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Abstract: In this paper, we investigate the existence of global attractors, extreme stability, periodic-
ity and asymptotically periodicity of solutions of the delayed population model with survival rate on
isolated time scales given by

x(d() o Ou((1- 2402
()

We present many examples to illustrate our results, considering different time scales.

A1) = y(Ox(1) + , teT.
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1. Introduction

In this paper, we are interested to investigate the delayed population model with survival rate on
isolated time scales given by

( (t)) r(t)u(t)(l X(d<r)))
u()

where y : T — (—00,0), r,k : T — (0, c0) describe, respectively, the intrinsic growth rate and the
carrying capacity of the habitat, and d : T — T is the delay function such that p*(f) < d(¥) < ¢ for some
a € N. This model is equivalent to

K1) = y(Ox(t) + —= , teT (1.1)

x(d®) )

(o (1)) = F(O)x(t) + x(d(@)e O -5) reT
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where the function y(¢) = 1+ u(t)y(t) belongs to (0, 1). This is a generalization of the model considered
in [1] for any isolated time scales. Clearly, in the particular case T = Z, our model reaches the one
found in [1].

A quick look at the formulation of the model described by equation (1.1) may seem different,
since in its formulation appears the graininess function in the denominator of the second term on the
right-hand side of the equation. However, in [2], the authors show that this formulation is necessary
when we are dealing with quantum calculus (which is also encompassed here), since depending on
the formulation of the model and the assumptions, one cannot even ensure the existence of w—periodic
solutions without considering this term for the quantum case (see [2] for details). But it is important to
mention that our model reaches the model for the case T = Z considered in the literature, showing that
this formulation is appropriate and unifies all the cases.

We point out that our model is valid for all isolated time scales, which includes many important
examples suchas T = Z, T = N2 = {n? : n € Ny}, T = ¢" = {¢" : n € Ny}, ¢ > 1. This last one
is known as quantum scale and it has been investigated by many authors [3], mainly concerning the
w—periodicity (see [4] and [5]). This quantum scale has several applications in many fields of physics
such as cosmic strings and black holes [6], conformal quantum mechanics, nuclear and high energy
physics, fractional quantum Hall effect, and high-T'. superconductors [7]. Thermostatistics of g-bosons
and g-fermions can be established using basic numbers and employing the quantum calculus [8]. On
the other hand, it worths mentioning the importance of time scales to describe population models, since
it allows to consider a variety of scenery and many possibilities in the behavior of different populations
(see, for instance, [9]). Also, the population models for quantum calculus play important role, bringing
relevant applications (see [10] and [11]).

The formulation of this model for its analogue for T = Z without delays was investigated by many
authors. See the references [12], [13] and [14] for instance. In particular, in [14], the authors investi-
gated the extreme stability of the following discrete logistic equation

x(t+ 1) = x(ne™-i0), rez,. (1.2)

In [1], the author considered a version of the model with delays

Xt + 1) = yOx(@) + x(z())e -5, ez, (1.3)
The formulation considered here in this present paper generalizes (1.2) and (1.3). We are interested to
investigate the asymptotic behavior of the solutions of (1.1) on isolated time scales, including global
attractor, extremely stability, asymptotic periodicity and periodicity.

This paper is divided as follows. In the second section, we present some preliminary results on
theory of time scale and explain the delayed model that will be investigated. In the third section, we
investigate the stability of equation (1.1). The fourth section is devoted to study the extremal stability
of (1.1) and to present some examples to illustrate our main results. Finally, the goal of last section
1s to investigate the periodicity and asymptotically periodicity of solutions of (1.1), and to present
examples.

2. Preliminaries

In this section, our goal is to recall some basic definitions and results from time scale theory. For
more details, we refer [15] and [16].
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A time scale T is any closed and nonempty subset of R endowed with the topology inherited from R.

Definition 2.1. The forward jump operator o : T — T is defined by o(f) = inf{s € T : s > ¢} and
the backward jump operator p : T — T by p(t) = sup{s € T : s> t}, provided inf() = supT and
sup® = inf T.

If o(t) > t, then t is called right—scattered. Otherwise, ¢ is called right—dense. Similarly, if p < t,
then 7 is said to be left—scattered, while if p(t) = t, then  is called left—dense.
From now on, we only consider isolated time scales, i.e., all points are right—scattered and all points
are left—scattered.
Moreover we denote the composition g o ... o ¢ by o". The same notation we use for the compo-
& 7e

n times

sition of operator p.
Definition 2.2. The graininess function u : T — [0, o) is defined by u(t) = o (t) — t.

