHO obtains the smallest average values and standard deviations compared to other 
algorithms, which indicate the best accuracy and stability among all these algorithms. Hence, the 
exploitation capability of the proposed IHAOHHO algorithm is competitive with all the selected meta-
heuristic algorithms. 
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Table 5. Results of algorithms on 23 benchmark functions. 

F  IHAOHHO AO HHO HOA SSA WOA MVO GWO 

F1 Avg 3.3660E-253 7.9345E-97 3.3401E-96 1.7886E-130 2.1594E-07 1.8120E-73 1.2681 1.0585E-27 

 Std 0 4.3457E-96 1.7664E-95 8.6475E-130 3.8328E-07 8.0771E-73 3.8945E-01 9.7097E-28 

F2 Avg 1.5599E-127 1.7619E-60 1.9990E-49 2.1595E-66 1.7056 8.8551E-51 3.7930 7.8893E-17 

 Std 8.5347E-127 9.6504E-60 9.5039E-49 1.1828E-65 1.3736 3.2476E-50 1.6432E+01 5.7891E-17 

F3 Avg 2.7431E-199 2.2314E-104 8.4798E-72 1.7856E+02 1.3173E+03 4.4381E+04 2.2448E+02 2.6928E-05 

 Std 0 1.2222E-103 4.4387E-71 5.2479E+02 1.1198E+03 1.1940E+04 1.2075E+03 6.0686E-05 

F4 Avg 2.2207E-129 1.6827E-69 1.1057E-49 4.5440E-65 1.2612E+01 5.6993E+01 2.1139 8.0152E-07 

 Std 1.1068E-128 7.6613E-69 3.0441E-49 2.4668E-64 3.8228 2.5529E+01 1.0284 8.3055E-07 

F5 Avg 5.3852E-04 5.4421E-03 2.1438E-02 2.8964E+01 2.2071E+02 2.7871E+01 3.8794E+02 2.7221E+01 

 Std 2.2657E-03 1.2008E-02 2.4291E-02 3.5795E-02 3.4556E+02 4.6073E-01 7.0618E-02 7.9162E-01 

F6 Avg 3.5863E-06 1.2028E-04 1.4716E-04 6.5645 2.5056E-07 3.4988E-01 1.1414 7.2412E-01 

 Std 7.7280E-06 1.7490E-04 2.0847E-04 3.4100E-01 3.8211E-07 1.7102E-01 4.4812E-01 3.9184E-01 

F7 Avg 9.5324E-05 1.0504E-04 1.3211E-04 6.7657E-02 1.6706E-01 2.7105E-03 3.4554E-02 2.1436E-03 

 Std 7.6717E-05 8.6163E-05 1.4567E-04 4.0688E-02 7.8018E-02 3.2053E-03 1.5231E-02 1.3151E-03 

F8 Avg -12569.3858 -8010.0774 -12569.0257 -4106.2204 -7362.4999 -10632.1912 -7648.8103 -6101.7628 

 Std 1.8228E-01 4.0684E+03 7.5912E-01 7.7530E+02 8.6690E+02 0 5.2123E+02 8.9531E+02 

F9 Avg 0 0 0 8.0284E+01 5.3197E+01 0 1.2456E+02 3.3205 

 Std 0 0 0 1.0686E+02 2.0211E+01 4.6777E-15 3.4040E+01 4.302 

F10 Avg 8.8818E-16 8.8818E-16 8.8818E-16 5.7436E-15 2.6880 2.7886E-15 1.7605 9.8230E-14 

 Std 0 0 0 1.7413E-15 6.5906E-01 2.421E-15 6.6839E-01 1.7092E-14 

F11 Avg 0 0 0 2.0978E-01 2.3006E-02 1.1525E-02 8.6051E-01 5.3578E-03 

 Std 0 0 0 3.7796E-01 1.5437E-02 4.4029E-02 8.3088E-02 7.3633E-03 

F12 Avg 2.6974E-07 2.8068E-06 1.9506E-05 1.1656 7.8473 2.1363E-02 1.8746 5.7227E-02 

 Std 4.4163E-07 5.7142E-06 3.8352E-05 2.1289E-01 2.7926 1.2107E-02 1.1276 9.6891E-02 

