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Abstract: This paper presents an optimization model for assigning a set of arrival and departure 
flights to multiple runways and determining their actual times with consideration of incursions. Due 
to the lack of data, fuzzy incursion time is used to describe the uncertainty with the help of artificial 
experience. Moreover, the multiple-goal priority considerations of air traffic controllers are also fully 
considered in this model. The two objectives are to simultaneously minimize delays in arrival and 
departure flights. Since this problem is NP-hard, a novel polynomial algorithm based on queuing 
theory is also proposed to obtain acceptable solutions efficiently. Finally, a real-world example is 
provided to analyze the effect of different times and places of incursion events on the scheduling 
scheme, which can verify the correctness of the model. Results show that higher runway incursion 
times lead to longer queue lengths for take-off and landing flights, resulting in more flight delays. 
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1. Introduction  

Recently, flight delays at busy airports have caused widespread concern. There are many factors 
that affect flight delays, including weather, limited resources (i.e., airspace and controllers’ 
workload), and unscientific flight scheduling. Flight scheduling (FS), aims at assigning a set of 
arrival and departure flights to different runways according to their scheduled time to improve 
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operational efficiency, is one of the most effective ways to reduce number of different planes (i.e., 
light, medium, and heavy planes) to queue on the runway waiting to take off or land at the same time. 
Due to the difference in the occupation time of each flight and the waiting time of two adjacent 
aircraft on the same runway or two independent or dependent runways, such problem is so complex 
is that civil aviation scientists and engineers need to find the best scheme from the perspective of 
optimization and simulation. Therefore, this issue has attracted considerable attention in the 
academic literature recently [1–3]. 

In the real world, a runway incursion may be caused by random events, such as animal intrusion, 
aircraft or vehicle failure, etc. During an illegal occupation of the runway, aircraft are not allowed to 
take off or land on the runway. When an incursion event occurs, it is important to predict the 
incursion time and carry out FS with consideration of incursions (FSI), aiming at minimizing the 
impact on flight delays. Considering both the location/time of the intrusion and the arrival rate of 
flights, how to perform scheduling is a new research topic [4]. However, domestic and foreign 
scholars have paid little attention to this issue. 

Another motivation for this study is to study FSI with fuzzy incursion time (FSIFT). In this case, 
the uncertain occupation time of the runway plays an important role in FS scheduling schemes. Due 
to the lack of historical and continuous data to evaluate the characteristics of trends in incursion time, 
it is difficult to obtain the characteristics of random invasion times. With the help of expert 
knowledge, the characteristics of fuzzy incursion time can be easily analyzed. At present, few 
existing studies address this issue [5,6]. 

The primary goal of our research is to present a chance-constrained model with fuzzy 
parameters for FS with consideration of incursions in order to reveal the optimal relation between the 
arrival rate of flights and the location and time of the intrusion and delays. The main developments 
are summarized as follows: 1) optimal coordination of assignment of arrival and departure flights to 
multiple runways and determination of their actual time by considering how an intrusion might 
interfere with two adjacent flights covered by a runway; 2) a heuristic-based queuing theory 
algorithm is proposed to efficiently obtain a set of acceptable solutions. Finally, a case study is used 
to illustrate the feasibility and effectiveness of the proposed model. 

The remainder of the paper is structured as follows. Section 2 reviews and summarizes the 
related literature both at home and abroad. Section 3 provides the problem description and its 
mathematical model. Section 4 describes the detail of a novel polynomial algorithm based on 
queuing theory. A test instance is given to illustrate the applicability and the effectiveness of this 
study in Section 5. Some critical remarks and possible future developments are discussed in Section 6. 