The delta (or Hilger) derivative of f : T — R at a point ¢t € T*, where

TK _ T\(p(sup T)a sup T], if sup T < o0
T if supT = oo
is defined in the following way:

Definition 2.3 ( [15]). The delta derivative of function f at a point t, denoted by f2(z), is the number
(provided it exists) with the property that given any € > 0, there is a neighborhood U of t (i.e., U =
(t=06,t+6)NT for some 6 > 0) such that

|(fa®) = f(s) = FAO(0®) - 5)| < elo(t) — 5| forall s € U.

We say that a function f is delta (or Hilger) differentiable on T* provided f(¢) exists for all ¢ € T*.
The function f2 : T — R is then called the (delta) derivative of f on T*.

Throughout this paper, we assume that T is an isolated time scale such that
supT = oo, infT =1y and in%,u(t) > 0. 2.1
te

By [15, Theorem 1.16], for any function f : T — R, its derivative is given by

flo() - f(0)
u(t)

We consider the delayed population model of the form

A0 = for all € T,

X0 = y@x(0) + e PO, 1 .
x(fo) = Xo,
withy : T — (-00,0),r,k : T — (0,00) and d : T — T such that

p%(t) < d(t) <t for some @ € N. (2.3)
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The functions r and k describe, respectively, the intrinsic growth rate and the carrying capacity of
the habitat. The delay is introduced to this model by the function d. From (2.3), it is clear that
lim,_,, d(t) = 0.

By solution of equation (2.2) with initial value xj,, we mean function x : T — R which satisfies
(2.2) for t > ty and x(tp) = xo.

Our aim is to study the stability, existence of a global attractor and the extreme stability, as well as
periodicity and asymptotically periodicity of (2.2), according to the notion of periodicity for isolated
time scales given in [17] by Bohner et al.

Remark 2.4. Let us emphasize that solution of equation (2.2) depends on only one initial value x(z),
since the delay function d can be expressed in terms of iterations of the backward jump operator p.

Example 2.5. Suppose that the time scale T = {¢,, t,, 1>, . . .} satisfies condition (2.1). Consider a delay
function of the form
2 . ..
NN () ifiiseven
dw) = { p(t) if iis odd.

By equation (2.2), we obtain

to)(to (2 (p)
1) = (1 +ployy(to)x(io) + ¥ (to)e ()
= (4 o)y ()x(ty) + (i) )

(| 1- 20
() = (1+pty)x) + 2 e ™ (-)

rnute(1-703)

(1 + u(t)y(r)x(n) + x(t)e

and so on.

Remark 2.6. We can also consider the model of population of the form

| Xd)

X0 = y(Ox(0) + QOO =E) g5 (2.4)

x(to) = xo, x(t1) = X1, ..., x(fg_1) = Xp_1
i.e., with g initial values, where 8 depends on the delay function d.
Throughout this paper, we consider the following general assumptions on equation (2.2):

(A1) There exist vy and y; in (0, 1) such that

inf (1 +p(y(H) = yo and sup (1 +u(@y(1) = 7.

teT

(A2) There exist constants r;, k; in (0, oo) for i = 0, 1, such that

inf r(H)u(t) = ro, supr(u(t) = ry, infk(t) = ky and supk(t) = k;.
teT teT teT teT

In sequel, we introduce the following notation which will be important to our purposes:
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(A3) Let the functions L and U be defined as follows
L) = ue™ % and U) = ue" 5 for u>0

and the constants M and m be given by

M= U(E) = et and m= 1)

(A4) For 6 > 1, we set a constant B as follows

oM k
B = min (L( ), M)
L=-»"" n
(AS) Let constant m be given by
—~ . { Voko}
m=min{m, — ;.
r

It is not difficult to check that M is the maximum value of the function U and % is the fixed point of
the function L.

3. Result

3.1. Stability

In this section, our goal is to investigate the stability of (2.2). We start by recalling some important
definitions.

Definition 3.1. A set S C R is said to be invariant relative to (2.2) if for any positive value x(z,) such
that x(#) € S, the solution x of (2.2) satisfies x(z) € S for all 7 > ¢,.

Definition 3.2. A set S C R is said to be a global attractor of (2.2) if for any £ > 0 and positive value
of x(ty), there exists an element T'(g, x(fy)) € T such that the solution x of (2.2) satisfies

miSn |x() — s| < & forall > T(e, x(ty)).
NS

Definition 3.3. Equation (2.2) is said to be extremely stable if for any two positive solutions x and y of
(2.2), we have

lim |x(@) — y(0)] = 0.

