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Abstract: An SIS epidemic model with time delay and stochastic perturbation on scale-free networks
is established in this paper. And we derive sufficient conditions guaranteeing extinction and persistence
of epidemics, respectively, which are related to the basic reproduction number R0 of the corresponding
deterministic model. When R0 < 1, almost surely exponential extinction and p-th moment exponential
extinction of epidemics are proved by Razumikhin-Mao Theorem. Whereas, when R0 > 1, the system
is persistent in the mean under sufficiently weak noise intensities, which indicates that the disease will
prevail. Finally, the main results are demonstrated by numerical simulations.
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1. Introduction

Transmission dynamics studies problems arising in the real world, for example, spread of diseases in
population, virus propagation in computer networks and diffusion of information. It strongly depends
on properties of the contact network. Scale-free network by Barabási and Albert [1] can well depict
complex connectivity patterns in nature and human society such as, e.g., social network, computer
network and World Wide Web. Therefore, compared with classical epidemic models on homogeneous
networks, it is more significant to study spreading dynamics on heterogeneous networks, i.e., scale-free
networks.

The spreading dynamics on complex networks has attracted increasing attention. A lot of epidemio-
logical models on complex networks, including SI [2,3], SIS [4,5], SIR [6], SIQS [7], and so on [8,9],
have been established successively. The pioneering work of Pastor-Satorras and Vespignani [4, 5] in-
troduced the SIS model on scale-free networks by mean-field approximation. They showed that the
epidemic threshold is infinitesimal with network size increasing, which makes the spread of infections
tremendously strengthened. Wang and Dai [10] analyzed the network-based SIS model theoretically
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for the first time. They derived that the epidemic threshold is the critical parameter for global stability
of the disease-free and endemic equilibria. In the meantime, d’Onofrio [11] conducted further research
on this aspect.

In recent years, as for modification and extension of the network-based SIS model, two directions
have always been of great concern. One is introducing time delays to simulate incubation periods,
infection periods, immunity periods and so on. Models expressed by functional differential equations
(FDE) have been formulated. Liu et al. [12,13] proposed and discussed SIS epidemic models on scale-
free networks with discrete and distributed delays, respectively, in which the time delays represent
infection periods. Kang et al. [14] established an SIS model with time delay denoting the incubation
period of disease in a vector’s body and analyzed the global stability of equilibria. Furthermore, Kang
and Fu [15] considered two transmitting ways (by human and by vector) and discussed another new
delayed SIS model on heterogeneous networks. Another way is to enter interactions of uncertain
environments in the models. Stochastic differential equation (SDE) SIS models on complex networks
have been developed. Bonaccorsi et al. [16] proposed an SIS model with stochastic infection rates
on networks and proved the conditions for extinction and stochastic persistence of epidemics. Krause
et al. [17] analyzed dynamical behaviors of a stochastic SIS epidemic model in metapopulation by
numerical simulation. Some control approaches were designed to control epidemic spreading. Yang
and Jin [18] introduced a stochastic SIS model driven by Lévy noise on networks. The stability of the
disease-free equilibrium and the sufficient condition for persistence were proved.

However, to the best of our knowledge, there has been little research about the interplay of noise
and delay on spreading dynamics in complex networks. We will present an epidemic model with time
delay and stochastic perturbation. It is based on the following general version of the delayed SIS model
with an infective vector [14],

dS k(t)
dt

= Λ − λ(k)S k(t)Θ(t − τ)e−dmτ − γS k(t) + µIk(t),

dIk(t)
dt

= λ(k)S k(t)Θ(t − τ)e−dmτ − γIk(t) − µIk(t),
(1.1)

where λ(k) is the degree-dependent infection rate which is bounded [19], such as λk [14], λc(k) [20],
and so on. S k(t) and Ik(t), k = 1, · · · , n, represent the relative densities of healthy and infected nodes
with degree k at time t, respectively. Here, µ is the recovery rate, and γ is the mortality rate which is
equal to the birth rate Λ, i.e., the network size is time invariant. dm is the nature death of the vector and
τ is the incubation. e−dmτ represents the probability of infected vectors who were infected at time t − τ
but did not die during the time period τ. The parameters aforesaid are all positive. The vector’s density
is simply proportional to Θ(t − τ) expressed as

Θ(t − τ) =
1
〈k〉

n∑
j=1

ϕ( j)P( j)I j(t − τ),

where P( j) is the degree distribution, 〈k〉 =
∑n

k=1 kP(k) is the average degree of the network, ϕ( j)
denotes an infected node, with degree j, occupied edges which can transmit the disease [21], and n is
the maximum degree of nodes in this network. We also define 〈 f (k)〉 =

∑n
k=1 f (k)P(k).