2. Literature  

FS aims at finding an optimal assignment of all flights to different runways [7] to meet some 
practical constraints, such as safe span time and network flow. The objectives are to balance 
operational efficiency, safety, fairness, etc. At present, increasing attention has been paid to handling 
problems with a combination of different objectives and constraints due to practice of FS. In general, 
these accurate formulations of FS can be abstracted as two classes, i.e., the job shop scheduling 
model [8–10] and the alternative graph model [11]. However, these variants usually do not change 
the nature of the problem. Aircraft-dependent FS with consideration of delay penalty costs has 
proven to be an NP-hard problem [11,12]. These approaches can be categorized into two classes: 
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mathematical models and solution methods. 
Mathematical models can be divided into two categories: FS with a single runway (FS-SR) [13,14] 

and FS with multiple runways (FS-MR) [15–18]. In AADS-MR, if the distance between two adjacent 
runways is large, they are independent runways, where AADS-MR has an equivalent to FS-SR 
repeated some operation times [19,20]. If the distance is small in FS-MR, they are runway-dependent, 
and AADS-MR of interdependent runways should have time deviation between aircraft of flights on 
separate pairs of runways in FS-SR [8,18]. In FS-SR, any aircraft of arrival or departure flights can 
take off or land on only one runway. In FS-MR, each runway has a unique operation model, where 
some runways are only used for taking off or landing and some of them are dedicated to mixed 
landing and landing aircraft [21]. For instance, Wei etc. [21] revealed the optimal relationship 
between traffic stream characteristics, operation mode of each runway and flight scheduling to 
simultaneously minimizing flight delays and maximizing runway utilization. Further, these studies 
for both FS-SR and FS-MR could be classified as static or dynamic, where static FS schedules 
landing/departing flights in a static environment to these runways in advance [6,22,23] and dynamic 
FS reschedules an incomplete set of landing/departing flights in a dynamic environment to runways 
using the First in First Out (FIFO) rule [11,14,24,25]. For instance, Zhang etc. [25] established an 
arrival sequencing model was by introducing the concept of alternative approach routes and 
time-deviation cost. 

These approaches can be divided into two categories: exact algorithms [9,15,26,27] and 
heuristic algorithms. For exact algorithms, standard solvers such as CPLEX are used to solve a 
mixed-integer programming (MIP) FS problem, but these can only obtain solutions for small/medium 
instances in a reasonable time. To determine solutions for large instances efficiently, heuristic 
algorithms are used, which can be further divided into route-building-based heuristics and intelligent 
algorithms. The former involves dynamic programming [29–32] and branch-&-price [26,27]. The 
latter metaheuristics are also often used to contend with FS, including column generation [26,27], 
Monte-Carlo simulation [6], meta-heuristics [26,27] and genetic algorithms [17,21]. For instance, 
Liu [17] and Hansen [16] developed a genetic local search (GLS) algorithm for solving the FS with 
runway dependent attributes; Salehipour etc. [18] designed a hybrid simulated annealing algorithm 
for resolving FS, and computational results show that it is capable of finding very high quality and 
comparable solutions for the problems with up to 500 aircrafts and 5 runways in a short time; 
Bencheikh etc [19] designed a new heuristic for FS with a single runway, and an ant colony 
algorithm with incorporation of the heuristic to solve FS with the multiple runways; Meng etc [20]  
designed a novel sliding window algorithm to solve FS, and results are presented for publicly 
available test problem involving up to 500 aircraft. 

However, most of the inexact methods do not consider the characteristics of the problem to 
narrow the solution search space. 

By reviewing the existing literature on the critical issues involved in FS and FSI, some 
approaches deserve further investigation: 

1) Because the aircraft of an arrival flight cannot stay in the air for too long, the scheduling 
priority of arrival flights is higher than that of departure flights. Actually, there are lots of existing 
literatures that consider the scheduling priority of arrival flights and departure flights [4]. However, 
most studies have neglected FSI with consideration of incursions. 

2) In FSI, incursion time is an uncertain value, and the use of fuzzy FSI could make it easier to 
reschedule in practice due to the lack of data to evaluate the characteristics of trends [5,6].  
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3) FSI is an NP-hard problem. Although heuristic methods are still needed to solve large-scale 
instances of FSI quickly to find the list of acceptable solutions [21,35], metaheuristic methods are 
very suitable for this kind of problem. 