Remark 3.4. If (2.1) is fulfilled, any function x can be represented as a sequence {x(0"(%))},en, SO We
can reformulate the above definitions as follows.

A set S c Ris said to be invariant relative to (2.2) if for any positive value x(zy) belonging to S, the
solution {x(c"(fy))},axy Of (2.2) satisfies

x(o"(ty)) € S forall neN.

A set S C R is said to be a global attractor of (2.2) if for any € > 0 and positive value of x(;), there
exists a natural number N(g, x(y)) such that the solution {x(c"*(%)))},.exv Of (2.2) satisfies

miSn [x(c"(ty)) — s| < & forall n > N(g, x(ty)).
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Equation (2.2) is said to be extremely stable if for any two positive solutions {x(c”(ty))},en and
(0" (t))}nes of (2.2) we have

lim |x(0™(10)) = y(0™(1o))] = 0.
Lemma 3.5. Any solution x of (2.2) satisfies

n—1

xo'@) = | [ (1+ @Ot en)x

k
n

Il
—_ o
—_

N

+ D ] (1 +p@ @y’ @))]e o, xde* o), (3.1)

k=0 j=k+1

[«
]
>~

where
gv,u) = ue'FO(1-1t5). (3.2)

Proof. Let us prove by induction. Since x is a solution of (2.2), we have

x(o (1)) — x(¢) x(d(0) ({1242
————— =y(O)x(t) + ——=€"" ko),
w7 ()
It implies immediately that (3.1) holds for n = 1.

Suppose now that (3.1) holds for n. Let us show that it also happens for n + 1. Hence,
x(@"@0) = x(a"(01))

(1 + u(@ @)y (1))x(o (1)

S X 3|
- o —_

—_

S

+ [ (1 + ﬂ(0-1+1(t)),y(o.]+l(t)))]g(o_k+l(t), X(d(0'k+l(t))))

j=k+1

=~

s |l

(=]
1]
>~

= [ [(1+ue@me@)xem

1

>~

s

n

+ O[T (1 +ue @ @)|se o, xdc*@m.

=1 j=k+2

=~

Using the definition of x(o(¢)) given by the case n = 1 and replacing in the above equation, we have

n

[ 1(1+u@@yve@n)|(1 + uoy®)x) + g, xd@))]

k=1

x(" (1))

n n

+ ] (1 + s @y @n)|s o, xdc @)
k=1 j=k+2

n

= [](1+u @)

0

=~

s |l

n

+ DT (1 + ueoweio)|se @, @),

k=0 j=k+l

getting the desired result. O
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From assumption (A1) and (3.1), it follows that positive value of x(#;) implies solution x of (2.2)
takes positive values only.
By assumption (A2), we get

L(u) < gv,u) < U(u) for v e [ty,o0)r and u > 0. 3.3)

In consequence,
gv,u) < M for v € [ty,c0)r and u > 0. (3.4
From (3.1) and (3.4), due to assumption (A1), we have

n—1

Mo (1) < Yixto) + M Yy
k=0

" -7
= Yix(o) + M (3.5)
-7
for any n € N. Note that for x(ty) € (O, %] with § > 1, we get from (3.5)
"M M — My}
Ao () < A+ L4
l=n -y
_ Y6M-M)+M
- -7
< oM-M+M
oM
= . (3.6)
l-7
Using the notations from (A3)—(A4) and by properties of function L, we obtain
B oM
L(u) > B for ue[ , ],
L=y 1=
where B is defined in (A4). By inequality (3.3), we get
B oM
g(v,u) > B for v € [fo,c0)y and u € | : | (3.7)
L=y 1=

Assuming x(tp) > ﬁ, it follows by Lemma 3.5, inequality (3.7) and assumption (A1), the following
inequality

Jj=k+1

n—1 n-1( n-1
x(0" (1) > [n?’o]x(fo)+{ []_[ 70]8(0'k(l0),x(d(0'k(l0))))

\
\<
=S
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B
= (3.8)
1=y

for n € N. Hence, inequalities (3.6) and (3.8) allow us to formulate the following theorem.

Theorem 3.6. If conditions (A1)—(A4) hold, then the set [io ‘S—Ml] is invariant relative to (2.2) for
positive values of x(ty), where 6 > 1 and B is given in (A4).

The next theorem brings the statement on a global attractor.

Theorem 3.7. Under assumptions (A1)—(A3) and (AS), the set [l_i;o, %] is a global attractor of (2.2)
for positive values of x(t).

