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Abstract: Objective: We aimed to construct a novel prognostic model based on N6-methyladenosine 

(m6A)-related autophagy genes for predicting the prognosis of lung squamous cell carcinoma (LUSC). 

Methods: Gene expression profiles and clinical information of Patients with LUSC were downloaded 

from The Cancer Genome Atlas (TCGA) database. In addition, m6A- and autophagy-related gene 

profiles were obtained from TCGA and Human Autophagy Database, respectively. Pearson correlation 

analysis was performed to identify the m6A-related autophagy genes, and univariate Cox regression 

analysis was conducted to screen for genes associated with prognosis. Based on these genes, LASSO 

Cox regression analysis was used to construct a prognostic model. The corresponding prognostic score 

(PS) was calculated, and patients with LUSC were assigned to low- and high-risk groups according to 

the median PS value. An independent dataset (GSE37745) was used to validate the prognostic ability 

of the model. CIBERSORT was used to calculate the differences in immune cell infiltration between 

http://www.aimspress.com/article/10.3934/mbe.2020392
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the high- and low-risk groups. Results: Seven m6A-related autophagy genes were screened to construct 

a prognostic model: CASP4, CDKN1A, DLC1, ITGB1, PINK1, TP63, and EIF4EBP1. In the training 

and validation sets, patients in the high-risk group had worse survival times than those in the low-risk 

group; the areas under the receiver operating characteristic curves were 0.958 and 0.759, respectively. 

There were differences in m6A levels and immune cell infiltration between the high- and low-risk 

groups. Conclusions: Our prognostic model of the seven m6A-related autophagy genes had significant 

predictive value for LUSC; thus, these genes may serve as autophagy-related therapeutic targets in 

clinical practice. 

Keywords: N6-methyladenosine; autophagy; prognostic model; lung squamous cell carcinoma 

 

Abbreviations: NSCLC: Non-small cell lung cancer; LUSC: Lung squamous cell carcinoma; LUAD: 

Lung adenocarcinoma; CMA: Chaperone-mediated autophagy; m6A: N6-methyladenosine; TCGA: 

The cancer genome atlas; HADb: Human autophagy database; PCC: Pearson correlation coefficient; 

GO_BP: Gene ontology biological process; KEGG: Kyoto encyclopedia of genes and genomes; FDR: 

False discovery rate; KM: Kaplan-Meier; PS: Prognostic score; PCA: Principal component analysis; 

mTOR: Mechanistic target of rapamycin; PI3K: Phosphoinositide 3-kinase; HR: Homologous 

recombination; ROC: Receiver operating characteristic; CASP4: Caspase-4; ITGB1: Integrin subunit 

beta 1; CDKN1A: Cyclin-dependent kinase inhibitor 1A; PINK1: PTEN-induced kinase 1; TP63: 

Tumor protein p63; EIF4EBP1: Eukaryotic translation initiation factor 4E binding protein 1 

1. Introduction 

Lung cancer is a common malignancy that affects human health, and non-small cell lung cancer 

(NSCLC) accounts for 85% of such tumors [1]. NSCLC has two main histological subtypes: lung 

squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD). LUSC, which accounts for 

20–30% of NSCLC cases, is characterized by high metastasis and a high recurrence rate, and most 

patients with LUSC are diagnosed at an advanced stage with poor prognosis [2]. Thus, there is an 

urgent need to explore prognostic markers and therapeutic targets for LUSC. 

Autophagy is an evolutionarily conserved protein degradation process that maintains cellular 

homeostasis by degrading long-lived proteins and defective organelles [3]. Previous studies have 

demonstrated that dysregulation of autophagy is closely related to tumorigenesis [4]. However, the 

role of autophagy in tumor pathogenesis and its impact on prognosis are complex and remain unclear. 

Autophagy has been reported to involve three pathways: macrophagy, microphagy, and chaperone-

mediated autophagy (CMA) [5]. Losmanová et al. [6] have found that CMA-related markers such as 

LAMP2A and HSC70 are poor independent prognostic biomarkers in primary resected LUSC. In 

addition, Xu et al. [7] have indicated that TRIM29 promotes the proliferation and invasion of LUSC 

through E-cadherin autophagy degradation. These studies demonstrate that autophagy-related genes 

play a role in the progression and prognosis of LUSC. 