3. Methodology 

3.1. Research framework 

There are multiple runways in an airport. Over a period of time, a set of arrival and departure 
flights should be assigned to these runways. Each flight has an estimated starting time and 
occupation time for using a runway. These are related to the type of aircraft (i.e., a light, medium, or 
heavy plane) and the type of flight (i.e., take-off or landing). These factors also determine the safe 
span time of two aircraft in a safe operation time. If two flights are assigned to the same runway and 
they are adjacent in turn, the start time of the former plus its occupation time is less than the start 
time of the latter, excepting for safe span time. Sometimes an incursion may occur on a certain 
runway, where flights are not allowed to take off or land at this time. Generally, the start time of an 
intrusion event is known but the end time is unknown. In view of the lack of historical and 
continuous data, triangular fuzzy numbers, using the minimum value, involving the most possible 
value, and the maximum value are used to describe the uncertainty. 

 

Figure 1. Graphical representation of the proposed model. 

To find the optimal relationship between the arrival rate of flights and the location and the time 
of the intrusion and delays, a fuzzy chance-constrained model based on credibility theory for FSIFT 
is presented to simultaneously minimize delays in arrival and departure flights. To deal with real-life 
situations, this study must make several assumptions: 
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1) The influence of interference between adjacent runways on FS is not considered;  
2) A safe span time can be obtained;  
3) The influence of the capacity of waypoints on FS is ignored. 
To clarify the basic mechanism of FSI, a small example in Figure 1 aims at assigning seven 

flights (A1–A7) and six departure flights (D1–D6) to take off or land on three runways (R1–R3). 
When there is no incursion event at any runway, three flight tasks would be generated in the 
optimization process, i.e., [A7–A6–A3–A2–A1], [A5–D2–D1–A4], and [D6– D5–D4–D3]. When an 
incursion occurs in runway R1 between 7:00 and 7:10, three new flight tasks would be generated in 
the optimization process, i.e., [A3–A2–A1], [A6–A5–D2–D1–A4], and [A7–D6–D5–D4–D3], 
because runway 1 cannot allow take offs or landings during this time, affecting A7 and A6 in the 
original flight tasks of R1. 

3.2. Model formulation  

3.2.1. Notation 

To facilitate model presentation, all definitions and notations used hereafter are summarized in 
Table 1. 

3.2.2. Formulation  

Using credibility theory, a fuzzy chance-constrained model can be formulated which requires 
the minimization of: 

min 𝑍ଵ ൌ ∑ ሾ𝑡௜
௔ െ 𝑡௜

௣
∀௜∈ிభ

ሿ                       (1) 

min 𝑍ଶ ൌ ∑ ሾ𝑡௜
௔ െ 𝑡௜

௣
∀௜∈ிమ

ሿ                       (2) 

which is subject to： 

∑ 𝑥௜
௥

∀௥∈ோ ൌ 1, ∀𝑖 ∈ 𝐹                          (3) 

0 ൑ 𝑡௜
௔ െ 𝑡௜

௣ ൑ 𝑑ଵ, ∀𝑖 ∈ 𝐹ଵ                        (4) 

0 ൑ 𝑡௜
௔ െ 𝑡௜

௣ ൑ 𝑑ଶ, ∀𝑖 ∈ 𝐹ଶ                         (5) 

2𝑧௜௝
௥ ൑ 𝑥௜

௥ ൅ 𝑥௝
௥, ∀𝑖, 𝑗 ∈ F  ∀𝑟 ∈ 𝑅                       (6) 

∑ 𝑧௜௝
௥

∀௝∈ி∪ሼ଴ሽ ൌ ∑ 𝑧௝௜
௥

∀௝∈ி∪ሼ଴ሽ ൌ 𝑥௜
௥, ∀𝑖 ∈ 𝐹  ∀𝑟 ∈ 𝑅                (7) 

𝑈௜௥ െ 𝑈௝௥ ൅ |𝐹 ∪ ሼ0ሽ|. 𝑧௜௝
௥ ൒ |𝐹 ∪ ሼ0ሽ| െ 1, ∀𝑖, 𝑗 ∈ 𝐹  ∀𝑟 ∈ 𝑅           (8) 
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𝑡௜
௔ ൅ 𝑡௜

