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Abstract: We study the existence of global unique classical solution to a density-dependent prey-
predator population system with indirect prey-taxis effect. With two Lyapunov functions appropriately
constructed, we then show that the solution can asymptotically approach prey-only state or coexistence
state of the system under suitable conditions. Moreover, linearized analysis on the system at these
two constant steady states shows their linear instability criterion. By numerical simulation we
find that some density-dependent prey-taxis and predators’ diffusion may either flatten the spatial
one-dimensional patterns which exist in non-density-dependent case, or break the spatial two-
dimensional distribution similarity which occurs in non-density-dependent case between predators and
chemoattractants (released by prey).
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1. Introduction

Predator-prey relationship exists throughout nature, for example, lions and gazelles, birds and
insects, lynx and snowshoe hare, etc. In contrast with random diffusion, prey-taxis describes an active
movement behavior of predators towards the zones of higher prey density, and is one of critical
reasons why distribution of predators and prey in a region may display heterogeneity or aggregation.
The first classical prey-taxis predator-prey model may be trace back to Kareiva and Odell [1] (cf. the
Eqs (40), (51), (56), (57) therein) where on the population level they explored a predator-prey
interaction between the ladybug beetle Coccinella septempunctata and the golden aphid Uroleucon
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nigrotuberculatum. This model is generally represented by ut = ∇ · (d(w)∇u − uχ(u,w)∇w) + P(u,w),

wt = dw∆w + G(u,w),
(1.1)

where u and w refer to population density of predators and prey respectively, d(w) is the predators’
random motility function, χ(u,w) in the prey-taxis term −∇(uχ(u,w)∇w) measures sensitivity of the
prey-taxis per unit strength of the gradient ∇w, and dw is random diffusion rate of the prey population.
Interspecific and intraspecific interactions between the predators and prey are denoted by

P(u,w) = γuF(u,w) − h(u), and G(u,w) = w f (w) − g(u,w).

More precisely, γuF(u,w) (resp. w f (w)) may characterize birth or arrival (immigration) of the
predators (resp. of the prey), h(u) (resp. g(u,w)) refers to death or departure (emigration) of the
predators (resp. of the prey). Thus one may take g(u,w) = uF(u,w) if the death or departures of prey
is predominantly caused by predation. As summarized in the Eqs (1.4)–(1.7) of [2], there are
numerous forms of functional response function F(u,w) such as Beddington-DeAngelis type
(cf. [3,4]), prey dependent form, and ratio dependent forms (cf. [5]). Allee’s effect and logistic growth
rate function f (w) are frequently-used in the literature. Later we will specify some of them for our
purpose.

As a model to account for evolution process of two species inhabiting an isolated environment (thus
often coupled with zero-Neumann boundary condition), system (1.1) covers a considerable number
of predator-prey relationships of direct prey-taxis effect. We below review several impressive results
according to typical assumptions on χ(u,w) since these may greatly govern the existence of global
solutions and dynamics behavior of the system.

On the one hand, when χ(u,w) is a constant small enough, Wu et al. [2] proved global existence
and boundedness of solutions in Ω ⊂ Rn(n ≥ 1) under some generic conditions on F, h and f . This
smallness may be removed in some cases. To be precise, Jin and Wang [6] obtained the global
boundedness and stability of the classical solution with respect to Rosenzweig–MacArthur (F of
Holling II and f of logistic) type in Ω ⊂ R2; For ratio-dependent F and logistic f , Cai et al. [7]
established the global existence as well as uniform-in-time boundedness of classical solutions in
Ω ⊂ Rn(n ≥ 1).