By analogy with the results of Ref. [14], the following equivalent system of (1.1)

dIk

dt
= λ(k)(1 − Ik)Θ(t − τ)e−dmτ − γIk − µIk (1.2)

Mathematical Biosciences and Engineering Volume 18, Issue 5, 6790–6805.



6792

always has a disease-free equilibrium I0 = (0, 0, · · · , 0). If R0 < 1, I0 is globally asymptotically stable.
Whereas, I0 is unstable and there exists a globally stable endemic equilibrium I∗ = (I∗1, I

∗
2, · · · , I

∗
n) when

R0 > 1. And here,

R0 =
〈λ(k)ϕ(k)〉e−dmτ

(γ + µ)〈k〉
.

Now, we introduce interactions of random environments to system (1.1) by replacing the infection
rate λ(k) with

λ(k)→ λ(k) + σkIkdBk(t),

whereσk > 0, k = 1, · · · , n represent the noise intensities, and dBk(t) (k = 1, · · · , n) is an n-dimensional
standard white noise, i.e., Bk(t) (k = 1, · · · , n) is an n-dimensional standard Brownian motion with
Bk(0) = 0. It is essential to assume that the diffusion coefficient depends on relative densities Ik. The
infection rate varies around a mean value, and the variance gets smaller with the relative densities of
infected nodes decreasing. It guarantees that the solution has physical meaning, namely, it remains
above zero. Moreover, the dependence of noise intensities on the solution is typical in previous articles
concerning population dynamics [22] and spread dynamics [16] with environmental noise. Then the
stochastic system we study takes the following formdS k =

[
Λ − λ(k)S kΘ(t − τ)e−dmτ − γS k + µIk

]
dt − σkIkS kΘ(t − τ)e−dmτdBk(t),

dIk =
[
λ(k)S kΘ(t − τ)e−dmτ − γIk − µIk

]
dt + σkIkS kΘ(t − τ)e−dmτdBk(t).

(1.3)

LetD = (0, 1)n be the n-th Cartesian power of the interval (0, 1). And denote by C = C([−τ, 0],D) the
Banach space of continuous functions mapping the interval [−τ, 0] intoD with norm

|φ| =

 n∑
k=1

|φk(θ)|2τ


1
2

,

where |φk(θ)|τ = sup−τ≤θ≤0 |φk(θ)|. For a practical consideration, the initial condition of system (1.3) can
be considered as

Ik(θ) = φk(θ),
S k(θ) = 1 − φk(θ), θ ∈ [−τ, 0], k = 1, 2, · · · , n,

(1.4)

where φ = (φ1, φ2, · · · , φn) ∈ C.
In this paper, we focus on the dynamical behaviors of system (1.3). The existence, uniqueness and

boundedness of the solution to system (1.3) are discussed in Section 2. In Section 3, we investigate
the dynamics of system (1.3) and present sufficient conditions for the exponential extinction and per-
manence of the disease, respectively. Numerical simulations are given to demonstrate the theoretical
results in Section 4. Section 5 draws the conclusion.

2. Existence, uniqueness and boundedness of positive solution

Considering the practical meaning, the first concern is whether there exists a global positive and
bounded solution to system (1.3). That is to verify the well-posedness of system (1.3). In this section,
we shall discuss this issue by the means of Lyapunov analysis method [23]. Denote

Ω =
{
(S 1, I1, · · · , S n, In) ∈ R2n

+

∣∣∣ S k + Ik = 1, k = 1, · · · , n
}
.
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Theorem 2.1. For any initial condition (1.4), there exists a unique global solution to system (1.3) on
t > 0. Moreover the solution remains in Ω almost surely (a.s.) for all times.

Proof. Because of the locally Lipschitzian continuity of the coefficients in system (1.3), for any initial
condition (1.4) there exists a unique local solution on t ∈ [−τ, τe), where τe is the explosion time [24].
By summing the equations of system (1.3), we get

d(S k + Ik) = [A − γ(S k + Ik)]dt, t ∈ [−τ, τe).