Proof. Since vy, and y; belong to (0, 1), for any & > 0 and positive value x(j), there exists an integer
N(e, x(ty)) > 0 such that

M —
vilx(to) — <& and 78'x(t0) - ' < g forany n > N(g, x(1))).
-y 1=
It implies
nM M n
V(o) < & + |1 ‘:s+ LIy
1= 1=y

Applying the above to (3.5), we obtain

My! LM My
-y 1= 1-m

x(o(ty)) < e+

= g+ 1 forany n > N(g, x(1))).

— 71

In analogous way, we get

m
1 =70

x(o"'(ty)) > —¢& for n = N(e, x(1y)),

which concludes the proof. O

3.2. Extreme stability

In this section, we are interested to investigate the extreme stability of equation (2.2).

Lemma 3.8. Let the assumptions (A1)—(A3) and (AS) hold. If x is a solution of (2.2) such that x(t,)
is a positive value and

m

- > 1’ (39)
ki(1 —0)
then
. r(Ou@Xd())| oo - 2do rom nM
limsup |1 - —2 2 OO0-T57) < max {|1 = —— |, [1 = ——|!.
nsp 0) {‘ ki (1 - 70)' ' ko(1 - m‘}

Mathematical Biosciences and Engineering Volume 18, Issue 5, 6819-6840.



6827

Proof. By Theorem 3.7, for any given solution x of (2.2) and for every ¢ > 0, there exists 7 =
T (g, x(tp)) € T such that

—e<x(d®) <

+¢e fort>=T. (3.10)
1= 1 -y

It implies the following estimates

r(Hu()x(d(1)) ro, m
- <] - — - 3.11
K0 T G-AD
nd (DX M
r(t)u(t)x(d(t r
]l-——— - >1-—(—+¢ (3.12)
k(1) ko ( 1= )
for t > T such that r € T. Since ¢ is arbitrary, we can write
. r(Hu(H)x(d(1)) rom nM
limsup |l - —————~| < max ||l — 11— .
i k() { k(1 - 70)‘ | k(1 — m'}
Now, it remains to show that
lim sup ¢ O#O0="55") < | (3.13)

—o00

to conclude the proof. Observe that the left—hand side of inequality in formula (3.10) combined with
(3.9) implies that

x(d(1)) m e &
> ——>1—— foranyr>T.
Ko k(-y) ko ko Y

In consequence,

fiminf 299 - 4
e k(1)

This ends the proof. O
Theorem 3.9. Let assumptions (A1)—(A3) and (AS) hold. If condition (3.9) is satisfied and

r()%
ki(1 = o)

| B nM
’ ko(1 =)

max{’l _ ‘} <1-v, (3.14)

then equation (2.2) is extremely stable.

Proof. Let x and y be arbitrary positive solutions of (2.2). Since x and y satisfy (2.2) for all € T, we
have by Lemma 3.5

T
L

Ko@) = | [ (1+u@* @)yt )

T
(=)

|
—

n—

+ YT (0 + e @npyei@)]s@ @), xd@* @)

j=k+1

T
o
]

~
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and

—_

n—

yo'@y = | | (1+pEt @)y

.
—_— o

n—1

+ L+ weop@ )]s . yde o

J=k+1

>~
=]

for any t € T and n € N. In consequence, we have

n—1
(@) =y @) = [ ](1+u Ot o) -ym)
k=0

1

\ = ot xd(@ (@)
’ ZO: | 1—.[1 (1+ @y o) [ one™ 1)
= J=it

H (ri(,))( PERCIC0))

—y(d((1)))e KT )} for all n € N,

where 7 = ru. Applying assumption (A1) and Mean Value Theorem to the above, we get the following
estimate

[x(o™(1)) = y(a" (D] < ¥i|x(1) — y(O)|+

7((7'1([))( 1— Tl(d(U'i(f)))

S ooy —yaon 319

n—1 ~ i i
n-ict]; _ H@O)n(d(a' (1))
+ ZO: 7 ‘1 k(oi(1))

for all n € N, where n(d(c'())) is between x(d(c(£))) and y(d(c'(¢))) fori = 0,1,...,n — 1. By
condition (3.14), there exists real number M; such that

o rom | __nM
ki(1 —yo)l’ ko(1 = 1)

Hence, by Lemma 3.8 and by the definition of 7, there exists #, € T such that for # > #,, we have

max{‘l H <M <1-y,. (3.16)

H Ui(,))( |- 1@ @)

Kl ) <M, forallieN. (3.17)

‘1 _ Ho' ()n(d(o’ (1))
k(o' (1))