On the other hand, when χ(u,w) is density-dependent (i.e., non-constant) and χ(u,w) = χ(u) in
particular, one inference is that there is a maximal density of the predators due to volume-filling effect
or prevention of overcrowding (cf. [8]). This hypothesis indicates that there is a truncation on the
prey-taxis sensitivity χ(u). With this view in mind, Ainseba et al. [9] obtained the existence of weak
solutions by Schauder fixed-point theorem and its uniqueness via duality technique, in addition to
attaining pattern formation; Tao [10] derived the existence of global-in-time classical solutions in Ω ⊂

Rn(1 ≤ n ≤ 3); He and Zheng [11] further obtained the global existence of solution with uniform-
in-time bound; The existence of non-constant steady states was studied in [12, 13] via bifurcation
theory and index degree theory. Another viewpoint is that the truncation above may be removed when
χ(u,w) = χ(w), partly because uniform-in-time boundedness of w is essentially ensured by the w-
equation in Eq (1.1). For example, Jin and Wang [14] showed the global existence and uniqueness of
bounded classical solution in Ω ⊂ R2 when 0 ≤ χ(w) ∈ C2([0,+∞)).
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Note that if there is no consideration of spatial diffusion and prey-taxis effect (i.e., dw = 0, d(w) = 0
and χ(u,w) = 0), then studies on pure ODE systems of predator-prey relationship can be seen in
[15–19] and the references therein.

Different from the aforementioned direct search for prey, some predators might start with
perceiving chemical signals released by prey, for instance smell of blood or pheromone (trace
pheromone, aggregation pheromone, etc.), and then hunt for the prey by tracking such signals, the
process of which is called an indirect prey-taxis in this paper. Similar to a role of direct prey-taxis in
promoting the heterogeneity of ecosystems, strong indirect prey-taxis may also cause spatial
heterogeneity (cf. [20]) without considering predator’s reproduction, mortality, and random diffusion
of the prey. Later Tyutyunov et al. proposed another more general model (cf. [21]) which reads

ut = ∇ ·
(
d(v)∇u − χ(v)u∇v

)
+ γuF(w) − θu,

vt = dv∆v + βw − σv,

wt = dw∆w + w f (w) − uF(w),

(1.2)

where u = u(t, x) and w = w(t, x) represent population density of predators and prey at position
x ∈ Ω ⊂ Rn(n ≥ 1) and time t ∈ (0,+∞) severally; v = v(t, x) is concentration of chemicals released by
prey which are secreted at a constant rate β > 0, decay in a fixed rate σ > 0, and diffuse with a constant
diffusivity dv > 0. The (−d(v)∇u + uχ(v)∇v) is called the predators’ flux density, d(v) is the predators’
random-motility function, and uχ(v)∇v means that predators move towards the increasing gradient of
the chemical density at an average speed of χ(v)∇v with χ(v) measuring indirect prey-taxis sensitivity
per unit strength of the gradient ∇v. In this way the advection term −∇ · (uχ(v)∇v) is viewed as indirect
prey-taxis effect of predators.

Some generic assumptions on d(v), χ(v), f (w) and F(w) can be summarized as follow. One may
suppose that

d′(v) < 0 and χ(v) = −d′(v),

so ∇ ·
(
d(v)∇u − χ(v)u∇v

)
= ∆(d(v)u) and then d′(v) < 0 may indicate that predators will slow down

their diffusion when encountering prey signals. This is the well-known “density-suppressed” effect and
for further details we refer readers to [22–26] and the references therein. The per capita growth rate of
prey population in absence of predators is denoted by f (w) which satisfies

f (0) > 0 and f ′(w) < 0,

and thus allows logistic type, i.e., f (w) = r(1 − w
K ) with r, K > 0. The prey-only dependent functional

response function F(w) is often assumed to fulfill

F(0) = 0 and F′(w) > 0,

which consequently incorporates:

F(w) = w (Holling type I or Lotka-Volterra type),

F(w) =
wk

ck + wk , c > 0 (Holling type II as k = 1 and Holling type III as k > 1),

F(w) = c(1 − e−kw), k > 1, c > 0 (Ivlev type).