Noting that A = γ and initial condition (1.4), it follows that

S k + Ik = (1 − S k(0) − Ik(0))e−γt + 1 = 1, t ∈ [−τ, τe). (2.1)

To verify that the solution is global, we only need to show that τe = +∞. Now, we show this by proving
a stronger property of the solution, i.e., it always remains in Ω a.s.. Define the stopping time as

τ̄ = inf
{
t ∈ [−τ, τe) : min

k=1,··· ,n
S k(t) ≤ 0 or min

k=1,··· ,n
Ik(t) ≤ 0

}
, (2.2)

where we let inf ∅ = +∞. According to initial condition (1.4) and property (2.1), τ̄ is the first leaving
time of the solution from Ω. Clearly, τ̄ ≤ τe. Thus, we only need to prove τ̄ = +∞, which implies that
the solution remains in Ω for all times. Next, we will prove it by contradiction. If τ̄ < ∞ a.s., there
would exist a pair of constants T > 0 and ε ∈ (0, 1) such that P(τ̄ ≤ T ) > ε. Let’s define a C2-function
V : Ω→ R+ as

V(S 1, I1, · · · , S n, In) = −

n∑
k=1

[ln S k + ln Ik] .

From the definition of τ̄, it is easily obtained that

lim
t→τ̄

V(S 1(t), I1(t), · · · , S n(t), In(t)) = +∞, (2.3)

for almost all ω ∈ {τ̄ ≤ T }. On the other hand, using Itô’s formula on V for t ∈ [0, τ̄) and ω ∈ {τ̄ ≤ T },
one has

dV =

n∑
k=1

[
−

1
S k

dS k +
1

2S 2
k

(dS k)2 −
1
Ik

dIk +
1

2I2
k

(dIk)2
]

=

n∑
k=1

[
−

Λ

S k
+ λ(k)Θ(t − τ)e−dmτ + γ −

µIk

S k
−
λ(k)S kΘ(t − τ)e−dmτ

Ik
+ γ + µ

+
1
2

(
S 2

k + I2
k

)
σ2

ke−2dmτΘ2(t − τ)
]

dt + dM(t)

≤

n∑
k=1

[
λ(k)Θ(t − τ)e−dmτ + (2γ + µ) +

1
2

(
S 2

k + I2
k

)
σ2

ke−2dmτΘ2(t − τ)
]

dt + dM(t)

≤

n∑
k=1

[
λ(k)〈ϕ(k)〉e−dmτ

〈k〉
+ (2γ + µ) +

σ2
ke−2dmτ〈ϕ(k)〉2

8〈k〉2

]
dt + dM(t)

:=Kdt + dM(t),

(2.4)
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where

M(t) =

∫ t

0

n∑
k=1

σk(2Ik(s) − 1)Θ(s − τ)e−dmτdBk(s).

Integrating both sides of (2.4) from 0 to t and then letting t → τ̄, for almost all ω ∈ {τ̄ ≤ T }, we get

V(S 1(t), I1(t), · · · , S n(t), In(t)) − V(S 1(0), I1(0), · · · , S n(0), In(0))
≤Kt + M(t)→ Kτ̄ + M(τ̄) < +∞,

which contradicts with (2.3). Thus, τ̄ = τe = +∞. This completes the proof. �

By Theorem 2.1, if initial functions (S 1(θ), I1(θ), · · · , S n(θ), In(θ)) ∈ Ω for all θ ∈ [−τ, 0], then

P ((S 1(t), I1(t), · · · , S n(t), In(t)) ∈ Ω) = 1, t ≥ 0.

That is to say, the bounded region Ω is the almost surely positive invariant set of system (1.3). From
now on, we always assume that (S 1(t), I1(t), · · · , S n(t), In(t)) ∈ Ω.

3. The dynamics of system

Since S k + Ik = 1, as deterministic system (1.1), we analyze the following equivalent system of (1.3)
instead

dIk =
[
λ(k)(1 − Ik)Θ(t − τ)e−dmτ − γIk − µIk

]
dt + σkIk(1 − Ik)Θ(t − τ)e−dmτdBk(t). (3.1)

Denote I = (I1, · · · , In)>. System (1.3) can be represented by the vector-valued stochastic differential
delay equation

dI = f (I, I(t − τ))dt + g(I, I(t − τ))dB(t), (3.2)

where the k-th component of f is λ(k)(1− Ik)Θ(t−τ)e−dmτ−γIk−µIk, g is a diagonal matrix with entries
σkIk(1− Ik)Θ(t − τ)e−dmτ, k = 1, 2, · · · , n, and B(t) is an n-dimensional standard Brownian motion with
B(0) = 0. Define the differential generator associated with system (3.2) as

L =
∂

∂t
+

n∑
k=1

fk(I, I(t − τ))
∂

∂Ik
+

1
2

n∑
k=1

g2
kk(I, I(t − τ))

∂2

∂I2
k

.