୦ ൅ 𝑇௜௝ ൅ ൫1 െ 𝑧௜௝
௥ ൯. 𝑀 ൑  𝑡௝

௔, ∀𝑖, 𝑗 ∈ F  ∀𝑟 ∈ 𝑅          (9) 

𝐶𝑟ሼ𝑡௜
௔ ൅ ሺ1 െ 𝑥௜

௥ሻ. 𝑀 ∈ ሾ0, 𝑇௥
௦ሿ ∪ ሾ𝑇௥

ௗ ൅𝑇௥
௦, ൅∞ሿሽ ൒ 𝛼 , ∀𝑖 ∈ F  ∀𝑟 ∈ 𝑅          (10) 

In this formulation, the objective function Eq (1) aims at minimizing the total delay time for all 
arrival flights. The objective function Eq (2) aims at minimizing the total delay time for all departure 
flights. Constraint Eq (3) guarantees that each flight must be assigned to only one runway. 
Constraints Eqs (4) and (5) guarantee that the delay of arrival or departure flights does not exceed its 
maximum value. Constraints Eqs (6) and (7) set that all flights (except virtual flights) served by each 
runway to have the same incoming and outgoing arcs. Constraint Eq (8) is used for identifying 
violated subtour elimination constraints. Constraint Eq (9) ensures the safe spacing between aircraft 
of two adjacent flights. Constraint Eq (10) sets all flights to be prohibited to take off or land within 
the fuzzy runway's incursion window at a certain level of preference. 

Using credibility theory, 𝑇௥
ௗ  is a triangular fuzzy number, i.e., 𝑇௥

ௗ ൌ ሺ𝑇௥
ௗଵ, 𝑇௥

ௗଶ, 𝑇௥
ௗଷሻ , 

wherein:  𝑇௥
ௗଵ ൑ 𝑇௥

ௗଶ ൑ 𝑇௥
ௗଷ. To satisfy the fuzzy chance constraint Eq (10), the credibility of all 

flights being prohibited to take off or land within the fuzzy runway’s incursion window is defined 
as follows: 

𝐶𝑟ሼ𝑡௜
௔ ൅ ሺ1 െ 𝑥௜

௥ሻ. 𝑀 ∈ ሾ0, 𝑇௥
௦ሿ ∪ ሾ𝑇௥

ௗ ൅𝑇௥
௦, ൅∞ሿሽ ൌ 𝐶𝑟ሼ𝑡௜

௔ ൅ ሺ1 െ 𝑥௜
௥ሻ. 𝑀 ൒ 𝑇௥

ௗ ൅𝑇௥
௦ሽ 

ൌ 𝐶𝑟ሼ𝑡௜
௔ ൅ ሺ1 െ 𝑥௜

௥ሻ. 𝑀 െ 𝑇௥
௦ ൒ 𝑇௥

ௗሽ 

ൌ 𝐶𝑟ሼ𝑇௥
ௗ ൑ 𝑇௥ ൌ 𝑡௜

௔ ൅ ሺ1 െ 𝑥௜
௥ሻ. 𝑀 െ  𝑇௥

௦ሽ 

                ൌ

⎩
⎪
⎨

⎪
⎧

0, 𝑇௥ ൑ 𝑇௥
ௗଵ

ೝ்ି ೝ்
೏భ

ଶሺ ೝ்
೏మି ೝ்

೏భሻ
, 𝑇௥

ௗଵ ൑ 𝑇௥ ൑ 𝑇௥
ௗଶ

ೝ்ା ೝ்
೏యିଶ ೝ்

೏మ

ଶሺ ೝ்
೏యି ೝ்

೏మሻ
, 𝑇௥

ௗଶ ൑ 𝑇௥ ൑ 𝑇௥
ௗଷ

1, 𝑇௥ ൒ 𝑇௥
ௗଷ

                     (11) 

where 𝐶𝑟ሼ𝑇௥
ௗ ൑ 𝑇௥ሽ denotes a credibility measure that the fuzzy event holds under the fuzzy metric 

𝑇௥
ௗ ൑ 𝑇௥. When α = 1, policymakers are extremely conservative, and the scheduling scheme that 

considers the worst case of runway incursion is accepted. When α = 0, policymakers are extremely 
aggressive, and the scheduling schemes under the minimum runway incursion time are accepted and 
easy to be interrupted. 