F13 Avg 3.0227E-06 4.9439E-05 9.7772E-05 3.0571 1.8860E+01 5.3918E-01 1.7158E-01 6.2217E-01 

 Std 5.0785E-06 9.2988E-05 9.5928E-05 1.8645E-01 1.6484E+01 2.9800E-01 1.0772E-01 2.5487E-01 

F14 Avg 1.5932 2.0487 1.2629 2.9322 1.3943 2.8615 0.998 4.6223 

 Std 9.2477E-01 2.1859 5.1727E-01 2.1542 9.5834E-01 3.3284 2.7158E-11 4.1450 

F15 Avg 4.4227E-04 4.9359E-04 3.9582E-04 7.1269E-03 2.2249E-03 7.5110E-04 7.8593E-03 5.7748E-03 

 Std 3.4587E-04 1.1786E-04 2.3573E-04 7.5345E-03 4.9361E-03 4.9981E-04 1.3437E-02 8.9518E-03 

F16 Avg -1.0316 -1.0312 -1.0316 -0.99752 -1.0316 -1.0316 -1.0316 -1.0316 

 Std 3.1088E-08 4.0636E-04 7.1130E-09 3.1957E-02 1.8547E-14 7.6118E-10 4.5176E-07 3.6867E-08 

F17 Avg 3.9789E-01 3.9813E-01 3.9789E-01 3.9790E-01 3.9789E-01 3.9790E-01 3.9789E-01 3.9789E-01 

 Std 4.0428E-05 3.0290E-04 4.5913E-05 1.1204E-03 9.2471E-15 1.5755E-05 7.7424E-08 7.6565E-07 

F18 Avg 3 3.0243 3 7.7479 3 3.0001 3 3 

 Std 3.3248E-06 5.5712E-02 6.1620E-07 1.6153E+01 1.9031E-13 3.1781E-04 2.5080E-06 4.7166E-05 

F19 Avg -3.8258 -3.8535 -3.8597 -3.8619 -3.8628 -3.8551 -3.8628 -3.8598 

 Std 7.1972E-02 8.7650E-03 3.8900E-03 6.2715E-04 1.9037E-12 8.6573E-03 3.7043E-06 3.9554E-03 

F20 Avg -3.0792 -3.1678 -3.0813 -3.2580 -3.2335 -3.2080 -3.2448 -3.2721 

 Std 1.1913E-01 7.3334E-02 9.9164E-02 7.5769E-02 6.4415E-02 1.1882E-01 5.9771E-02 7.6156E-02 

F21 Avg -10.1525 -10.1422 -5.2145 -9.3937 -6.6406 -9.2821 -6.9627 -9.6452 

 Std 1.4463E-03 1.8290E-02 8.8739E-01 1.2967 3.4554 1.9234 3.1618 1.5462 

F22 Avg -10.4026 -10.3914 -5.0820 -9.5706 -9.7954 -7.6313 -8.6587 -10.4009 

 Std 6.6551E-04 2.1551E-02 8.7380E-03 1.5379 1.8875 3.0683 2.7631 1.2358E-03 

F23 Avg -10.5359 -10.5292 -5.1234 -9.8166 -8.7191 -7.0303 -7.5296 -10.5348 

 Std 6.6691E-04 1.2664E-02 52035E-03 1.0080 3.1206 3.4442 3.5941 8.4873E-04 
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Figure 6. Convergence curves of 23 benchmark functions. 
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Figure 6. Convergence curves of 23 benchmark functions. 
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Figure 6. Convergence curves of 23 benchmark functions. 



7095 

Mathematical Biosciences and Engineering  Volume 18, Issue 6, 7076-7109. 

 

Figure 7. Parameter space, search history, trajectory, average fitness, and convergence 
curve of IHAOHHO. 
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4.1.2. Results of the algorithms on multimodal test functions (F8–F23) 

Multimodal test functions F8–F23 contain plentiful local optima whose number increases 
exponentially with the dimension size of the problem. These functions are very useful to evaluate the 
exploration ability and local optima avoidance of the algorithm. It can be seen from Table 5 that 
IHAOHHO outperforms other algorithms in most of the multimodal and fixed-dimension multimodal 
functions. For multimodal functions F8–F13, IHAOHHO shows completely superiority than other 
selected algorithms with the best average values and standard deviations. For ten fixed-dimensions 
multimodal functions F14–F23, IHAOHHO performs barely satisfactory. The IHAOHHO outperforms 
others in terms of both average values and standard deviations in F21–F23, and achieves the best 
accuracy for F16–F18. These results reveal that IHAOHHO can also provide superior exploration capability. 

4.1.3. Analysis of convergence behavior 

Search agents tend to change drastically to investigate promising regions of the search space in 
early iterations, and then exploit the region in detail and converge gradually as the number of iterations 
increases. Convergence curves of the IHAOHHO, AO, HHO, HOA, SSA, WOA, GWO, and MVO for 23 
standard benchmark functions are given in Figure 6, which show the convergence rate of algorithms. 
As we can see, IHAOHHO shows competitive performance compared to other state-of-the-art 
algorithms. The IHAOHHO algorithm presents faster convergence speed than all other algorithms in 
F1–F4 and F8–F11. For else test functions, IHAOHHO may not have much advantages than other 
algorithms in terms of convergence speed with the reason that some algorithms are excellent as well, 
but the convergence accuracy of IHAOHHO is better than other algorithms in most of the test functions. 