By Itô’s formula, we have

dV(t, I) = LVdt +
∂V
∂I

g(I, I(t − τ))dB(t).

Obviously, the disease-free equilibrium I0 of system (1.2) is also that of stochastic system (3.1). In
the following, the exponential stability of I0 for system (3.1) will be deduced by Razumikhin-Mao type
theorem [25].

Theorem 3.1. If R0 < 1, then for any initial condition (1.4), the disease-free equilibrium I0 is p-th
(p > 0) moment exponentially stable in D for system (3.1), and it is also almost surely exponentially
stable inD. Moreover,

lim sup
t→∞

ln |I|
t
≤ −(γ + µ)(1 − qR0), (3.3)
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lim sup
t→∞

ln E|I|p

t
≤ −p(γ + µ)(1 − qR0), (3.4)

where q ∈ (1, 1
R0

) is the unique root of equation (γ+µ)(1−qR0)τ = ln q and | · | represents the Euclidean
norm of a vector or the trace norm of a matrix.

Proof. First, we prove the first moment exponential stability and a.s. exponential stability. Define the
function Θ : D → R+ as

Θ =
1
〈k〉

n∑
k=1

ϕ(k)P(k)Ik(t). (3.5)

Obviously,
%

〈k〉

n∑
k=1

Ik ≤ Θ ≤
%

〈k〉

n∑
k=1

Ik,

where % = min{ϕ(k)P(k), k = 1, · · · , n} and % = max{ϕ(k)P(k), k = 1, · · · , n}. Using Cauchy-Schwarz
inequality, we get

%

〈k〉
|I| ≤ Θ ≤

√
n%
〈k〉
|I|. (3.6)

Noting that 0 < Ik < 1, a direct calculation yields

LΘ =
e−dmτ

〈k〉

n∑
k=1

λ(k)ϕ(k)P(k)(1 − Ik)Θ(t − τ) − (γ + µ)Θ

≤ − (γ + µ)Θ + R0(γ + µ)Θ(t − τ).

(3.7)

By Theorem 6.4 of Mao [25], if R0 < 1, the trivial solution I0 of system (3.1) is the first moment
exponentially stable.

For system (3.1), by triangle inequality, it can be easily obtained that

| f (I, I(t − τ))| ≤ λe−dmτΘ(t − τ)|1 − I| + (γ + µ)|I|, (3.8)

where λ = max{λ(k), k = 1, 2 · · · , n}. Since 0 < Ik < 1, one has |1 − I| <
√

n. Combining with (3.6), it
follows from (3.8) that

| f (I, I(t − τ))| ≤
nλ%e−dmτ

〈k〉
|I(t − τ)| + (γ + µ)|I|.

It holds that Ik(1 − Ik) ≤ 1
4 for 0 < Ik < 1, which together with (3.6) yields

|g(I, I(t − τ))| ≤
1
4
σmaxe−dmτΘ(t − τ) ≤

1
4
√

nσmaxe−dmτ%|I(t − τ)|.

By Theorem 6.4 of Mao [25], the trivial solution I0 of system (3.1) is a.s. exponentially stable and the
estimate (3.3) of its sample Lyapunov exponent holds.

Next, we prove the p-th moment (p > 0) exponential stability. By Jensen’s inequality, we get

lim sup
t→∞

ln E|I|p

t
≤ lim sup

t→∞
E

[
ln |I|p

t

]
. (3.9)
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Since 0 < Ik < 1, then ln |I|p/t < p ln
√

n holds on t ≥ 1. Using inverse Fatou’s lemma, it follows that

lim sup
t→∞

E
[
ln |I|p

t

]
≤ E

[
lim sup

t→∞

ln |I|p

t

]
= pE

[
lim sup

t→∞

ln |I|
t

]
,

which together with (3.3) and (3.9) implies the p-th moment exponential stability and the estimate
(3.4). This completes the proof. �

The condition for extinction of the disease has been derived in Theorem 3.1. Another problem
we are interested in is when the disease will prevail. For deterministic system (1.2), as mentioned in
the Introduction, when R0 > 1 there is a globally stable endemic equilibrium I∗, which implies the
prevalence. However, there is no endemic equilibrium for system (3.1). Next, we will study dynamics
of system (3.1) around I∗ to reveal the persistence of the disease.