(1.3)
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System (1.2) may cover some reaction-diffusion systems used to describe the dynamics amongst
the bacterial cell density, concentration of acyl-homoserine lactone, and nutrient density (cf. [22]). In
addition, if χ(v) = 0 and dv and dw are density-dependent as well, then Eq (1.2) can be used to
describe the interactions among uninfected cells, free viruses produced by infected cells, and infected
cells (cf. [27]). In this paper we will understand it in the view of indirect predator-prey relationship.
Firstly, when χ(v) and d(v) are supposed to be constants and Ω ⊂ R1, Tyutyunov et al. [21] studied
pattern formation condition on stationary states of Eq (1.2) with zero-Neumann boundary condition.
Their numerical analysis illustrated that non-trivial homogeneous stationary state of the model
becomes unstable with respect to small perturbation caused by increasing prey-taxis strength; Zuo and
Song [28] obtained some interesting dynamical behaviors including stability and double-Hopf
bifurcation results; Secondly, if χ(v) and d(v) are constants and Ω ⊂ Rn(n ≥ 1), Yoon and Ahn [29]
derived the unique global-in-time classical solution to the system (1.2) with functional response
functions involving Beddington-DeAngelis type, and showed asymptotic stability of both prey-only
and coexistence steady states. They found that prey-taxis is an essential factor in generating patterns.
Thirdly, when d(v) is a positive constant but χ(v) is density dependent, Wang and Wang [30]
investigated global existence and boundedness of the unique classical solution as well as the
asymptotic stabilities of nonnegative and spatial homogeneous equilibria as Ω ⊂ Rn(n ≥ 1).

In this fashion a question arises: what will happen if both χ(v) and d(v) are density-dependent?
Correlative conclusions remain unknown, to the best of our knowledge. This motivates us in this paper
to focus on 

ut = ∇ ·
(
d(v)∇u − uχ(v)∇v

)
+ γuF(w) − θu − `u2, x ∈ Ω, t > 0;

vt = dv∆v + βw − σv, x ∈ Ω, t > 0;

wt = dw∆w + w f (w) − uF(w), x ∈ Ω, t > 0;

∇u · ~n = 0, ∇v · ~n = 0, ∇w · ~n = 0, x ∈ ∂Ω, t > 0;

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω,

(1.4)

where Ω ⊂ Rn(n ≥ 1) is a bounded domain with smooth boundary ∂Ω, ~n is the unit outer normal vector
towards ∂Ω, ` ≥ 0, and dw, γ, θ > 0.

Motivated by the above discussion, we have studied in this work the global existence of classical
solution of Eq (1.4) and its global asymptotical stability. Before specifying our main results, several
notations need to be explained. Let X be a metric space. We denote by Cm+1−(X) the set of functions
with their k-times (0 ≤ k ≤ m, k,m ∈ N) derivatives being Lipschitz continuous in X. Note that the
k-times derivatives are Lipschitz continuous if (k + 1)-times derivatives are bounded in X.

To ensure the existence of solutions to Eqs (1.2) and (1.4), the real-valued functions d(v), χ(v), f (w),
and F(w) should satisfy that

(H1) d(v), χ(v) ∈ C1+1−([0,+∞)) and for v ∈ [0,+∞), χ(v) ≥ 0, d(v) > 0 and d′(v) ≤ 0;

(H2) f ∈ C1+1−([0,+∞)
)

and there exists a constant K > 0 such that f (K) = 0 and f (w) < 0 for all
w > K and f (w) > 0 for w ∈ (0,K);

(H3) F(w) ∈ C1+1−([0,+∞)) and there is a constant CF > 0 such that 0 ≤ F(w) ≤ CF |w|. Moreover,
F′(w) > 0 for all w ∈ [0,+∞).
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Thus (H2) allows logistic f (w) and all F(w) in Eq (1.3) support (H3).

2. Main results

Note that our results are applicable to Eq (1.2) since system (1.4) can reduce to Eq (1.2) when ` = 0.
We first derive the existence of global-in-time classical solution to Eq (1.4).

Theorem 2.1. Let Ω ⊂ Rn (n ≥ 1) be a bounded domain with smooth boundary ∂Ω. Under the
hypotheses (H1)–(H3), if (u0, v0,w0) ∈ C2(Ω,R3) with u0, v0,w0 ≥ 0 (. 0) and fulfills 0-order
compatibility condition (i.e. ∇u0

∣∣∣
∂Ω

= ∇v0

∣∣∣
∂Ω

= ∇w0

∣∣∣
∂Ω

= 0), then the problem Eq (1.4) has a unique
nonnegative (resp. positive) classical solution on [0,∞) (resp. on (0,∞)) satisfying

(u, v,w)(t, x) ∈ C
(
[0,+∞) ×Ω, R3

)
∩C1,2

(
(0,+∞) ×Ω, R3

)
. (2.1)

Furthermore, there is an constant C > 0 independent of t such that

‖u(t, ·)‖L∞(Ω) + ‖v(t, ·)‖W1
∞(Ω) + ‖w(t, ·)‖W1

∞(Ω) ≤ C for all t > 0, (2.2)

where 0 < w(t, x) ≤ max
{
K, ‖w0‖L∞(Ω)

}
for all (t, x) ∈ (0,+∞) ×Ω.