Definition 1. Pos  , called as a probability measure, is a set function defined on the power set 

of a discourse universe  , i.e., Pr( ) . For any label set (i.e., I ) , if Pos satisfies the following 

conditions: (i) ( ) 0Pos   , and ( ) 1Pos   ; (ii) for any subset { | }iA i I  of Pr( ) , 

( ) sup ( )i I i i I iPos A Pos A   . 

Definition 2. Let triplet { ,Pr( ), }Pos   be a probability space, and set function 

( ) 0.5(1 ( ) ( ))cCr A Pos A Pos A    be the credibility measure of event A , where cA  is the 

complement of set A . 

Definition 3. Let triplet { ,Pr( ), }Cr   be a credibility space, and the expectation value of its 

fuzzy variable   is 
0

0
[ ] { } { }E Cr r dr Cr r dr  




     . 
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Table 1. Parameters and variables in the mathematical model. 

Indices：        

𝑖, 𝑗 Flight  

0 A virtual one  

𝑟 Runway  

Sets： 

𝐹 Set of both arrival flights and departure flights, 𝐹 ൌ 𝐹ଵ ∪ 𝐹ଶ 

𝐹ଵ Set of arrival flights 

𝐹ଶ Set of departure flights 

𝑅 Set of runways 

Parameters： 

𝑡௜
௣ Estimated starting time of each flight 𝑖; ∀𝑖 ∈ 𝐹 

𝑑ଵ Maximum delay time of arrival flight  

𝑑ଶ Maximum delay time of departure flight 

𝑡௜
୦ Occupation time of flight 𝑖 having landed or taken off on a runway; ∀𝑖 ∈ 𝐹 

𝑇௜௝ 
Safe span time of two aircraft related to flights 𝑖 and 𝑗 covered by a runway, related to 

safe distance and wake cortex time; ∀𝑖, 𝑗 ∈ 𝐹 

𝑇௥
௦ Starting time of the incursion event at runway 𝑟; ∀𝑟 ∈ 𝑅 

𝑇௥
ௗ Fuzzy duration time of the incursion event at runway 𝑟; ∀𝑟 ∈ 𝑅 

𝛼 A preset value for the preference level 

𝑀 A larger fixed value 

Decision Variables： 

𝑥௜
௥ Whether each flight 𝑖 is assigned to a runway 𝑟 or not;  ∀𝑟 ∈ 𝑅 ∀𝑖 ∈ 𝐹 

𝑧௜௝
௥  

Whether two adjacent flights 𝑖 and 𝑗 are covered by the runway 𝑟 or not; ∀𝑟 ∈ 𝑅 

∀𝑖, 𝑗 ∈ 𝐹 

𝑡௜
௔ Actual starting time of arrival or departure flight 𝑖; ∀𝑖 ∈ 𝐹 

𝑈௜௥ An auxiliary variable for eliminating subtours in flights 𝑖 for runway 𝑟; ∀𝑟 ∈ 𝑅 

4. Heuristic-based queuing algorithm 

Since FSI is an NP-hard problem, exact algorithms, such as standard solvers such as CPLEX, 
cannot be used to resolve large instances efficiently. For heuristic algorithms, although both of 
route-building-based heuristics and intelligent algorithms are used to obtain solutions for large 
instances efficiently, the convergence of intelligent algorithms is poor and its solution quality cannot 
be guaranteed, compared with route-building-based heuristics. Hence, a novel polynomial 
algorithm based on queuing theory is also proposed to obtain acceptable solutions for large 
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instances efficiently [33–36]. 