Theorem 3.2. If R0 > 1, then for any initial condition (1.4), the solution of (3.1) has the property

lim sup
t→∞

1
t

∫ t

0

n∑
k=1

ϕ(k)P(k)(Ik(s) − I∗k )2ds ≤
σ2

maxe
−2dmτ〈ϕ(k)〉3

2(γ + µ)〈k〉2
, (3.10)

where σ2
max = max{σ2

k , k = 1, · · · , n}, and I∗ = (I∗1, · · · , I
∗
n) is the endemic equilibrium of corresponding

deterministic system (1.2).

Proof. When R0 > 1, the unique endemic equilibrium I∗ of deterministic system (1.2) satisfies

λ(k)S ∗kΘ
∗e−dmτ = γI∗k + µI∗k , (3.11)

where S ∗k = 1 − I∗k ,Θ
∗ = 1

〈k〉

∑n
j=1 ϕ( j)P( j)I∗j . Define a C2-function V : D → R+ as

V(I(t)) =
1
〈k〉

n∑
k=1

ϕ(k)P(k)VS k(t) + VΘ(t) + p
∫ t

t−τ
VΘ(s)ds,

where S k = 1 − Ik and

Vx(t) = x(t) − x∗ − x∗ ln
x(t)
x∗
, p =

1
〈k〉

n∑
k=1

λ(k)P(k)ϕ(k)e−dmτS ∗k,

in which x = S k,Θ. Clearly, V(I) is positive definite, i.e. V(I∗) = 0 and V(I) > 0, I , I∗.
Applying Itô’s formula to V along the solution of system (3.1), together with (3.11) and the property

S k + Ik = 1, we have

dVS k =

(
1 −

S ∗k
S k

)
(−dIk) +

S ∗k
2S k

(−dIk)2

=

[(
1 −

S ∗k
S k

) [
−λ(k)e−dmτ

(
S kΘ(t − τ) − S ∗kΘ

∗) + (γ + µ)
(
Ik − I∗k

)]
+

S ∗k
2
σ2

k I2
k Θ2(t − τ)e−2dmτ

]
dt + σkIk

(
S k − S ∗k

)
Θ(t − τ)e−dmτdBk(t)

=

[
−(γ + µ)

(Ik − I∗k )2

S k
+ λ(k)e−dmτS ∗kΘ

∗

(
−

S kΘ(t − τ)
S ∗kΘ

∗
+ 1 +

Θ(t − τ)
Θ∗

−
S ∗k
S k

)
+

S ∗k
2
σ2

k I2
k Θ2(t − τ)e−2dmτ

]
dt + σkIk

(
S k − S ∗k

)
Θ(t − τ)e−dmτdBk(t)

:=LVS kdt + dMS k(t),

(3.12)
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where

MS k(t) =

∫ t

0
σkIk(s)(S k(s) − S ∗k)Θ(τ − s)e−dmτdBk(s).

Since (3.11) holds, one has

γ + µ =
e−dmτ

〈k〉

n∑
k=1

λ(k)ϕ(k)P(k)S ∗k. (3.13)

Using Itô’s formula on VΘ and then substituting (3.13) into it, it follows that

dVΘ(t) =

(
1 −

Θ∗

Θ

)
dΘ +

Θ∗

2Θ2 (dΘ)2

=

(1 − Θ∗

Θ

)
e−dmτ

〈k〉

n∑
k=1

λ(k)ϕ(k)P(k)(S kΘ(t − τ) − S ∗kΘ)

+
Θ∗e−2dmτ

2Θ2〈k〉2

n∑
k=1

σ2
kϕ

2(k)P2(k)I2
k S 2

kΘ
2(t − τ)

 dt + dMΘ(t)

=

e−dmτ

〈k〉

n∑
k=1

λ(k)ϕ(k)P(k)S ∗kΘ
∗

(
S kΘ(t − τ)

S ∗kΘ
∗
−

Θ

Θ∗
−

S kΘ(t − τ)
S ∗kΘ

+ 1
)

+
Θ∗e−2dmτ

2Θ2〈k〉2

n∑
k=1

σ2
kϕ

2(k)P2(k)I2
k S 2

kΘ
2(t − τ)

 dt + dMΘ(t)

:=LVΘdt + dMΘ(t),

(3.14)

where

MΘ(t) =
e−dmτ

〈k〉

n∑
k=1

∫ t

0

(
1 −

Θ∗

Θ(s)

)
σkϕ(k)P(k)Ik(s)S k(s)Θ(s − τ)dBk(s).