We next investigate the asymptotic behaviors of such a classical solution. Suppose that Eq (1.4) has
a constant steady state denoted by (uc, vc,wc), then

γucF(wc) = uc(θ + `uc),

βwc = σvc,

wc f (wc) = ucF(wc).

(2.3)

If in addition each component of (uc, vc,wc) is nonnegative, three possible constant steady states may
be formulated as follow:

• extinction state: if uc = 0 and wc = 0 then (uc, vc,wc) = (0, 0, 0);

• exclusion (prey-only) state: if uc = 0 but wc > 0 then wc = K and (uc, vc,wc) = (0, βK
σ
,K);

• coexistence state: uc,wc > 0 thus vc =
βwc
σ

> 0, uc =
wc f (wc)
F(wc) and γF(wc) = θ + `uc. Denote by

(u∗, v∗,w∗) this positive constant solution.

To construct appropriate Lyapunov functions we desire, we have to impose that

(H4) for any w ∈ [0,+∞), ϕ(w) := w f (w)
F(w) is continuously differentiable, ϕ′(w) < 0 and 0 < ϕ(0) =

lim
w→0+

ϕ(w) exists.

This is not very stringent and can be achieved if f (w) = r(1 − w
K ) and F(w) is Holling type I or II with

0 < K ≤ c in Eq (1.3).
After these preparations, we can formulate our second result as below.

Theorem 2.2. Suppose that (u, v,w) is a global classical solution to the system (1.4) fulfilling (H1)–
(H4). Let K be defined in (H2).
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1) If γF(K) ≤ θ, then the prey-only state (0, βK
σ
,K) exists and is globally asymptotic stable.

Furthermore, if γF(K) < θ, there are constants ĉ1, ĉ2,T0 > 0 such that

‖u(t, ·)‖L∞(Ω) +
∥∥∥v(t, ·) − βK

σ

∥∥∥
L∞(Ω)

+ ‖w(t, ·) − K‖L∞(Ω) ≤ ĉ2e−ĉ1t, t > T0.

2) If the coexistence steady state (u∗, v∗,w∗) exists and

max
0≤v≤K2

χ(v)2

d(v)
≤

16dvγσ

β2u∗
min

w1∈[0,C1]
{−ϕ′(w1)} min

w2∈[0,C1]
{F′(w2)}, (2.4)

with K2 from Remark 3.2 and C1 := max
{
K, ‖w0‖L∞(Ω)

}
, then (u∗, v∗,w∗) is globally asymptotic

stable. Moreover, there are constants c̄1, c̄2,T1 > 0 such that

‖u(t, ·) − u∗‖L∞(Ω) + ‖v(t, ·) − v∗‖L∞(Ω) + ‖w(t, ·) − w∗‖L∞(Ω) ≤ c̄1e−c̄2t, t > T1.

Note that there is no γF(K) > θ (biologically interpreted as “strong predation”) assumed in 2) of
Theorem 2.2 since it has been ensured by the existence of the coexistence steady state along with (H2)
and (H3). In fact, (H2) and (H3) imply 0 < w∗ < K and then γF(K) > γF(w∗) = θ + `u∗ ≥ θ by
F′(w) > 0 in (H3). Also, Eq (2.4) might be simplified by specific f and F, for example:

Corollary 2.3. If f (w) = r(1 − w
K ) and F(w) = w

c+w with 0 < K < c then the coexistence steady state
exits and Eq (2.4) becomes

max
0<v≤K2

χ(v)2

d(v)
≤

16dvγσ(c − K)
cKβ2u∗

,

with K2 from Remark 3.2. Then the asymptotic stability above-mentioned remains unchanged.