The superiority of IHAOHHO in terms of convergence speed is likely to come from the RH 
strategy in exploration phase. To be specific, the RH strategy provides better randomness and diversity 
for the search agents, making search agents explore the search space widely and randomly. The 
improvement of randomness and diversity increases the probability of finding the most promising 
region quickly. The advantage of convergence accuracy is likely to be derived from the OBL strategy, 
which improves randomness of search agents. The search agents can choose the better one to jump out 
of the local optima in each iteration. These two strategies help the hybrid algorithm outperforms the 
basic AO and HHO. Overall, IHAOHHO can efficiently achieve great solutions for all 23 standard 
benchmark functions. 

4.1.4. Qualitative results and analysis 

Furthermore, Figure 7 shows us the results of several representative test functions on search 
history, trajectory, average fitness and convergence curve. From search history maps, we can see the 
search agents’ distribution of the IHAOHHO while exploring and exploiting the search space. Because 
of the fast convergence, the vast majority of search agents are concentrated near the global optimum. 
Inspecting trajectory figures in Figure 7, the first search agent constantly oscillates in the first 
dimension of the search space, which suggests that the search agent investigates the most promising 
areas and better solutions widely. This powerful search capability is likely to come from the RH and 
OBL strategies. The average fitness presents if exploration and exploitation are conducive to improve 
the first random population and an accurate approximation of the global optimum can be found in the 
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end. Similarly, it can be noticed that the average fitness oscillates like trajectories in the early iterations, 
and then decreases abruptly and levels off accordingly. The average fitness maps show the great 
improvement of the first random population and the acquisition of the final global optimal 
approximation as well. At last, the convergence curves reveal the best fitness values found by search 
agents after each of iteration. By observing this, the IHAOHHO shows very fast convergence speed. 

Table 6. P-values from the Wilcoxon signed-rank test for the results in Table 5. 