From formulas (3.12) and (3.14), it can be obtained that

LV =
1
〈k〉

n∑
k=1

ϕ(k)P(k)LVS k +LVΘ + p
(
Θ − Θ(t − τ) − Θ∗ ln

Θ

Θ(t − τ)

)
= −

γ + µ

〈k〉

n∑
k=1

ϕ(k)P(k)
(Ik − I∗k )2

S k

+
e−dmτ

〈k〉

n∑
k=1

λ(k)ϕ(k)P(k)S ∗kΘ
∗

[
−H

(
S ∗k
S k

)
− H

(
S kΘ(t − τ)

S ∗kΘ

)]
+

e−2dmτ

2〈k〉

n∑
k=1

σ2
kϕ(k)P(k)S ∗kI2

k Θ2(t − τ)

+
Θ∗e−2dmτ

2Θ2〈k〉2

n∑
k=1

σ2
kϕ

2(k)P2(k)I2
k S 2

kΘ
2(t − τ),

where H(x) = x − 1 − ln x. Since 0 < S k < 1, then

1
〈k〉2

n∑
k=1

σ2
kϕ

2(k)P2(k)I2
k S 2

k ≤
σ2

max

〈k〉2

 n∑
k=1

ϕ(k)P(k)Ik

2

= σ2
maxΘ

2. (3.15)
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Using the fact that H(x) ≥ 0 for x > 0 and the property 0 < S k, Ik < 1, together with (3.15), it follows
that

LV ≤ −
γ + µ

〈k〉

n∑
k=1

ϕ(k)P(k)(Ik − I∗k )2 +
σ2

maxe
−2dmτ〈ϕ(k)〉2

2〈k〉2

 1
〈k〉

n∑
k=1

ϕ(k)P(k)S ∗k + Θ∗


= −

γ + µ

〈k〉

n∑
k=1

ϕ(k)P(k)(Ik − I∗k )2 +
σ2

maxe
−2dmτ〈ϕ(k)〉3

2〈k〉3

:=F(t).

Thus,

dV ≤ F(t)dt +
1
〈k〉

n∑
k=1

ϕ(k)P(k)dMS k(t) + dMΘ(t). (3.16)

Integrating both sides of (3.16) from 0 to t yields

V(t) − V(0) ≤
∫ t

0
F(s)ds +

1
〈k〉

n∑
k=1

ϕ(k)P(k)MS k(t) + MΘ(t). (3.17)

Obviously, MΘ is a continuous local martingale with M(0) = 0. By formula (3.15) and the property
0 < Ik < 1, we obtain that

1
t
〈MΘ,MΘ〉t =

e−2dmτ

〈k〉2t

∫ t

0

(
1 −

Θ∗

Θ(s)

)2 n∑
k=1

σ2
kϕ

2(k)P2(k)I2
k (s)S 2

k(s)Θ2(s − τ)ds

≤
e−2dmτσ2

max

t

∫ t

0
(Θ(s) − Θ∗)2Θ2(s − τ)ds

≤
e−2dmτσ2

max

t

∫ t

0
(Θ2(s) + Θ∗2)Θ2(s − τ)ds

≤
e−2dmτσ2

max〈ϕ(k)〉2

〈k〉2

(
〈ϕ(k)〉2

〈k〉2
+ Θ∗2

)
< +∞.

By Strong Law of Large Numbers [25], we get

lim
t→+∞

MΘ(t)
t

= 0, a.s.. (3.18)

Similarly,

lim
t→+∞

MS k(t)
t

= 0, a.s.. (3.19)

Because of the positivity of V , it follows from (3.17)-(3.19) that

lim sup
t→∞

1
t

∫ t

0
F(s)ds ≥ 0,

which implies the property (3.10). Thus, Theorem 3.2 is proved. �
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Remark 3.1. Theorem 3.2 shows that, when R0 > 1, the Euclidian distance between the solution I(t)
and the endemic equilibrium I∗ of system (1.2) in time average takes the following form

lim sup
t→∞

1
t

∫ t

0
|I(s) − I∗|2ds ≤ Ce−2dmτσ2

max,

where C is a positive constant. It indicates that the solution of system (3.1) oscillates around I∗.
The amplitude is correlated positively with the noise intensities but negatively with the time delay.
It is reasonable that the solution is approximately stable, given that the disturbance intensities are
sufficiently small. Under this assumption, we infer that the disease will prevail.