Previous studies highlighted that N6-methyladenosine (m6A) alters the expression and biological 

function of genes via regulating RNA stability, microRNA processing, mRNA, and mRNA translation, 

and its dysregulation has been observed in various human cancers [8,9]. Existing evidence revealed 

that the expression profiles of m6A genes have great prospects in the prediction of NSCLC prognosis, 
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and these genes may be considered as potential therapeutic targets for LUSC [10]. For example, the 

m6A reader YTHDC2 was downregulated in NSCLC patients and cell lines, and it could predict poor 

prognosis and promote tumor progression [11]. These studies indicated that m6A methylation-related 

genes provide more possibilities for the diagnosis and treatment of cancer. 

It is known that m6A and autophagy genes are responsible for LUSC prognosis. Notably, 

prognostic models constructed using a series of biomarkers have great potential for the diagnosis and 

prognosis of patients with LUSC. Although several studies have established prognostic models of 

patients with LUSC based on autophagy genes, a prognostic model based on m6A and autophagy genes 

is lacking. In this study, mRNA expression data and clinical information of patients with LUSC were 

obtained from The Cancer Genome Atlas (TCGA) database. In addition, autophagy-related genes were 

downloaded from the Human Autophagy Database (HADb), and m6A genes were extracted from 

LUSC samples from the TCGA database. Next, the m6A-related autophagy genes were screened using 

Pearson correlation for further analysis. After Cox regression and LASSO analyses, prognosis-related 

autophagy genes were selected to construct the prognostic model. Furthermore, an independent dataset 

(GSE37745) was used to validate the predictive ability of this model. Finally, we explored the 

association between the prognostic model and the immune microenvironment. A flowchart of the study 

design is presented in Figure 1. Our study will help to propose targeted treatment strategies for patients 

with LUSC with certain clinical guidance values. 

 

Figure 1. Flowchart of analysis. 
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2. Material and methods 

2.1. Screening of expression profile data 

Gene expression profiles of lung cancer patients were downloaded from the TCGA database 

(https://gdc-portal.nci.nih.gov/). A total of 550 samples were obtained, which included 501 LUSC 

samples. Among them, 494 LUSC patients with LUSC had complete prognostic information, and these 

samples were used as the training set. 

In addition, the relevant datasets that met the following criteria were screened from the National 

Center for Biotechnology Information Gene Expression Omnibus database 

(https://www.ncbi.nlm.nih.gov/geo/) using “lung cancer, homo sapiens” as keywords. 1) The samples 

had histological-type information (such as adenocarcinoma and squamous cell carcinoma), 2) the total 

sample size was greater than 150 (among these, the number of LUSC samples was not less than 50), 

and 3) the LUSC samples had complete survival information. After selection, one expression profile 

dataset that met the requirements, GSE37745 [12–14], was downloaded. This dataset included 196 

samples, of which 66 had clinical prognostic information. The dataset was constructed based on the 

GPL570 Affymetrix Human Genome U133 Plus 2.0 Array platform. 

2.2. Identification of m6A-related autophagy genes in LUSC samples 

A total of 232 autophagy-related genes were obtained from HADb (http://www.autophagy.lu/) [10]. 

The m6A-related gene expression levels from TCGA LUSC tumor samples were extracted, and the 

expression levels of autophagy-related genes were downloaded for further analysis. In brief, the cor.test 

function in R 3.6.1 (https://stat.ethz.ch/R-manual/R-devel/library/stats/html/cor.test.html) was used to 

calculate the Pearson correlation coefficient (PCC) between m6A-related genes and autophagy genes, and 

the autophagy genes that were significantly associated with the m6A genes were screened. In addition, the 

m6A-autophagy pairs with |PCC| > 0.5 and false discovery rate (FDR) < 0.05 were used to construct a co-

expression network, which was visualized using Cytoscape 3.6.1 [15]. Finally, the Gene Ontology 

Biological Process (GO_BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 

enrichment analyses of genes contained in the co-expression network were performed using the Database 

for Annotation, Visualization and Integrated Discovery [16,17] (Version 6.8; https://david.ncifcrf.gov/). A 

FDR < 0.05 was used as the threshold for the significantly enriched category. 