On the other hand, for any ¢ € T, due to Theorems 3.6 and 3.7, the sequence

{x(a" (1)) = y(a"(D)}hnen
is bounded. Hence, there exists a > 0 such that

lim sup [x(c7" (1)) — y(o'(1))| = a. (3.18)

n—oo

In conclusion, for every € > 0, there exists #; € T such that

[x(d"(t)) — y(o"(t))| <a+¢ forall neN and t; <reT. (3.19)
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It is convenient to choose #; such that t3 > t,, since it implies condition (3.17) also holds. Combining
inequalities (3.15), (3.17) and (3.19), we obtain for ¢ > #; and for all n € N

n

N M (a + ). (3.20)
I -y

(™ (0) = y(o" @) < yilx(®) -yl +

Taking lim sup when n — +oc0 on both sides of the above inequality, we get

a<

M;i(a + &).
1=

Since inequality (3.16) is satisfied, we have

M18

a s ————.
L=y —M,

By the arbitrariness of &, we obtain that a = 0, obtaining the desired result. m]

Remark 3.10. Notice that since T is an isolated time scale such that supT = +oo, it is clear that
lim,_,. 0" (t) = +co. From this, we can infer by the properties of lim sup that (3.18) also holds for ¢
sufficiently large, obtaining (3.19).

In sequel, we present some examples to illustrate the above results.

Example 3.11. Let

1234
T={3n+k:neNyke {0,5,5,5,5,1}},
where N is the set of nonnegative integers. Then fy = 0 and miTn u(t) = % Consider equation (2.2)
te
with d = p?,
~04 if re{3n+1:neN)
y(@t) = . . 123 4
—34 if re{3n+k:neNyke{0.1,2,2 4},
(0425 if ref3n+1:neN)
| 0405 if re{3n+k:neNyke{0,1,2,2,4))
and
10 if £€{3n+1:neN)
k(o) = i : 1234
O+t—[r] if re{3n+k:neNogke(0,1 22 4l
Hence
Yo = 02, Y1 = 032, ro = 081, ry = 085, k() = 9, kl =10.
Calculating

M=U(2) =4 ~ 10.62602;
0] 1o
— M\ o .
m = L(74-) ~ 8.02958;
Toko =~ 8.57647;

r
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0 10 20 30 40 50 60 0 10 20 30 40 50 60
solution x with x(0)=1 solution v with y(0)=20

Figure 1. Example 3.11 - the part of plot of two chosen solutions of (2.2) for n = 120 points.

we get i = min {m, 2%} = m. By Theorem 3.7, interval [ {Z-, 2| ~ [10.03697,15.62651 | is a global
attractor of (2.2). Figure 1 shows behavior of two solutions x and y with positive initial values x(#y) = 1

and y(ty) = 20, respectively. The range of the global attractor is illustrated by red dotted lines. Hence,

m

£ 1.00370
ki(1 =)
and
max{'1—ﬂ | —&H~047584<068:1—y
(L—yo)' 1 k(1 =yl ™ ' a

Therefore, conditions (3.9) and (3.14) are satisfied. Theorem 3.9 implies that (2.2) is extremely stable.
In Figure 2, difference of two solutions x and y with initial conditions x(#y) = 1 and y(#,) = 20 is shown,
confirming that (2.2) is extremly stable.

Example 3.12. Let T = ¢*', where ¢ = 1.1, and consider equation (2.2) with

B P ifte {qz" ‘ne N}
) = { p(t) ifte{g " :neN},

g"':ne N}

-075
ifte
_ H(g-1)
y(®) _{ -0.65  :
H(g-1)

0.35 ;
iftre
(1) = { T

0.45
1(g=1)

and
k(t) = 14 + sin(trm).
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-10
-2
l

-15
|
-6
|
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0 & 10 15 20 25 20 22 24 26 28

X-y for n=60 points

Figure 2. Example 3.11 - difference of solutions x and y.

Then constants introduced by assumption (A1)—(A2) are following
vo = 0.25, 1 =0.35, ro =0.35, r; =045, ky = 13, k; = 15.

Hence
M ~20.21769, m ~ 14.74683 and m =11.7.

M ] ~ [15.6, 31.10414] is a global attractor of (2.2). We check that

_m_ M
I=y0’ 1=y

By Theorem 3.7, interval [

m

— = 1.04>1,
ki(1 = yo)

and
l"1M

ﬂ‘ p—
k(1= yo)V ko(1 —¥1)
Thus assumptions of Theorem 3.9 are satisfied. Hence equation (2.2) is extremely stable. Figure 3

shows behavior of the solutions x and y with initial values x(#y) = 1 and y(¢y) = 37 (for 120 points from
the time scale). Difference of those solutions is illustrated in Figure 4.

max{'l - ‘} ~0.532<0.65=1-1y,.
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solution x with x(1.1)=1

35 40
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0 20000 60000

solution y with v(1.1)=37

Figure 3. Example 3.12 - the part of plot of two chosen solutions of (2.2) for n = 120 points.