The content of this paper is organized as follows. We shall prove the global existence of the classical
solution to system (1.4) in Section 3. For this classical solution, we will show in Section 4 its global
asymptotic stability associated with two constant steady states. Finally in Section 5 we intend to derive
linear instability criterion of the steady states and to do some numerical simulations from which one
may see how density-dependent prey-taxis and predators’ diffusion can influence on resulting patterns.

3. Global existence of the classical solution

We shall apply the celebrated results developed by H. Amann [31, 32] to derive local and global
existence of classical solution to Eq (1.4). The conclusions and proofs can be applied to Eq (1.2) after
slight modifications.

3.1. Local existence

Lemma 3.1 (Local existence and uniqueness). Let Ω ⊂ Rn (n ≥ 1) be a bounded open domain. If
(H1)–(H3) hold, (u0, v0,w0) ∈ C2(Ω,R3) with u0, v0,w0 ≥ 0 (. 0), then there exists Tmax ∈ (0,+∞]
depending on (u0, v0,w0) such that the problem Eq (1.4) has a unique nonnegative (resp. positive)
classical solution on [0,Tmax) (resp. (0,Tmax)) satisfying

(u, v,w)(t, x) ∈ C
(
[0,Tmax) ×Ω, R3) ∩C1,2((0,Tmax) ×Ω, R3). (3.1)
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Proof. Note that we first strengthen the conditions in (H1) − (H3) by replacing the interval [0,+∞)
with R. Finally we will see the obtained results still make sense without this enhancement. For clarity,
we reformulate Eq (1.4) as

wt = ∇ · (A(w)∇w) + Ψ(w), x ∈ Ω, t > 0,

∇u · ~n = 0, ∇v · ~n = 0, ∇w · ~n = 0, x ∈ ∂Ω, t > 0,

w(x, 0) = w0(x), x ∈ Ω,

(3.2)

where for x ∈ Ω and t ≥ 0, w = (u, v,w)τ and w0 = (u0, v0,w0)τ ∈ R3 (τ denoting transposition) are two
vector-valued functions, ∇w = (∇u,∇v,∇w)τ,

A(w) =


d(v) −uχ(v)

dv

dw


3×3

and Ψ(w) =


γuF(w) − θu − `u2

βw − σv
w f (w) − uF(w)

 .
It is easy to see that d(v) > 0 for v ∈ R by (H1). Then along with dv, dw > 0, all ordering principal

minor determinants of A(x) are positive, which implies that A(x) is positively definite for all x ∈ R3.

Thus we know for all t > 0, x ∈ Ω, wt − ∇ · (A(w)∇w) is Petrowskii parabolic (cf. Eq (50) in [33]) and
∇ · (A(w)∇w) is normally elliptic (cf. p.16 or Theorem 4.4 in [31]) with separated divergence form.
Moreover, ∇ · (A(w)∇w) coupled with the boundary condition in Eq (3.2) is normally elliptic as well.

By (H1) all elements of A(x) are in C1+1−(R) (functions and their first derivatives being Lipschitz
continuous on R). Similarly the regularity conditions in (H2) and (H3) show every component of Ψ(w)
is C1+1−(R3). In terms of Theorem 7.3-(ii), Theorem 9.2, and Corollary 9.3 of H. Amann [31], we
know that given w0 ∈ W2

p(Ω,R3) with p > n and p ≥ 2, there exist a Tmax ∈ (0,+∞] relating to w0

and 0 < 2ε < min{2 − n/p, 1} such that Eq (1.4) has a unique (cf. the Corollary 9.3) maximal classical
solution on [0,Tmax) ×Ω satisfying

(u, v,w) ∈ B
(
J′,C2+2ε(Ω,R3)

)
∩C0+ε((0,Tmax),C2(Ω,R3)

)
∩C1+ε((0,Tmax),C(Ω,R3)

)
for every compact subinterval J′ of (0,Tmax), where B(X,Y) (resp. Cm(X,Y)) denotes the set of all
bounded mappings (resp. all m-th continuously differentiable functions) from X to Y , and Cm+ι(X,Y)
is the set of all mappings from X to Y which up to their m-th derivatives are ι- Hölder continuous on X
with ι ∈ (0, 1) and m ∈ N. Moreover, if w0 ∈ C2(Ω,R3), then by Theorem 1 of [32] we know that the
Eq (3.2) has a unique maximal classical solution