2.3. Screening of autophagy genes associated with prognosis 

With regard to the TCGA training set, the survival package (Version 2.41-1; 

http://bioconductor.org/packages/survivalr/) in R 3.6.1 [18] was used to conduct univariate Cox 

regression analysis based on the data from the selected autophagy-related genes combined with the 

clinical survival and prognosis information of the samples. A p-value < 0.05 was used to determine 

prognostic-related autophagy genes. 

2.4. Development and verification of prognostic model  

Based on the prognostic-related autophagy genes, a LASSO Cox regression model [19] of the 
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penalized package (Version 0.9.50) [20] in R 3.6.1 was used to screen the optimal number of 

autophagy gene markers. Thereafter, the samples were divided into low- and high-expression 

groups according to the median expression level of each gene. The Kaplan-Meier (KM) curve 

method in the survival package [18] was used to evaluate the relationship between the two groups 

and survival prognosis. 

Furthermore, according to the LASSO prognostic coefficient of each selected autophagy gene 

and the gene expression level in the TCGA database, the prognostic score (PS) model was constructed 

using the following formula: 

Prognostic score (PS) = ∑βgenes × Expgenes 

Here, βgene represents the LASSO prognostic coefficient of the autophagy gene, and Expgene 

represents the expression level of the gene in the TCGA dataset. 

Based on the PS formula, the PS values of each sample in the TCGA and validation sets 

(GSE37745) were calculated. All samples were divided into high- and low-risk groups according to 

the median PS score. Finally, the correlation between the high- or low-risk groups and prognosis was 

assessed using KM analysis.  

2.5. Principal component analysis (PCA) of samples in TCGA and GSE37745 datasets 

PCA is a dimensionality reduction technology that can convert multiple variables into a few 

principal components that reflect most of the original variable information [21,22]. According to the 

expression levels of m6A genes detected in the TCGA and GSE37745 datasets, PCA was performed 

on the samples of the two datasets using the psych package (Version 1.7.8) in R 3.6.1. 

2.6. Correlation analysis of low- and high-risk groups and immune microenvironment  

The proportions of 22 immune cell types in the LUSC samples from the TCGA database were 

calculated using CIBERSORT (https://cibersort.stanford.edu/index.php) [20]. Next, the differences in 

the proportions of various immune cell types in the high- and low-risk groups were compared via 

Wilcoxon rank-sum test.  

3. Results 

3.1. Identification of autophagy genes related to m6A genes in LUSC samples  

According to the threshold, a total of 256 m6A-autophagy interactions containing 112 autophagy 

genes and 18 m6A genes were obtained (Table S1). The m6A and autophagy co-expression networks 

are shown in Figure 2A. In addition, functional enrichment analyses of the obtained autophagy genes 

were performed. The results showed that these genes were markedly enriched in 51 GO_BP terms and 

56 KEGG pathways (Table S2). Top20 GO terms and KEGG pathways were displayed. In brief, genes 

were mainly enriched in GO_BP terms such as autophagy, apoptotic process, and macroautophagy 

(Figure 2B), and were involved in several KEGG signaling pathways such as the mechanistic target of 

rapamycin (mTOR) and phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathways 

(Figure 2C). 
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Figure 2. m6A-autophagy coexpression network. A: Orange nodes represent m6A-related 

genes, and purple nodes represent autophagy-related genes. Gray lines indicate negative 

correlations, and green lines indicate positive correlations. B: GO_BP analysis of 

autophagy genes C: KEGG pathway analysis of autophagy genes. The horizontal axis 

represents the number of genes, and the vertical axis specifies the item. The color 

represents the FDR value. 

3.2. Screening of prognosis-related autophagy genes 

After univariate Cox regression analysis, a total of 13 genes that were significantly associated 

with survival prognosis were selected: PINK1, DLC1, CDKN1A, CTSD, ITGB1, EDEM1, TP63, 

EIF4EBP1, CASP4, MAP1LC3B, CAPN2, CFLAR, and MAPK8 (Table S3). 