We denote by Ī(t) the average relative density of infected nodes at time t, then

Ī(t) =

n∑
k=1

P(k)Ik(t). (3.20)

From the result of Theorem 3.2, we conclude that system (3.1) is persistent, which also reflects that the
disease is prevalent.

Definition 3.1. [26] System (3.1) is said to be persistent in the mean, if

lim inf
t→∞

1
t

∫ t

0
Ī(s)ds > 0, a.s..

Corollary 3.1. If R0 > 1 and
n∑

k=1

ϕ(k)P(k)I∗2k >
σ2

maxe
−2dmτ〈ϕ(k)〉3

2(γ + µ)〈k〉2
, (3.21)

then system (3.1) is persistent in the mean.

Proof. Obviously,
2IkI∗k ≥ I∗2k − (Ik − I∗k )2, k = 1, 2, · · · , n,

which together with (3.10) and (3.21) yields

lim inf
t→∞

1
t

∫ t

0

n∑
k=1

ϕ(k)P(k)Ik(s)I∗k ds

≥
1
2

n∑
k=1

ϕ(k)P(k)I∗2k −
1
2

lim sup
t→∞

1
t

∫ t

0

n∑
k=1

ϕ(k)P(k)(Ik(s) − I∗k )2ds

≥
1
2

n∑
k=1

ϕ(k)P(k)I∗2k −
σ2

maxe
−2dmτ〈ϕ(k)〉3

4(γ + µ)〈k〉2

>0.

(3.22)

Consequently,

lim inf
t→∞

1
t

∫ t

0
Ī(s)ds ≥

1
ϑ

lim inf
t→∞

1
t

∫ t

0

n∑
k=1

ϕ(k)P(k)Ik(s)I∗k ds > 0,

where ϑ = max{ϕ(k)I∗k , k = 1, · · · , n}. This completes the proof. �
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4. Simulation

In this section, numerical simulations of system (3.1) are shown to illustrate the theoretical results
aforesaid. Moreover, we numerically simulate the solution of corresponding deterministic system (1.2)
for comparison.

Consider a finite scale-free network whose maximum connectivity of any node n = 100. The degree
distribution of the network is P(k) = Ck−r with r = 2.3,

∑n
k=1 P(k) = 1. We fix the parameters γ =

0.06, µ = 0.05, dm = 0.2. Let λ(k) = λk and ϕ(k) = akα/(1 + bkα) [27] with α = 0.75, a = 0.8, b = 0.01.
The initial functions are Ik(t) = 0.05, k = 1, · · · , n for t ∈ [−τ, 0]. By the Milstein’s method [28], the
discretized difference equations of system (3.1) are represented by

Ik,i+1 =Ik,i +
[
λk(1 − Ik,i)Θi−me−dmτ − (γ + µ)Ik,i

]
∆t

+ σkIk,i(1 − Ik,i)Θi−me−dmτξk,i

√
∆t

+
1
2
σ2

k I2
k,i(1 − Ik,i)2Θ2

i−me−2dmτ(ξ2
k,i − 1)∆t,

(4.1)

where m = τ/∆t, ξk,i (k = 1, · · · , n, i = 1, · · · ,N) are independent standard normal random variables,
and

Θi−m =
1
〈k〉

n∑
k=1

ϕ(k)P(k)Ik,i−m. (4.2)

First, we consider the values of λ and τ such that R0 < 1. Fig. 1 (imaginary lines) shows that the
solution of deterministic system (1.2) converges to zero. Besides, Figure 1 (solid lines) depicts the
dynamical behaviors of infected nodes with degree k = 10, 35, 80 by computing one sample path of
the solution to system (3.1). The noise intensities σk = 10 and σk = 30, k = 1, · · · , 100 in (a) and (b),
respectively. It can be seen that the noise intensities do not affect the ultimate trend of the solution. It
confirms the stability result in Theorem 3.1.