F 
IHAOHHO vs 

AO 

IHAOHHO vs 

HHO 

IHAOHHO vs 

HOA 

IHAOHHO vs 

SSA 

IHAOHHO vs 

WOA 

IHAOHHO vs 

MVO 

IHAOHHO vs 

GWO 

F1 6.1035E-05 6.1035E-05 6.1035E-05 6.1035E-05 6.1035E-05 6.1035E-05 6.1035E-05 

F2 6.1035E-05 6.1035E-05 6.1035E-05 6.1035E-05 6.1035E-05 6.1035E-05 6.1035E-05 

F3 6.1035E-05 6.1035E-05 6.1035E-05 6.1035E-05 6.1035E-05 6.1035E-05 6.1035E-05 

F4 6.1035E-05 6.1035E-05 6.1035E-05 6.1035E-05 6.1035E-05 6.1035E-05 6.1035E-05 

F5 0.10699 1.2207E-04 6.1035E-05 6.1035E-05 6.1035E-05 6.1035E-05 6.1035E-05 

F6 1.8311E-04 1.8311E-04 6.1035E-05 1.1597E-03 6.1035E-05 6.1035E-05 6.1035E-05 

F7 6.3721E-02 0.10699 6.1035E-05 6.1035E-05 6.1035E-05 6.1035E-05 6.1035E-05 

F8 6.1035E-05 0.63867 6.1035E-05 6.1035E-05 6.1035E-05 6.1035E-05 6.1035E-05 

F9 NaN NaN 6.1035E-05 6.1035E-05 NaN 6.1035E-05 6.1035E-05 

F10 NaN NaN 6.1035E-05 6.1035E-05 1.9531E-03 6.1035E-05 6.1035E-05 

F11 NaN NaN 0.1250 6.1035E-05 NaN 6.1035E-05 NaN 

F12 2.6245E-03 1.2207E-04 6.1035E-05 6.1035E-05 6.1035E-05 6.1035E-05 6.1035E-05 

F13 2.1545E-02 1.2207E-04 6.1035E-05 6.1035E-05 6.1035E-05 6.1035E-05 6.1035E-05 

F14 0.97797 0.45428 1.8066E-02 2.6245E-03 0.18762 6.1035E-05 3.5339E-02 

F15 6.1035E-05 0.45428 6.1035E-05 6.1035E-05 6.1035E-05 6.1035E-05 0.3028 

F16 6.1035E-05 8.3618E-03 6.1035E-05 6.1035E-05 9.4604E-02 6.1035E-05 5.5359E-02 

F17 6.1035E-04 0.45428 6.1035E-05 6.1035E-05 0.27686 3.0518E-04 1.0254E-02 

F18 8.3252E-02 1.2207E-04 8.3252E-02 6.1035E-05 0.48871 0.67877 0.13538 

F19 7.2998E-02 1.8066E-02 7.2998E-02 6.1035E-05 1.8066E-02 6.1035E-05 3.0151E-02 

F20 6.1035E-04 0.93408 8.5449E-04 1.5259E-03 2.0142E-03 6.1035E-05 8.5449E-04 

F21 3.3569E-03 6.1035E-05 6.1035E-05 4.2120E-02 1.2207E-04 2.0142E-03 1.8311E-04 

F22 1.2207E-04 6.1035E-05 6.1035E-05 8.3252E-02 1.8311E-04 4.126E-02 8.3618E-03 

F23 1.1597E-03 6.1035E-05 6.1035E-05 3.3026E-02 6.1035E-05 1.6882E-02 6.7139E-03 

4.1.5. The Wilcoxon test 

The Wilcoxon signed-rank test is a non-parametric statistical test and useful to evaluate the 
statistical performance differences between the proposed IHAOHHO algorithm and other algorithms. 
As is well-known, p-values less than 0.05 indicate that there is a significant difference between the 
two compared algorithms. The calculated results of Wilcoxon signed-rank test between IHAOHHO 
and other seven algorithms for each benchmark functions are listed in Table 6. According to the 
criterion of 0.05, IHAOHHO outperforms all other algorithms in varying degrees. This superiority is 
statistically significant on unimodal functions F1–F6, which strongly indicates that IHAOHHO 
possesses high exploitation. IHAOHHO also shows better results on multimodal function F8–F23, 
which may suggest that IHAOHHO has a high capability of exploration. To sum up, the IHAOHHO 
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algorithm can provide better results on almost all benchmark functions than other comparative algorithms. 

Table 7. Descriptions of the benchmark functions from CEC2017. 

Function Name Dim Range fmin 

Unimodal functions    

F24 Shifted and Rotated Bent Cigar Function 10 [-100, 100] 100 

F25 Shifted and Rotated Zakharov Function 10 [-100, 100] 300 

Multimodal functions    

F26 Shifted and Rotated Rosenbrock’s Function 10 [-100, 100] 400 

F27 Shifted and Rotated Rastrigin’s Function 10 [-100, 100] 500 

F28 Shifted and Rotated Expanded Scaffer’s F6 Function 10 [-100, 100] 600 

F29 Shifted and Rotated Lunacek Bi-RastriginFunction 10 [-100, 100] 700 

F30 Shifted and Rotated Non-Continuous Rastrigin’s Function 10 [-100, 100] 800 

F31 Shifted and Rotated Levy Function 10 [-100, 100] 900 

F32 Shifted and Rotated Schwefel’s Function 10 [-100, 100] 1000 

Hybrid functions (N is basic number of functions)    

F33 Hybrid Function 1 (N = 3) 10 [-100, 100] 1100 

F34 Hybrid Function 2 (N = 3) 10 [-100, 100] 1200 

F35 Hybrid Function 3 (N = 3) 10 [-100, 100] 1300 

F36 Hybrid Function 4 (N = 4) 10 [-100, 100] 1400 

F37 Hybrid Function 5 (N = 4) 10 [-100, 100] 1500 

F38 Hybrid Function 6 (N = 4) 10 [-100, 100] 1600 

F39 Hybrid Function 6 (N = 5) 10 [-100, 100] 1700 

F40 Hybrid Function 6 (N = 5) 10 [-100, 100] 1800 

F41 Hybrid Function 6 (N = 5) 10 [-100, 100] 1900 

F42 Hybrid Function 6 (N = 6) 10 [-100, 100] 2000 

Composite functions (N is basic number of functions)    

F43 Composite Function 1 (N = 3) 10 [-100, 100] 2100 

F44 Composite Function 2 (N = 3) 10 [-100, 100] 2200 

F45 Composite Function 3 (N = 4) 10 [-100, 100] 2300 

F46 Composite Function 4 (N = 4) 10 [-100, 100] 2400 

F47 Composite Function 5 (N = 5) 10 [-100, 100] 2500 

F48 Composite Function 6 (N = 5) 10 [-100, 100] 2600 

F49 Composite Function 7 (N = 6) 10 [-100, 100] 2700 

F50 Composite Function 8 (N = 6) 10 [-100, 100] 2800 

F51 Composite Function 9 (N = 6) 10 [-100, 100] 2900 

F52 Composite Function 10 (N = 3) 10 [-100, 100] 3000 

4.2. Experiments on the CEC2017 benchmark function 

Standard benchmark function experiments demonstrate the superior performance on simple 
problems of the proposed IHAOHHO algorithm. The complex functions can help to investigate the 
performance on intricate problems. One of the most challenging test function suites called CEC2017 [54] 
is selected to further test the performance of IHAOHHO, which contains 30 functions with more than 
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half of the challenging hybrid and composition functions as shown in Table 7. The test results are 
compared to some well-known and latest algorithms proposed recently, in which IPOP-CMA-ES and 
LSHADE are the best behaved on CEC2017 in the literature. As the previous section described, each 
algorithm is ran 30 times with 500 iterations, and average and standard deviation results are presented 
in Table 8. From the comparison results, the proposed IHAOHHO obtains the 3rd rank following IPOP-
CMA-ES and LSHADE, and exceeds SSC, RUN and HOA methods completely. It reveals that 
IHAOHHO can also achieve better results on complex functions. 

Table 8. Comparison results of algorithms on CEC2017. 