3.3. Construction and verification of prognostic model 

Based on the 13 prognosis-related autophagy genes and the LASSO Cox regression algorithm 

results, the optimal number of combined autophagy genes was seven (Table 1). The lambda values and 

coefficients of the seven genes are shown in Figure 3A–C. Next, the samples were split into low- and 

high-expression groups based on the gene expression levels. KM analysis revealed that patients with 

LUSC with low expression levels of CASP4, CDKN1A, DLC1, ITGB1, and PINK1 had shorter overall 

survival times, whereas patients with high expression levels of TP63 and EIF4EBP1 had longer 

survival times (Figure 3D). 

Furthermore, seven autophagy genes were used to establish a prognostic model, and the PS value 

of each gene was calculated. Five genes (DLC1, PINK1, CASP4, CDKN1A, and ITGB1) with 
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homologous recombination (HR) scores > 1 were considered risk genes that were detrimental to 

prognosis, while two genes (TP63 and EIF4EBP1) with HR scores < 1 were regarded as protective 

factors that were beneficial to prognosis (Figure 4A), which was consistent with the results of the 

survival analysis. In addition, a heatmap of the gene expression levels showed that DLC1, PINK1, 

CASP4, CDKN1A, and ITGB1 were upregulated, whereas TP63 and EIF4EBP1 were downregulated 

with an increase in PS value2 (Figure 4B). Samples in the TCGA cohort were separated into high- and 

low-risk groups based on the median PS value. Survival analysis indicated that patients in the high-

risk group had worse survival rates (Figure 5A). As shown in Figure 5B, patient survival was 

associated with the risk score. Moreover, the area under the receiver operating characteristic (ROC) 

curve (AUC) of this model was 0.958 (Figure 5C), suggesting that this model has a good ability to 

predict LUSC prognosis.  

 

Figure 3. LASSO analysis of autophagy-related genes. A: Curve graph of LASSO 

algorithm lambda parameter. The marked spot is the lambda value when the cross-

validated log-likelihood (CVL) value reaches the maximum critical value. B: Value of each 

gene coefficient under parameter lambda value. C: Histogram of gene coefficients. D: KM 

survival curves of seven selected autophagy-related genes. The red curve represents the 

low-expression group, and the cyan curve represents the high-expression group. 

We used another dataset (GSE37745) to validate the predictive ability of this model. The PS value 
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of patients with LUSC in the GSE37745 dataset was also calculated. This divided the patients into 

high- and low-risk groups. Patients with a high PS had a lower survival ratio and shorter overall 

survival time (Figure 5D). We also observed that patients in the high-risk group had a higher mortality 

rate (Figure 5E). In addition, the AUC value of the ROC curve was 0.759, indicating that the prognostic 

model had high prediction sensitivity (Figure 5F). 

 

Figure 4. Univariate Cox proportional hazards analysis of seven autophagy-related genes. 

A: Forest plot showing the prognostic ability of autophagy genes. B: Heatmap of 

association between the autophagy gene expression levels and clinical characteristics in 

the TCGA cohort. 

Table 1. Multivariate cox proportional hazards analysis of seven selected m6A-related 

autophagy genes. 

ID 
Multivariable cox regression 

LASSO Coef 
Pvalue Hazard Ratio 95% CI 

DLC1 1.470E-02 1.156  1.0594–1.299 0.04482  

PINK1 3.780E-02 1.227  1.129–1.637 0.09718  

CASP4 1.050E-02 1.103  1.089–1.374 0.00859  

CDKN1A 4.840E-02 1.169  1.003–1.511 0.12064  

ITGB1 3.530E-02 1.165  1.067–1.308 0.02806  

TP63 4.570E-02 0.692  0.318–0.892 -0.03937  

EIF4EBP1 4.670E-02 0.519  0.337–0.836 -0.04132  
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3.4. PCA results 

PCA was conducted to compare the differences in m6A expression levels between the low- and 

high-risk groups. As shown in Figure 6, the low- and high-risk samples in the TCGA and GSE37745 

datasets presented different clusters, indicating that there were differences in m6A levels between these 

two groups. 