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time t

de
ns

ity
 I k

 

 

k=10
k=35
k=80

(a)

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time t

de
ns

ity
 I k

 

 

k=10
k=35
k=80

(b)

Figure 1. Dynamics of relative densities of infected nodes with degree 10, 35, and 80, where
λ = 0.04, τ = 3, R0 = 0.6972: the solution of system (1.2) versus system (3.1). (a) σk = 10,
(b) σk = 35, k = 1, 2, · · · , 100.
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Figure 2. Dynamics of relative densities of infected nodes with degree 10, 35, and 80, where
λ = 0.13, τ = 3 R0 = 2.3876: the solution of system (1.2) versus system (3.1). (a) σk = 0.5,
(b) σk = 1, k = 1, 2, · · · , 100.
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Figure 3. Dynamics of average infected density Ī(t) with λ = 0.08, R0 = 1.8367, σk =

40, k = 1, 2, · · · , 100: system (1.2) versus system (3.1). (a) one sample path of the relative
density Ī(t), (b) the relative density Ī(t) averaged over 100 sample paths.

Second, we choose the values of λ and τ such that R0 > 1. Then there is an endemic equilibrium
I∗ for system (1.2) and it is globally asymptotically stable, which is illustrated in Figure 2 (imaginary
lines). Figure 2 (solid lines) shows one sample path of the solution to system (3.1) with the same τ = 3
but different noise intensities. Specifically, the noise intensities σk = 0.5 in (a) and σk = 1 in (b)
for k = 1, · · · , 100, which all meet condition (3.21). As expected, we can recognize the behavior in
Theorem 3.2, that the solution of system (3.1) fluctuates around I∗. Moreover, the oscillation amplitude
is positively correlated with the noise intensities.

Finally, we simulate dynamical behaviors of system (3.1) in the case where R0 > 1 and the condition
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(3.21) is unsatisfied. In Figure 3(a), the average relative density Ī(t) of system (3.1) does not fluctuate
around that of deterministic system (1.2). Its fluctuation center seems less than the infection level of
system (1.2). Figure 3(b) shows the density Ī(t) of system (3.1) averaged over 100 sample paths. It is
not in excess of the infection level of system (1.2). In other words, the infection level of system (1.2)
provides an upper bound for it. Therefore, we surmise that the strong noise intensities may reduce the
infection size in statistical average meaning.

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

time t

de
ns

ity
 I k

 

 

k=10
k=35
k=80

(a)

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

time t

de
ns

ity
 I k

 

 

k=10
k=35
k=80

(b)

Figure 4. Dynamics of relative densities of infected nodes with degree 10, 35, and 80, where
λ = 0.13, σk = 1, k = 1, 2, · · · , 100: the solution of system (1.2) versus system (3.1). (a)
τ = 1, R0 = 3.5619, (b) τ = 4.5, R0 = 1.7688.

In addition, we study the influence of the time delay. In Figure 4 (solid lines), we depict one sample
path of the solution with the same noise intensities but different time delays. By comparing Figure
2(b), Figure 4(a) and Figure 4(b), it is found out that when R0 > 1, the oscillation amplitude reduces
with the time delay increasing. Moreover, as it continues to increase such that R0 < 1, the disease will
die out.

5. Conclusion

An SIS epidemic model with time delay and stochastic perturbation on scale-free networks is estab-
lished in this paper. Here, we introduce the incubation period of the disease in a vector’s body as time
delay and enter stochastic perturbation in the infection rate. We prove that it possesses a unique global
solution that remains within Ω whenever it starts from this region. Then we mainly discuss the dy-
namics of the stochastic system. The basic reproduction number R0 of the corresponding deterministic
system is a critical parameter. The disease-free equilibrium I0 is exponentially stable (a.s. and p-th
moment) when R0 < 1, which means rapid extinction of the disease. Compared with the deterministic
system, stochastic perturbation does not change the final extinction of the disease. Conversely, we
analyze permanence of the stochastic system. Under the conditions R0 > 1 and sufficiently weak noise
intensities, the solution of the stochastic system ultimately fluctuates around endemic equilibrium I∗,
which implies permanence in the mean. Moreover, the oscillation amplitude gets smaller with the
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white noise intensities decreasing, while it becomes greater with the time delay decreasing.
These results reveal the combined influences of time delay and stochastic perturbation on the dy-

namics of SIS epidemic model on networks. One may analyze the same issue about SIR [6], SIQS [7]
model on scale-free networks and so on. In particular, because of little research about the SIRA
model [29,30] in heterogeneous networks, this model itself and influences of time delay and stochastic
perturbation on it are all worth studying. These will be considered in our future work.
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