F  IHAOHHO IPOP-CMAES LSHADE SSC RUN HOA 

F24 Avg 1.77467E + 09 1.00000E + 02 1.00000E + 02 2.50699E + 09 3.75483E + 04 3.50163E + 08 

 Std 1.11254E + 09 0.00000E + 00 0.00000E + 00 1.72594E + 09 1.40126E + 04 1.57335E + 08 

F25 Avg 4.69684E + 03 3.00000E + 02 3.00000E + 02 4.84926E + 03 5.05458E + 04 6.03840E + 03 

 Std 1.99656E + 03 0.00000E + 00 0.00000E + 00 2.04210E + 03 8.29687E + 03 2.15957E + 03 

F26 Avg 4.15353E + 02 4.00091E + 02 4.00000E + 02 6.35108E + 02 5.13264E + 02  4.53729E + 02 

 Std 1.69972E + 01 4.43520E-02 0.00000E + 00 1.98490E + 02 1.81438E + 01  3.02199E + 01 

F27 Avg 5.57466E + 02 5.19197E + 02 5.02340E + 02 5.60349E + 02 6.53772E + 02 5.74943E + 02 

 Std 1.01328E + 01 8.41520E + 00 8.75000E-01 1.84807E + 01 2.91163E + 01 1.10416E + 01 

F28 Avg 6.29286E + 02 6.00000E + 02 6.00000E + 02 6.36104E + 02 6.40548E + 02  6.37022E + 02 

 Std 7.67590E + 00 0.00000E + 00 2.59000E-07 1.01438E + 01 8.25192E + 00 8.80160E + 00 

F29 Avg 7.69414E + 02 7.32212E + 02 7.12230E + 02 8.13508E + 02 9.36961E + 02 7.79986E + 02 

 Std 1.20032E + 01 3.93460E + 00 6.05000E-01 1.64856E + 01 5.73895E + 01  1.27443E + 01 

F30 Avg 8.40446E + 02 8.14912E + 02 8.02140E + 02 8.46992E + 02 9.21845E + 02  8.55157E + 02 

 Std 7.39460E + 00 8.47500E + 00 1.03100E + 00 1.04671E + 01 2.62983E + 01 8.87940E + 00 

F31 Avg 1.36798E + 03 9.00000E + 02 9.00000E + 02 1.44797E + 03 3.52693E + 03 1.09708E + 03 

 Std 2.12360E + 02 0.00000E + 00 0.00000E + 00 2.89598E + 02 8.96934E + 02 1.40757E + 02 

F32 Avg 2.20829E + 03 2.29077E + 03 1.07003E + 03 2.89454E + 03 5.14578E + 03 2.87917E + 03 

 Std 1.90189E + 02 2.37652E + 02 5.65600E + 01 2.06134E + 02 7.73937E + 02 2.06107E + 02 

F33 Avg 1.20861E + 03 1.16709E + 03 1.10002E + 03 1.38357E + 03 1.26564E + 03  1.30871E + 03 

 Std 2.31887E + 01 1.35981E + 02 1.20000E-01 1.02038E + 02 3.23837E + 01  9.44024E + 01 

F34 Avg 9.65212E + 06 1.61308E + 03 1.33295E + 03 2.29908E + 06 1.38367E + 07  1.75532E + 07 

 Std 6.54481E + 06 1.73789E + 02 8.62600E + 01 6.06195E + 06 9.36578E + 06  1.17226E + 07 

F35 Avg 1.73810E + 04 1.35805E + 03 1.30374E + 03 4.09334E + 04 2.63421E + 04  1.34045E + 06 

 Std 1.00028E + 04 6.27520E + 01 3.26000E + 00 2.07982E + 04 1.45826E + 04 1.11750E + 06 

F36 Avg 2.51467E + 03 1.47391E + 03 1.40019E + 03 6.63735E + 03 2.27458E + 05  2.80598E + 03 

 Std 1.21526E + 03 4.18650E + 01 4.50000E-01 1.23909E + 03 1.87179E + 05  1.25523E + 03 

F37 Avg 8.52054E + 03 1.51384E + 03 1.50033E + 03 1.77014E + 04 1.42723E + 04  3.15987E + 04 

 Std 3.16501E + 03 2.10632E + 01 2.00000E-01 7.89396E + 03 3.59942E + 03  3.55718E + 04 

F38 Avg 1.90369E + 03 1.66968E + 03 1.60087E + 03 1.92836E + 03 2.84572E + 03 2.00480E + 03 

 Std 1.00750E + 02 3.53711E + 01 3.60000E-01 1.12527E + 02 3.28867E + 02 1.58304E + 02 

F39 Avg 1.78843E + 03 1.77638E + 03 1.70137E + 03 1.79644E + 03 2.24703E + 03 1.90857E + 03 

 Std 3.41834E + 01 1.23878E + 01 3.84000E + 00 1.87221E + 01 2.22813E + 02  8.69727E + 01 