3.5. Association between different risk groups and the immune microenvironment 

The proportions of 22 immune cell types in each sample from the TCGA database were calculated 

(Table S4). A total of nine immune cell types between the high- and low-risk groups presented significant 

differences, including CD8(+) T cells, M0 macrophages, and regulatory T cells (Figure 7). 

 

Figure 5. Prediction performance analysis of prognostic model. A: Kaplan-Meier curves 

showed that TCGA dataset patients in the high-risk group had a poor prognosis. B: 

Distributions of risk scores and survival status of Patients with LUSC in the TCGA dataset. 

C: ROC curve of the prognostic model for predicting the overall survival of Patients with 

LUSC in the TCGA dataset. D: KM curves revealed that GSE37745 dataset of patients in 

the high-risk group had a worse prognosis. E: Distributions of risk scores and survival 

status of Patients with LUSC in the GSE37745 dataset. F: Area under the ROC curves of 

the prognostic model for patients with LUSC in the GSE37745 dataset.  
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Figure 6. Principal component analysis of low- (red nodes) and high-risk (black nodes) 

groups based on samples from the (A) TCGA and (B) GSE37745 datasets. 

 

 

Figure 7. Wilcoxon rank-sum test showed the immune cell types with significant 

differences in low- (gray nodes) and high-risk (red nodes) groups. *p < 0.05, **p < 0.01, 

and ***p < 0.001. 
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4. Discussion 

Although advances in the diagnosis and treatment of LUSC have been made over the past several 

decades, patients with LUSC continue to have a low five-year survival rate of < 20% [23]. Therefore, 

it is necessary to explore novel prognostic markers and potential therapeutic targets for LUSC. 

Previous studies has indicated that m6A is the most common and abundant modification that affects the 

development of cancer by regulating m6A methyltransferase, demethylase, and binding protein; in addition, 

m6A regulators may serve as potential clinical therapeutic targets for cancers [24]. Meanwhile, autophagy 

acts as an adaptive response to protect tumor cells from stress, thereby promoting tumor progress, 

suggesting that autophagy is a promising target for cancer therapy [25]. However, to date, the potential 

role of m6A regulators and autophagy-related genes in LUSC prognosis is not well understood. In this 

study, a novel seven-gene prognostic model for LUSC was developed based on the combination of 

m6A and autophagy-related genes. According to the PS value of the model, patients in the test and 

validation sets were assigned to the low- and high-risk groups, and the K-M curve showed that patients 

in the high-risk group were closely associated with poor prognosis. Meanwhile, ROC curves suggested 

that this model has good predictive ability and specificity for the prognosis of LUSC, with AUC values 

of 0.958 (training set) and 0.759 (validation set). Furthermore, there was a significant difference in the 

proportion of the nine types of immune cells between the high- and low-risk groups.  

Several studies demonstrated that m6A modification is involved in various biological processes 

related to cell survival and death, such as immune response, apoptosis, and autophagy [26]; meanwhile, 

autophagy is an important cellular process that controls cell fate. Thus, the relationship between 

autophagy and m6A is interesting and worth studying. In this analysis, we identified autophagy genes 

associated with m6A in the LUSC samples, and functional analysis showed that these genes were 

mainly involved in some pathways such as the PI3K/AKT and mTOR signaling pathways. Previous 

study indicated that PI3K/AKT/mTOR pathway was a most commonly activated signaling pathway 

in cancer, which lead to cell proliferation, differentiation, and survival [27]. Therefore, 

PI3K/AKT/mTOR pathway inhibitors may be considered as potential target drugs of LUSC [28].  

In this study, we screened seven m6A-related autophagy genes (CASP4, CDKN1A, DLC1, ITGB1, 

PINK1, TP63, and EIF4EBP1) to establish a risk score model with a high predictive ability for the 

prognosis of LUSC. Survival analysis showed that CASP4, CDKN1A, DLC1, ITGB1, and PINK1 were 

considered risk genes that were detrimental to prognosis. Caspase-4 (CASP4), a type of inflammatory 

caspase, plays a host defense role by releasing pro-inflammatory interleukin-1-like cytokines [29]. A 

previous study indicated that CASP4 was overexpressed in NSCLC tissue and was responsible for poor 

prognosis; thus, it was suggested as a diagnostic and prognostic biomarker for patients with 

NSCLC [30]. Integrin subunit beta 1 (ITGB1) belongs to the integrin family and is involved in cell 

adhesion and recognition. Zhao et al. [31] found that ITGB1 participated in the tumorigenesis 

mechanism of NSCLC, and downregulation of ITGB1 could inhibit the progression of cancer. 