(u, v,w) ∈ C
(
[0,Tmax),C(Ω,R3)

)
∩C

(
(0,Tmax),C2(Ω,R3)

)
∩C1((0,Tmax),C(Ω,R3)

)
(3.3)

As a result, Eq (3.3) implies Eq (3.1).
Then we may find this unique local classical solution is nonnegative on [0,Tmax). Indeed, we may

first rewrite the u-equation in Eq (1.4) as

ut = d(v)∆u + [d′(v)∇v − χ(v)∇v] · ∇u − [χ′(v)(∇v · ∇v) + χ(v)∆v]u + γuF(w) − θu − `u2.

By the regularity Eq (3.3), v,w in u-equation can be treated as known functions at present. Then
within any [0,T ] ⊂ [0,Tmax) one can apply comparison principle of linear parabolic equations to such
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a equation coupled with ∇u ·~n = 0 and u0(x) ≥ 0(. 0). Thus we derive u ≥ 0 in [0,Tmax)×Ω and u > 0
in (0,Tmax)×Ω. Similarly, one may acquire that v,w > 0 in (0,Tmax)×Ω, and v,w ≥ 0 in [0,Tmax)×Ω.

Therefore, R in (H1)−(H3) as supposed at the very beginning of this proof can be replaced by [0,+∞).
This completes the proof.

By Theorem 1 of [32], it suffices to verify that ‖(u, v,w)(t, ·)‖Hs
p(Ω) ≤ C(T ) < +∞ for any t ∈ (0,T ) ⊂

(0,Tmax), p > n and p ≥ 2 as well as some s satisfying 1 < s < min
{
1 + 1

p , 2 −
n
p

}
, in order to extend

such a local unique classical solution to a global one. To make this extendability criteria easier to
verify (i.e., to weaken this H s

p-topology, the Bessel potential space), we resort to Theorem 5.2 of [32]
at the cost of imposing an extra condition on the initial value. This can be formulated in the following
lemma.

Lemma 3.2. Suppose that (u0, v0,w0) ∈ C2(Ω,R3) additionally fulfills 0-order compatibility condition
(i.e., ∇u0

∣∣∣
∂Ω

= ∇v0

∣∣∣
∂Ω

= ∇w0

∣∣∣
∂Ω

= 0). Then the above local classical solution is global if

lim sup
t↗Tmax

{
‖u(t, ·)‖L∞(Ω) + ‖v(t, ·)‖L∞(Ω) + ‖w(t, ·)‖L∞(Ω)

}
< +∞.

3.2. L∞ estimate on w(t, x), v(t, x) and u(t, x)

Lemma 3.3. Under the conditions in Lemma 3.1, it holds that

0 < w(t, x) ≤ max
{
K, ‖w0‖L∞(Ω)

}
, for any (t, x) ∈ (0,Tmax) ×Ω,

where K is from (H2) and is independent of Tmax.

Proof. One may use comparison principle to prove this result and more details can be seen in Lemma
2.2 of [6].

Remark 3.1. Under the conditions in Lemma 3.1, if (u, v,w) is a nonnegative classical solution to Eq
(1.4) on (0,Tmax) ×Ω, then

‖u(t, ·)‖L1(Ω) + ‖v(t, ·)‖L1(Ω) + ‖w(t, ·)‖L1(Ω) ≤ C (3.4)

where C is a positive constant and independent of Tmax.

It is easy to see that the solution to v-equation of Eq (1.4) can be formally expressed via heat
semigroup theory with zero-Neumann boundary condition. Precisely, the estimation on v(t, x) follows
from Lemma 1 of Kowalczyk and Szymańska [34] as below.

Lemma 3.4. Assume that Ω ⊂ Rn(n ≥ 1), v0(x) ∈ W1
∞(Ω) and

‖w(t, ·)‖Lp(Ω) < C for all t ∈ (0,Tmax).

Then for every t ∈ (0,Tmax), the classical solution v(t, x) of the v-equation in Eq (1.4) satisfies

‖v(t, ·)‖W1
q (Ω) ≤ C when


q < np

n−p , p < n;

q < +∞, p = n;

q = +∞, p > n.