10 5

-15

3.3. Periodicity

-

[T

P———EA A R R R B B B B B * - - - - - - - -
H

0 20000

40000 60000 80000

Figure 4. Example 3.12 - the plot of x —y for n = 120 points.

In this section, our goal is to investigate the existence of w—periodic solutions and asymptotically

w—periodic solutions of (3.1), using the new concept of periodicity on isolated time scales introduced
in [17].

Let us start by recalling the idea of periodicity on isolated time scales introduced in [17].

where v = o®.

Definition 3.13. A function f : T — R is called w—periodic if

VAfV — f’

Since condition (2.1) is satisfied, T contains only isolated points and

_ME@) =0 _ cn) (o) _ po)

A
v )
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(see [17]). Therefore, we can formulate the following equivalent condition of w—periodicity which can
be found in [17].

Lemma 3.14. A function f : T — R is w—periodic if and only if (uf)” = uf.

Remark 3.15. Observe that for T = Z we have u(f) = 1, v(f) = ¢t + w and in this case, w—periodicity
condition given in Lemma 3.14 takes the known form

f(t+w)=f(t) forall teZ.
When T = 2™, then one can check that function f is w—periodic if
2¢£(2°1) = f(r) forall re 2",

reaching the w—periodicity for the quantum case. See [4,5, 10, 11].

Definition 3.16. A function f : T — R is said to be asymptotically w—periodic (or asymptotically
w—periodic for t > t,) if there exist two functions p,q : T — R such that

Jf@) = p(0) + q(0),
where p(¢) is w—periodic (or w—periodic for ¢ > t;) and g(r) — 0 as t — oo.

As in the previous section, assume m = min{m, %}. The next result follows the same way as the
proof of Lemma 3.8. Therefore, we omit its proof here.

Lemma 3.17. Assume (A1)—(A3) are satisfied. If x : T — R is such that

m M
sup |x(2)| € ,
tevﬂpl()l [1—70 1_71]

and

m

— 21, 3.21
ki(1 = o) 2D

then for all t € T, the inequality

7'0%

_ r@u@)x(d(1)) o Ou(1- 5
ki(1 = yo)

0 w') < max {'1 —

| ’| nm “

k(1 —1)

holds.

Lemma 3.18. Suppose conditions (A1)—(A3), (AS), (3.14) and (3.21) hold. If x : T — R is an
asymptotically w—periodic function, r,k : T — R are w—periodic functions and there exists t; € T
such that for any w—periodic function p : T — R, p od is also w—periodic for all t > t,, then
g(t, x(d(1))) defined by (3.2) is an asymptotically w—periodic function for t > t,.

Proof. Since x is asymptotically w—periodic, it can be decomposed by
x(t) = p(t) + q(2),
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where p is w—periodic and lim,_, g(f) = 0. Applying Mean Value Theorem, we obtain the following
inequality

| @) ) |

1802, x(d(1))) — p(d(p))e" (=155

1—ﬁ%gEHWWH®mmm—mmmL (322)

1g(t, x(d(1))) = g(t, p(d(1)))]

N

where & is between x(d(¢)) and p(d(t)). By Lemma 3.17, inequality (3.14) and asymptotic
w—periodicity of x, the right hand side of (3.22) tends to O if # — oco. On the other hand, notice
that

ﬂ(V(l))P(d(V(t)))e”(V(’”’(V(’”(1— B
= ,u(V(t))p(d(V(t)))e”(V“))’(V(f))(1—”i‘f(viﬁii,’ffv‘éiﬁ”)
= u(t)p(d(r))e OO0

| ) )

= p(Op(d (1) (115

for t > t, since by assumption there exists #; € T such that p o d is w—periodic for ¢ > ¢;. Thus, by
. _pd)y -, T .
Lemma 3.14, the function p(d(t))er(t)"(’)(1 “ior) s w—periodic for ¢ > 1, proving the lemma. O

The proof of the next result follows the same way as the proof of the previous result. Thus, we omit
it here.

Corollary 3.19. Suppose r,k : T — R are w—periodic functions and for any w-periodic function
p: T — R, podis also an w—periodic function. If x : T — R is an w—periodic function, then
g(t, x(d(1))) is also an w—periodic function.