According to the characteristics of the problem, the scheduling priority of arrival flights is 

higher than that of departure flights, so this fuzzy chance-constrained problem is a priority 

multi-objective optimization problem. From each of the target functions, ∑ ሾ𝑡௜
௔ െ 𝑡௜

௣
∀௜∈ி ሿ → 0 

decides: 1)  ห𝑡௜
௔ ൅ 𝑡௜

୦ ൅ 𝑇௜௝ ൅ ൫1 െ 𝑧௜௝
௥ ൯. 𝑀 െ  𝑡௝

௔ห → 0 ሺ𝑖. 𝑒. , 𝑇௜௝ ൌ 𝑇௜௝
ெ െ 𝜇. ሺ𝑇௜௝

ெ െ 𝑇௜௝
௠ሻ ; 2) the 

queue based on a first-come first-served policy. Based on fuzzy credibility theory, the problem is 

transformed into a deterministic model, and the idea behind the solution to this problem can be 

considered as follows: at first, arrival flights are allocated to the runways and then departure flights 

are also assigned on this basis. The details of the heuristic-based queuing algorithm are given below: 
Step 1: Set the input of the proposed model, i.e., 𝑅, 𝐹ଵ , 𝐹ଶ  and   𝑇௜௝.  Let 

𝑆𝑒𝑟𝑣𝑒𝑟ሺ1: 𝑅, ሾ0, ൅∞ሿሻ ൌ 0 
Step 2: Set the parameters of the incursion incident for a runway, i.e., 𝑇௥

௦ and 𝑇௥
ௗ. According 

to 𝐶𝑟ሼ𝑇௥
ௗ ൑ 𝑇௥ሽ ൒ 𝛼 determine 𝑇௥

ௗ ൌ 𝐶𝑟ିଵ(𝛼) and 𝑆𝑒𝑟𝑣𝑒𝑟ሺ𝑟, ሾ𝑇௥
௦, 𝑇௥

௦ ൅ 𝑇௥
ௗሿሻ ൌ 1. 

Step 3: Sort 𝐹ଵ  and 𝐹ଶ  respectively according to 𝑡௜
௣ , and let the result be 𝐹ଵ

" ൌ

ሼ𝐹ଵ
", 𝐹ଶ

", … , 𝐹|ிభ|
" ሽ’ and 𝐹ଶ

" ൌ ሼ𝐹ଵ
", 𝐹ଶ

", … , 𝐹|ிమ|
" ሽ’. 

Step 4: Assign an arrival flight ∀𝑖 ∈ 𝐹ଵ
" to the runway ∀𝑟 ∈ 𝑅 and determine 𝑡௜

௔. Let 𝑖 ൌ 1. 

Step 4.1: For each flight ∀𝑖 ∈ 𝐹ଵ
"，find the last flight of any runway ∀𝑟 ∈ 𝑅, i.e., 𝑙𝐹ሺ𝑟ሻ. 

According to min
௥

ሼቚ𝑡௟ிሺ௥ሻ
௔ ൅ 𝑡௟ிሺ௥ሻ

୦ ൅ 𝑇௟ிሺ௥ሻி೔
" െ 𝑡

ி೔
"

௣ ቚ , 𝑆𝑒𝑟𝑣𝑒𝑟 ቀ𝑟, ቂ𝑡
ி೔

"
௔ , 𝑡

ி೔
"

௔ ൅ 𝑡
ி೔

"
௛ ቃቁ ൌ 0, ∀𝑟 ∈ 𝑅ሽ ，

determine the assignment of flight 𝑖 to runway 𝑟, i.e., 𝑥௜
௥  and 𝑡

ி೔
"

௔ ൌ max ሺ𝑡
ி೔

"
௣ , 𝑡௟ிሺ௥ሻ

௔ ൅ 𝑡௟ிሺ௥ሻ
୦ ൅

𝑇௟ிሺ௥ሻி೔
"ሻ. 

Step 4.2: For 𝑥௜
௥ and 𝑡

ி೔
"

௔ , let 𝑆𝑒𝑟𝑣𝑒𝑟 ቀ𝑟, ቂ𝑡
ி೔

"
௔ , 𝑡

ி೔
"

௔ ൅ 𝑡
ி೔

"
௛ ቃቁ ൌ 1. 

Step 4.3: Let 𝑖 ൌ 𝑖 ൅ 1. If 𝑖 ൑ |𝐹ଵ|, return to Step 4.1; otherwise, the algorithm is terminated to 
obtain the result. 