F40 Avg 1.71900E + 04 1.90952E + 03 1.80359E + 03 1.27448E + 05 6.11908E + 05 3.62014E + 05 

 Std 1.05037E + 04 2.39660E + 01 7.60000E + 00 1.40079E + 05 7.60372E + 05  2.40106E + 05 

F41 Avg 1.58292E + 05 1.91811E + 03 1.90026E + 03 2.81911E + 04 4.43675E + 05  1.66843E + 04 

 Std 4.02208E + 05 2.12890E + 01 3.00000E-02 6.61395E + 03 3.45206E + 05  1.56893E + 04 

      Continued on next page
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F  IHAOHHO IPOP-CMAES LSHADE SSC RUN HOA 

F42 Avg 2.17157E + 03 2.05983E + 03 2.00023E + 03 2.28443E + 03 2.56095E + 03 2.26788E + 03 

 Std 6.49892E + 01 1.85766E + 01 4.30000E-01 6.52079E + 01 1.70413E + 02 8.48882E + 01 

F43 Avg 2.30614E + 03 2.31934E + 03 2.25542E + 03 2.32175E + 03 2.44601E + 03 2.35311E + 03 

 Std 2.47564E + 01 8.46660E + 00 5.21600E + 01 6.07100E + 01 2.52926E + 01 4.32033E + 01 

F44 Avg 2.41213E + 03 2.73101E + 03 2.30010E + 03 3.59786E + 03 3.31843E + 03  2.35109E + 03 

 Std 8.37419E + 01 6.26970E + 01 1.70000E-01 7.07466E + 02 1.86094E + 03 3.37269E + 01 

F45 Avg 2.62413E + 03 2.63000E + 03 2.60230E + 03 2.65854E + 03 2.80612E + 03 2.72046E + 03 

 Std 2.12841E + 01 5.55150E + 00 1.42000E + 00 2.74840E + 01 2.95349E + 01 2.25245E + 01 

F46 Avg 2.78904E + 03 2.70961E + 03 2.68830E + 03 2.80479E + 03 2.98605E + 03  2.82014E + 03 

 Std 2.75184E + 01 9.78340E + 00 9.16500E + 01 2.35894E + 01 4.61846E + 01 5.20187E + 01 

F47 Avg 2.93523E + 03 2.93212E + 03 2.92377E + 03 3.02323E + 03 2.93603E + 03 2.96740E + 03 

 Std 1.96255E + 01 8.33760E + 00 2.13000E + 01 5.86012E + 01 2.67693E + 01 1.82177E + 01 

F48 Avg 3.28386E + 03 3.21722E + 03 2.90000E + 03 4.05668E + 03 4.50153E + 03 3.33849E + 03 

 Std 2.31698E + 02 2.03330E + 02 0.00000E + 00 2.87720E + 02 1.27120E + 03 4.73594E + 02 

F49 Avg 3.11226E + 03 3.08917E + 03 3.08903E + 03 3.11634E + 03 3.31206E + 03 3.23484E + 03 

 Std 1.80612E + 01 4.24482E + 01 1.05000E + 00 2.68443E + 01 3.57031E + 01 5.28018E + 01 

F50 Avg 3.21692E + 03 3.27673E + 03 3.15435E + 03 3.25502E + 03 3.28169E + 03 3.49994E + 03 

 Std 1.07032E + 02 9.66220E + 00 1.10920E + 01 3.19693E + 01 2.06487E + 01  1.36289E + 03 

F51 Avg 3.35870E + 03 3.27842E + 03 3.13492E + 03 3.36830E + 03 4.24526E + 03 3.37358E + 03 

 Std 6.51044E + 01 5.74741E + 01 3.87000E + 00 9.54409E + 01 2.74106E + 02  7.28448E + 01 

F52 Avg 3.29001E + 06 3.28462E + 04 3.41838E + 03 7.61412E + 06 3.99731E + 06 4.12253E + 06 

 Std 2.57991E + 06 2.60735E + 04 2.28600E + 01 4.84549E + 06 2.71864E + 06  4.95066E + 06 

Table 9. Sensitivity analysis on the IHAOHHO’s parameters. 