Lemma 3.20. Assume (A1) holds. If x : T — R is an asymptotically w—periodic function andy : T —
R is an w—periodic function, then function uyx is an asymptotically w—periodic function.

Proof. Since x is an asymptotically w—periodic function, it can be decomposed by
x(t) = p(t) + q(2),

where p is w—periodic and llgg q(t) = 0, which implies
HYX = pyp + p1yq.

By (A1), py is a bounded function, which implies that there exists lim wu(#)y(t)g(¢) = 0. Thus, it remains
[—00

to show that function pyp is w—periodic. By Lemma 3.14, we obtain that (uy)” = py and (up)” = up.
It implies the following equality

(upyp)” = (uy)'(up)” = ppyp.
Applying Lemma 3.14 again, we get the desired result. O

In the same manner, we can prove the following result.
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Corollary 3.21. Suppose (Al) holds. If x : T — R is an asymptotically w—periodic for t > t; and
v : T — R is an w—periodic function, then wyx is an asymptotically w—periodic function for t > t,.

To guarantee the existence of an asymptotically w—periodic solution of (2.2), we apply the Kras-
noselskii Fixed Point Theorem.

Theorem 3.22 ( [18]). Let B be a Banach space, let Q be a bounded, convex and closed subset of B
and let F, G be maps of Q) into B such that

(i) Fx + Gy € Q forany x,y € Q,
(ii) F is a contraction,
(iii) G is completely continuous.

Then operator F + G has a fixed point in Q.

Theorem 3.23. Let conditions (A1)-(A3), (AS), (3.14) and (3.21) hold. If y,r and k are w—periodic
functions and there exists t; € T such that for any w—periodic function p : T — R, p od is also
w—periodic for t > t| then there exists t* € T such that equation (2.2) has a unique w—periodic (for
t > t1) solution x and all other solutions are asymptotically w—periodic.

Proof. Let B(T) denote a Banach space of the form

B = {x = {x(D}y : Sup |x(7)] < co}

equipped with the norm defined by ||x|| = sup,.; [x(#)]. It is not difficult to show that the set
B(T)ap := {x € B(T) : xis asymptotically w—periodic for t > #,}

with the supremum norm defined above is also a Banach space. Let us introduce the following subset
of B(T)qp

m M
Qap = {X (S B(T)ap . 1_—)/0 < ||X|| < }

Observe that €,, is a bounded, convex and closed subset in 8(T),,. Let us define two operators
F,G : Q,, — B(T),, in the following way

F0) _{ 0, ifr=1
|+ @)y () x(p() + g(o(®), X(d(p()))),  if t > 1o,
where function g is given by (3.2), and
| x() ifr=1
(G0 = { 0 ift> 1.

By (A1), for any x,y € Q,, and for ¢ > 1y, we get

(Fx)(®) +(Gy)(@) = (1 +u@®)y(p())xe() + (o), x(d(p()))
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_ M (3.23)
I -y
and _ —
(FX)(®) + (GY) D) > 7o o= (3.24)
1 —1vyo I -y

Clearly, (3.23) and (3.24) also remain valid for # = #,. In consequence,

M < |IFx+Gyll < .
1=y I -y

By Lemma 3.18 and Corollary 3.21, we obtain that function F'x + Gy is asymptotically w—periodic for
t > 11, hence Fx + Gy € Q,),.

The next step is to show that F is a contraction. Taking any x,y € Q,,, we have

aps

I(F)(@0) = (F)O < 1+ p(p@)y(e)lx(p(®) = (@)l
+g(p(1), x(d(p(n)))) = g(p(1), y(d(p(1)))].

By condition (A1) and Mean Value Theorem, for any r € T, we get

| — He@O)up@)edp(®))
k(p(1)

where £(d(p(1))) is between x(d(p(t))) and y(d(p(?))). By condition (3.14), we can choose an &y > 0
such that

" COREO(1=SGEE) |

(F)(1) = (FY)O] < pillx =yl + |

I"()I?l I"]M
ki(1 = o) ko(1 —y1)

Finally, by the arbitrariness of &, condition (3.14) and Lemma 3.17 lead to estimate

9

max{'l— |}<1—71—80.

IFx—Fyll < (1 =vypllx—yll forallzeT,

which means that F is a contraction.

To be able to use the Krasnoselskii Fixed Point Theorem, it remains to verify that G is completely
continuous. Itis evident that GQ,, is a bounded subset in R and this implies that it is relatively compact.
Thus, G is completely continuous.