Step 5: Based on the scheduling of arrival flights, each departure flight ∀𝑖 ∈ 𝐹ଶ
" is also 

assigned to the runway ∀𝑟 ∈ 𝑅, i.e., determination of 𝑥௜
௥ and 𝑡௜

௔. Let 𝑖 ൌ 1. 

Step 5.1: Similar to Step 4.1, find an optimal runway 𝑟 for each departure flight ∀𝑖 ∈ 𝐹ଶ
"， 

using the rules of min
௥

ሼቚ𝑡௟ிሺ௥ሻ
௔ ൅ 𝑡௟ிሺ௥ሻ

୦ ൅ 𝑇௟ிሺ௥ሻி೔
" െ 𝑡

ி೔
"

௣ ቚ , 𝑆𝑒𝑟𝑣𝑒𝑟 ቀ𝑟, ቂ𝑡
ி೔

"
௔ , 𝑡

ி೔
"

௔ ൅ 𝑡
ி೔

"
௛ ቃቁ ൌ 0, ∀𝑟 ∈ 𝑅ሽ, 

and let 𝑥௜
௥ ൌ 1 and 𝑡

ி೔
"

௔ ൌ max ሺ𝑡
ி೔

"
௣ , 𝑡௟ிሺ௥ሻ

௔ ൅ 𝑡௟ிሺ௥ሻ
୦ ൅ 𝑇௟ிሺ௥ሻி೔

"ሻ. 

Step 5.2: Let 𝑆𝑒𝑟𝑣𝑒𝑟 ቀ𝑟, ቂ𝑡
ி೔

"
௔ , 𝑡

ி೔
"

௔ ൅ 𝑡
ி೔

"
௛ ቃቁ ൌ 1. Set 𝑖 ൌ 𝑖 ൅ 1. If 𝑖 ൑ |𝐹ଶ|, return to Step 5.1; 

otherwise, the algorithm is terminated to obtain the result. 
The algorithm complexity is 𝑜ሺ|𝐹ଵ|ሻ ൅ 𝑜ሺ|𝐹ଶ|ሻ  and the solution can be obtained in 

polynomial time. 
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5. Numerical example  

A case study of a real-word example is used to verify the practicality of the model and method. 
There is a total of 41 arrival flights and 31 departure flights taking off or landing on runways in 
Beijing Capital International Airport, China, during 7:00 and 8:00 in October 21, 2019. The number 
of runways required over time is shown in Figure 2. In order for these flights to take off or land 
according to the planned scheduled time, a maximum of 10 runways and a minimum of 0 runways 
are required. Therefore, the phenomena of insufficient runway resources and idle runways appear in 
some periods. 

  

Figure 2. Number of runways required over time. 

Table 2. Result comparison of proposed FSIFT with and without priorities. 

Number of 

runways 

FSIFT with priorities FSIFT without priorities 

Delay time of departure 

flights (min) 

Delay time of arrival 

flights (min) 

Delay time of 

departure flights 

(min) 

Delay time of 

arrival flights (min)

1 4208 1076 5966 4430 

2 1467 107 2281 1755 

3 344 26 1065 852 

An incursion event occurred on simulated runway 1 at 7:00, and the fuzzy incursion triangle 
number was (10, 20, 30). When 𝛼 ൌ 1, a conservative scheduling scheme that considers the worst 
case is obtained. To analyze the influence of priority multi-objective optimization on the FSIFT 
scheduling result, the difference in results between them for different numbers of runways is given in 
Table 2, from which it can be seen that: 

1) As the number of runways increase, the delay time of departure or arrival flights is reduced, 
resulting in a decrease in the total delay of all flights.  

N
u

m
b

e
r 

o
f 

re
q

ui
re

d
 r

u
n

w
a

ys
 



6733 

Mathematical Biosciences and Engineering  Volume 18, Issue 5, 6724-6738. 

2) For the same number of runways, due to the number of arrival flights being greater than that 
of departure flights, the delay time in departure or arrival flight of the proposed model is less than 
that of the traditional model.  

 

Figure 3. Performance of the proposed FS model and traditional model. 