F 
σinitial = 1, 

E = 1 

σinitial = 1, 

E = 1.5 

σinitial = 1, 

E = 2 

σinitial = 1.5,

E = 1 

σinitial = 1.5,

E = 1.5 

σinitial = 1.5,

E = 2 

σinitial = 2, 

E = 1 

σinitial = 2, 

E = 1.5 

σinitial = 2, 

E = 2 

F5 2.62E - 06 3.89E - 06 3.80E - 08 1.90E - 06 2.44E - 06 5.84E - 08 4.24E - 06 8.99E - 07 3.79E - 06 

F7 4.04E - 08 6.20E - 08 1.47E - 08 5.79E - 08 1.32E - 07 6.93E - 08 3.18E - 08 1.60E - 08 2.08E - 08 

F9 0 0 0 0 0 0 0 0 0 

F13 1.16E - 10 1.04E - 11 3.20E - 12 3.29E - 11 3.81E - 11 2.52E - 11 5.34E - 12 8.14E - 11 7.61E - 11 

F14 5.4418 0.43653 0.10935 0.54588 0.87306 0.87306 0.54591 1.7461 5.1709 

F18 1.18E - 09 3.02E - 09 7.59E - 11 8.23E - 11 25.1496 25.1379 1.96E - 08 2.73E - 06 25.1593 

F25 6.50E + 07 6.63E + 07 6.55E + 07 5.50E + 07 4.99E + 07 4.84E + 07 6.22E + 07 6.56E + 07 7.25E + 07

F26 2.94E + 04 2.14E + 04 1.51E + 04 1.26E + 04 1.87E + 04 1.86E + 04 1.47E + 04 2.76E + 04 2.70E + 04

F30 2.43E + 035 1.73E + 03 1.78E + 03 2.18E + 03 2.12E + 03 2.10E + 03 1.74E + 03 2.04E + 03 2.13E + 03

F33 6.61E + 04 5.12E + 04 2.92E + 04 8.56E + 04 4.04E + 04 6.08E + 04 5.48E + 04 4.45E + 04 6.75E + 04

F39 2.43E + 04 1.94E + 04 1.73E + 04 1.54E + 04 1.68E + 04 1.26E + 04 1.21E + 04 1.46E + 04 1.22E + 04

F44 4.31E + 04 5.06E + 04 4.78E + 04 5.88E + 04 4.08E + 04 9.79E + 04 4.93E + 04 6.43E + 04 7.79E + 04

F49 1.91E + 05 1.95E + 05 1.85E + 05 1.93E + 05 1.87E + 05 2.01E + 05 1.90E + 05 1.95E + 05 1.88E + 05

4.3. Sensitivity analysis 

The performance of an optimization algorithm is affected by the values of the control parameters. 
For the sake of better performance, the influence of the parameters should be investigated to select the 
appropriate values. The IHAOHHO algorithm owns three parameters σinitial, σfinal and Exponent in 
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Eq (22). At the end of the iteration, the algorithm needs to search in detail and minimize randomness 
as much as possible. Thus,σfinal should be equal to 0 to get rid of the random term in Eq (21). Next, 
the left two parametersσinitial and Exponent are assessed by the representative standard and CEC2017 
benchmark functions in Table 9. The mean-square error values are obtained using benchmark functions 
from different categories including unimodal, multimodal and fixed-multimodal of standard benchmark 
functions, and unimodal, multimodal, hybrid and composite of CEC2017 with different parameters. The 
best performance bolded is obtained by values 1 and 2 for parameters σinitial and Exponent. 

4.4. Experiments on engineering design problems 

Considering equality and inequality constraints is a necessary process for optimization because 
most optimization problems have constraints in the real world. In this subsection, three well-known 
constrained engineering design problems, which include speed reducer design problem, 
tension/compression spring design problem and three-bar truss design problem, are solved to further 
verify the performance of IHAOHHO. The results of IHAOHHO are compared to the basic AO, HHO, 
and HOA, SSA, WOA, GWO, MVO as well. The parameter settings are the same as the previous 
numerical experiments. For all tests, each algorithm is ran 15 times independently. The best result 
among 15 times for each algorithm and the Wilcoxon signed-rank test results between IHAOHHO and 
other algorithms are shown in Tables 10–12.  

4.4.1. Speed reducer design problem 

This problem aims to optimize seven variables to minimize the speed reducer’s total weights, 
which include the face width (x1), module of teeth (x2), a discrete design variable on behalf of the teeth 
in the pinion (x3), length of the first shaft between bearings (x4), length of the second shaft between 
bearings (x5), diameters of the first shaft (x6) and diameters of the second shaft (x7). Four constraints: 
covering stress, bending stress of the gear teeth, stresses in the shafts and transverse deflections of the 
shafts as shown in Figure 8 should be satisfied. The mathematical formulation is represented as follows: 

 
Figure 8. Speed reducer design problem. 

Minimize 
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Compared to other algorithms, IHAOHHO can obviously achieve better results in the speed 
reducer design problem, as shown in Table 10. P-values in Table 10 show us the significant difference 
between IHAOHHO and other algorithms, proving the statistical superiority of the proposed algorithm. 
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Table 10． Comparison of IHAOHHO results with other competitors for the speed reducer 
design problem. 