Theorem 3.22 implies the existence of x € Q,, such that

x(t) = (Fx)(t) + (Gx)(¢t) forall t € T.
It can be equivalently rewritten as
x(o (1) = (1 + u(@)y()x(r) + g(t,x(d(1))) fort > t,. (3.25)

This means that x is an asymptotically w—periodic (for ¢ > #;) solution of (2.2). Thus, x has the
following decomposition

x() = p(0) + q(0), (3.26)
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where p(?) is w—periodic for ¢ > t; and lim ¢() = 0. Combining (3.25) and (3.26), we obtain
1—00

(1 + u()y(@)x(t) + g(t, x(d(1))) = plo(®) + q(o (1))
which implies
(1 + u@yO)(p(®) + q(1) + g, xX(d(1))) — g(t, p(d(1))) + g(t, p(d(1))) = p(o (1)) + g(o™(1)).
We claim that
plo(®) = (1 + u0)yy®)p(0) + g(t, p(d(1))) (3.27)
and
qlo(®) = (1 + p(0)y()q(t) + g(t, x(d(1))) — g(t, p(d(1))).
Firstly, notice that (1 + u(t)y(t))p(t) + g(¢, p(d(?))) is w—periodic. Indeed, by Lemma 3.14, we get for
t>t
uOLA + p)yO)p() + g(t, pldO)ND”
= (uOp(®)" + W@y @) (W®Op(®)” + (g, pd()))”
= p(O)p(0) + @)y Ou@p() + p0)g(t, pld()))
= u((1 + yOu®)p(r) + u®)g(t, pld())),
since g(t, p(d(1))) is w—periodic, by Corollary 3.19. On the other hand, proceeding the same way as in
(3.22) we obtain by applying Mean Value Theorem

1 2

8( Fd(1) - g(t. PN = 19t Fd(1))) — Pld(r))e” =)

_ HOp®E) O(1-55) 1= =
T [(d(n) = pldD)l,

N

where & is between x(d(f)) an p(d()). Hence, we get
lim g(z, x(d(1)) — g, p(d(®))| = 0
and also, it implies that
lim(1 + u()y(0)q(e) + gz, x(d(1))) — g(t, p(d(1))) = 0,

since g(t) — 0 as t — oo and 1 + wy is bounded. Therefore, by the uniqueness of decomposition, the
claim follows. By the equality (3.27), we obtain p is an w—periodic (for ¢ > ¢;) solution of (2.2).

To prove the uniqueness, assume y is another w—periodic (for ¢ > ¢;) solution of (2.2), then by
Theorem 3.9, we have

lim [p(7) =3(1)] = 0.

This clearly forces p(z) = y(¢) for t > t,.
Finally, let x be an arbitrary solution of (2.2), then applying again Theorem 3.9, we have

tlim lx(r) — x(r)| = 0.

It implies that
x(1) = p(0) + q(0),
with lim ¢(7) = 0, hence x is an asymptotically w—periodic solution of (2.2), proving the result. O
t—o0
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Let us illustrate the above result returning to the equation considered in Example 3.11.

Example 3.24. Let
1234
1)

5’5575’
where Ny is the set of nonnegative integers. Consider equation (2.2) with d = p° and functions v, r, k
defined as in Example 3.11.

It is easy to check that functions y, r and k are 6—periodic, since for all ¢ € T we have u(t) = u(o(t)).
This property of graininess function implies that for any 6—periodic function p holds p = p(c%). In
consequence, the composition of any 6—periodic function p with the delay function d, i.e., p o d is
6—periodic for t > 0(t,). Since all assumptions of Theorem 3.23 are satisfied equation (2.2) admits
unique w—periodic (for ¢ > o> (ty)) solution and all other solutions are asymptotically w—periodic (see
Figure 5).

In general, assuming d = p’/, we have that if p is 6—periodic function, then p o d is 6—periodic for
t = o/(ty).

T:{3n+k:neNo,ke{O

o
4
LD | ettt et e
R S
o | S
.J‘

u') —1 *

.ﬂ"
D n *

T T T T T T

0 5 10 15 20 25

Figure 5. Example 3.24 - the part of plot of solution (with initial value x(0) = 1) of (2.2) for
n = 60 points.

4. Conclusion

In this paper we conducted an analysis of stability, extreme stability and periodicity on all solutions
of (2.2). Under certain assumptions, the global attractor of (2.2) for positive initial value is deter-
mined. Sufficient conditions for extreme stability of considered equations are given. We also presented
conditions under which equation (2.2) has a unique w-periodic solution and all other solutions are
asymptotically w-periodic.
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