Additionally, the difference in performance of the proposed FS model and traditional model for 
three runways is displayed in Figure 3. The delay time in departure or arrival flights for the proposed 
FS approach is better than that of the traditional model. The reason is that runway incursions resulted 
in reduced runway capacity and increased queues for take-off and landing flights, resulting in flight 
delays. As shown in Figure 4, the queue length of the improved model at any given time is greater 
than that of the traditional model, and it takes more time for the queue to dissipate. The result of the 
calculation is consistent with reality. 

 

Figure 4. Number of flights in the queue for the proposed FS model and traditional model. 

Further, comparing the results of the proposed approach under different preference levels is 
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given in Figure 5. As the preference level 𝛼 increases, incursions increase the amount of time spent 
on available runways, and delays gradually increase. Figure 6 also shows that higher runway 
incursion times lead to longer queue lengths at any given time, with more dissipation time. 

 

Figure 5. Comparison of the proposed FS model with different preference levels. 

 

Figure 6. Number of flights in the queue for different preference levels. 

Besides, proposed algorithm is compared with the standard genetic algorithm (GA) and ant 
colony algorithm (ACO) in order to verify the effectiveness of the algorithm. The core of GA is to 
code chromosome to assign flights to the runway, and determine the flight take-off and landing 
sequence according to the flight time. In ACO, the problem is abstracted as a vehicle routing problem, 
and the solution is constructed by ant traversing different flights. In the three runways of different 
number of flights, the program was run 50 times. The results are shown in Table 2, from which we 
can see: 

1) As the scale of the test instances increases, proposed algorithm can find a local optimal solution 
in less than 2 seconds. Because this algorithm is a greedy algorithm, its solution quality is stable. 

2) The calculation time and quality of ACO are better than that of GA, but they are worse than 
proposed algorithm, and the solution quality of ACO and GA decreases rapidly with the increase of 
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problem size. This is because the ACO is to construct the solution, while GA carries out genetic 
operation on the basis of randomly constructed solution. The problem is extremely complex, which 
may destroy the solution structure, so the efficiency of GA is poor. To sum up, this algorithm is 
robust, reliable and efficient. 

Table 2. Comparison of the results of different algorithms. 

Scenes Comparison 
Size of instances 

72 200 500 

Proposed  
algorithm  

Computation time (s) 0.49 0.69 1.7 

Best solution (min) 1065 7041 14,217 

GA 

Computation time (s) 108.4 167.3 274.6 

Best solution (min) 1065 7052 14,324 

Average solution (min) 1125 7312 15,002 

ACO 

Computation time (s) 10.4 23.4 56.2 

Best solution (min) 1065 7041 14,217 

Average solution (min) 1096 7256 14,849 

6. Conclusions 

This study aims at presenting a fuzzy chance-constrained model for FS with consideration of 
incursions to balance the arrival rate of flights and the location and time of the intrusion and delays. 
Furthermore, the scheduling priority of arrival flights being higher than that of departure flights is 
also incorporated into the proposed model in order to represent real-world conditions. A 
heuristic-based queuing theory algorithm is proposed to obtain efficiently a set of acceptable 
solutions. The main contributions can be described as follows: 

1) As the number of runways increases, the delay time of the arrival flights in this model is 
better than that of the traditional model, but the delay time of the departure flights in the traditional 
model is greater than that of this model. With the increase of the number of runways, the total delay 
time deviation of the two models is gradually reduced. 

2) As the preference level α increases, incursions also increase runway occupancy time, 
resulting in a reduction in the number of aircraft taking off or landing at the runway per hour. Hence, 
it causes extensive delays to incoming and departing flights. 

3) The algorithm proposed in this paper is efficient, stable, and reliable. 
However, the premise of the study is that all arrival flights must land at the airport. When an 

incursion event occurs, even if the scheduling priority of the arrival flight is higher than that of the 
departure flight, resulting in the queuing time of some arrival flights exceeding their flight time 
allowed by the remaining fuel, these flights need to choose to make an emergency landing at a 
nearby airport. Further, IFS with point fusion program is more efficient, compared with the 
traditional one. Hence, it is worth studying thoroughly the process of extending this model to 
simultaneously select diverted flights based on point fusion program. 
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