Algorithm Optimum variables Optimum 

weight 

P-value 

x1 x2 x3 x4 x5 x6 x7 

IHAOHHO 3.49683 0.7 17 7.33302 7.8 3.35006 5.28575 2995.816 NaN 

AO 3.49688 0.7 17 8.10828 7.8 3.37081 5.28578 3008.168 0.025574 

HHO 3.49731 0.7 17 7.3 7.8 3.47527 5.28482 3028.6976 0.035339 

HOA 3.56008 0.7 17 7.34912 7.8 3.49325 5.28415 3058.577 6.1035e-05 

SSA 3.49732 0.7 17 8.03843 7.80061 3.52296 5.28577 3049.1538 0.012451 

WOA 3.4976 0.7 17 7.3 7.8 3.44134 5.28525 3019.3398 0.043721 

MVO 3.52164 0.7 17 7.44477 8.29729 3.43143 5.2842 3038.4984 0.018066 

GWO 3.49231 0.7 17.0038 8.1759 8.04815 3.35214 5.28783 3013.2315 0.0026245 

4.4.2. Tension/compression spring design problem 

In this case, the intention is to minimize the weight of the tension/compression spring shown in 
Figure 9. Constraints on surge frequency, shear stress and deflection must be satisfied during optimum 
design. There are three parameters need to be minimized, including the wire diameter(d), mean coil 
diameter(D) and the number of active coils (N). The mathematical form of this problem can be written 
as follows: 

 

Figure.9 Tension/compression spring design problem. 

Consider  

1 2 3 4[    ] [d  D N],x x x x x 


. 

Minimize  

2
3 2 1( ) ( 2) ,f x x x x 
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The experiment results are listed in Table 11 and show that the IHAOHHO can attain the best 
weight values compared to all other algorithms. IHAOHHO obtains the significant different results 
compared to others exclude HOA. 

Table 11. Comparison of IHAOHHO results with other competitors for the 
tension/compression spring design problem. 

Algorithm Optimum variables Optimum weight P-value 

d D N 

IHAOHHO 0.054826 0.49772 5.273 0.010881 NaN 

AO 0.051647 0.38603 9.3553 0.011692 6.1035e-05 

HHO 0.059559 0.64197 3.4141 0.012329 0.047913 

HOA 0.054031 0.47388 6.0876 0.011188 0.63867 

SSA 0.05 0.326589 12.8798 0.012149 0.00030518 

WOA 0.059166 0.62905 3.534 0.012186 0.047913 

MVO 0.059421 0.63742 3.4573 0.012282 0.025574 

GWO 0.057335 0.57116 4.1668 0.011579 6.1035e-05 

4.4.3. Three-bar truss design problem 

The three-bar truss design problem is a classical optimization application in civil engineering 
field. The main intention of this case is to minimize the weight of a truss with three bars by considering 
two structural parameters as illustrated in Figure 10. Deflection, stress and buckling are the three main 
constrains. The mathematical formulation of this problem is given: 
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Figure 10. Three-bar truss design problem. 
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where 2 2100 , 2 / , 2 /l cm P KN cm KN cm   . 
Results of IHAOHHO for solving three-bar truss design problem are listed in Table 12. It can be 

observed that IHAOHHO outperforms other comparative optimization algorithms. Also, it is clear that 
the p-values between IHAOHHO and other methods are all smaller than 0.05. 

As a summary, the experiments in this section prove the superiority of the proposed IHAOHHO 
algorithm in different characteristics and applications in the real world. IHAOHHO performs better 
than the basic AO and HHO, and selected well-known algorithms in various degrees, which 
demonstrates the exploration and exploitation capabilities improvement of IHAOHHO. Excellent 
performance in solving engineering design problems suggests that IHAOHHO can be widely used in 
real-world optimization problems. 
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Table 12. Comparison of IHAOHHO results with other competitors for the three-bar truss 
design problem. 

5. Conclusions 

In this paper, an improved hybrid Aquila Optimizer and Harris Hawks Optimization algorithm is 
proposed by combining the exploration part of AO with the exploitation part of HHO. The 
advantageous parts of basic AO and HHO are combined to keep the well-behaved exploration and 
exploitation capabilities. Two strategies including representative-based hunting and opposition-based 
learning are incorporated into the proposed IHAOHHO to further improve the optimization 
performance. The representative-based hunting strategy can effectively enhance the diversity of the 
population and fully explore the search space. The opposition-based learning strategy contributes to 
keep the algorithm from trapping in local optima. This algorithm is evaluated by standard benchmark 
functions and CEC2017 test functions to analyze its exploration, exploitation and local optima 
avoidance capabilities. The experiments show competitive results compared to other state-of-the-art 
meta-heuristic algorithms, which prove that IHAOHHO has better optimization performance than 
others. Three engineering design problems are solved as well to further verify the superiority of the 
algorithm, and the results are also competitive with other meta-heuristic algorithms. 

The performance of the proposed algorithm on CEC2017 benchmark functions still needs to be 
improved. The exploration and exploitation capabilities need to be further investigated to break the 
limitations on CEC2017 test suit. And the transition from exploration to exploitation phase of 
IHAOHHO is simple. For further work, the transition mechanism can be improved to provide a better 
balance between the exploration and exploitation phases of this algorithm. Besides, the IHAOHHO 
algorithm can only solve single-objective optimization problems. Multi-objective version of 
IHAOHHO may be developed to solve multi-objective problems in the future.  
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