Cyclin-dependent kinase inhibitor 1A (CDKN1A) played tumorigenic effect via mediating G1 cell 

cycle arrest [32]. In NSCLC cell lines and tumor tissues, the expression level of DLC1 Rho GTPase-

activating protein (DLC1) was reduced through promoter methylation [33]. Chang et al. [34] 

demonstrated that higher PTEN-induced kinase 1 (PINK1) expression levels were associated with poor 

overall survival of patients with LUAD. Despite few studies reported the direct relationship 

between gene expression level and LUSC prognosis, these articles indicated the potential 

carcinogenic effects of these genes in cancer.  
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Further, we also observed that TP63 and EIF4EBP1 with HR scores < 1 may be regarded as 

protective factors for LUSC. Tumor protein p63 (TP63) combined with other genes can be used as 

biomarkers to distinguish LUSC from LUAD; thus, it may be the key to the development of precision 

medicine for patients with LUSC [35]. Consistent with our results, Zhu et al. [36] also found that the 

autophagy-related genes such as TP63 and eukaryotic translation initiation factor 4E binding protein 1 

(EIF4EBP1) were protective factors and independent prognostic biomarkers for LUSC and LUAD. 

Taken together, we concluded that these seven autophagy-related genes may be potential therapeutic 

targets and prognostic biomarkers for patients with LUSC. However, the specific biological function 

of these genes in the prognosis of LUSC is still unclear, further clinical trials are needed to uncover 

the mechanism of action of these genes. 

Tumor-infiltrating immune cells determine the prognosis and response to immunotherapies of 

cancer [37]. Thus, we analyzed the significant differences in immune cell infiltration between the low- 

and high-risk groups. The results showed that patients in the high-risk group had higher infiltration of 

plasma cell, memory resting CD4+ T cell, resting NK cell, and M0 macrophages. Zhu et al. [38] 

constructed an immune risk score model that contained memory resting CD4+ T cell could predict the 

prognosis and recurrence risk of patients with LUSC, indicating patients in high-risk group related to 

poor outcome. Another cell, resting NK cells, showed different infiltration in normal tissues and LUSC 

tissues, and several immune cells such as resting NK cells also played an important role in immunologic 

dysfunction and harmful tumor microenvironment induced by LUSC [39]. Furthermore, high-risk LUSC 

patients possessed a higher proportion of immune suppressive cells such as M0 macrophages, and 

these patients had a remarkable poor overall survival [40]. Meanwhile, we also found that the level of 

CD8+ T cell, naïve CD4+ T cell, regulatory T cell (Tregs), activated NK cell, and resting myeloid 

dendritic cell was decreased in the high-risk group. Evidences have reported the relationship between 

these cells and prognosis of LUSC. For example, high proportion of CD8+ T cells was associated with 

improved prognostic outcome in NSCLC, and Tregs also had implications on clinical outcomes of 

LUSC [41]. The expression of activated NK cells significantly decreased in tumor micro-environment of 

lung cancer, which was positively associated with the survival time of patients with lung cancer [42]. These 

studies further supported our findings, suggesting that differences in immune cell infiltration may lead 

to different prognoses of patients with LUSC.  

This study has some limitations. These results were obtained through bioinformatics analysis, 

and animal experiments and clinical trials are needed to investigate the roles of these genes in 

LUSC. In addition, the prognostic model should be further verified in other large cohort studies to 

assess its reliability. 

5. Conclusions 

We developed a novel prognostic model including seven m6A-related autophagy genes (CASP4, 

CDKN1A, DLC1, ITGB1, PINK1, TP63, and EIF4EBP1) for LUSC. This model had good predictive 

ability for LUSC prognosis. The identified genes may be useful as biomarkers for regulating autophagy 

and as therapeutic targets in patients with LUSC. 
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