Here C and C are positive constants and independent of Tmax.
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In conjunction with Lemma 3.3 we thus have the following W1
∞ estimate on v(t, x).

Remark 3.2. There exists a constant K2 > 0 independent of Tmax such that if v0 ∈ W1
∞(Ω), then

‖v(t, ·)‖W1
∞(Ω) ≤ K2 for all t ∈ (0,Tmax).

The next lemma is to show L∞ estimate on u(t, x).

Lemma 3.5. Let (H1)–(H3) hold. Suppose that (u, v,w) is the solution of Eq (1.4) obtained in
Lemma 3.1. Then there exists a positive constant C̃ independent of Tmax such that

‖u(t, ·)‖L∞(Ω) ≤ C̃ for all t ∈ (0,Tmax).

Proof. Here we adopt Moser’s iteration method. Indeed, we assume t ∈ (0,T ) ⊂ (0,Tmax) with 0 <

T < Tmax. Multiplying the first equation in Eq (1.4) by up−1(p ≥ 1) and integrating the result with
respect to x in Ω may yield

1
p

d
dt

∫
Ω

up + (p − 1)
∫

Ω

d(v)up−2|∇u|2 + θ

∫
Ω

up + `

∫
Ω

up+1

=(p − 1)
∫

Ω

up−1χ(v)∇u · ∇v + γ

∫
Ω

upF(w).

Lemma 3.1 shows u(t, x), v(t, x),w(t, x) > 0 for all (t, x) ∈ (0,Tmax) × Ω. In addition, Remark 3.2
concludes that ‖∇v‖L∞(Ω) ≤ ‖v(t, ·)‖W1

∞(Ω) ≤ K2 (independent of Tmax). Thus (H1) implies
d(v) ≥ d(K2) =: c0 and |χ(v)| ≤ max0<v≤K2 χ(v) =: c1. By 0 ≤ F(w) ≤ CFw in (H3) we then may obtain

1
p

d
dt

∫
Ω

up + (p − 1)c0

∫
Ω

up−2|∇u|2 + θ

∫
Ω

up + `

∫
Ω

up+1

≤(p − 1)c1

∫
Ω

up−1|∇u||∇v| + CFγ

∫
Ω

upw.

Applying Cauchy’s inequality to the first term may lead us to

(p − 1)c1

∫
Ω

up−1|∇u||∇v| ≤
(p − 1)c0

2

∫
Ω

up−2|∇u|2 +
(p − 1)c2

1

2c0

∫
Ω

up|∇v|2.

Hence

1
p

d
dt

∫
Ω

up +
(p − 1)c0

2

∫
Ω

up−2|∇u|2 + θ

∫
Ω

up + `

∫
Ω

up+1 ≤
(p − 1)c2

1K2
2

2c0

∫
Ω

up + CFγ

∫
Ω

upw.

Below by setting p ≥ 2 and due to up−2|∇u|2 = |u
p
2−1∇u|2 = | 2p∇u

p
2 |2 = 4

p2 |∇u
p
2 |2, we have

d
dt

∫
Ω

up +
2(p − 1)c0

p

∫
Ω

|∇u
p
2 |2 + pθ

∫
Ω

up + p`
∫

Ω

up+1

≤
p(p − 1)c2

1K2
2

2c0

∫
Ω

up + pCFC1γ

∫
Ω

up, ` ≥ 0,

with C1 = max
{
K, ‖w0‖L∞(Ω)

}
. So it remains to consider: (I) θ − CFC1γ > 0 and (II) θ − CFC1γ ≤ 0.

For the case (I), one may have

d
dt

∫
Ω

up +
2(p − 1)c0

p

∫
Ω

|∇u
p
2 |2 + p(θ −CFC1γ)

∫
Ω

up ≤
p(p − 1)c2

1K2
2

2c0

∫
Ω

up; (3.5)
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and for the case (II),

d
dt

∫
Ω

up +
2(p − 1)c0

p

∫
Ω

|∇u
p
2 |2 + pθ

∫
Ω

up ≤
p(p − 1)c2

1K2
2

2c0

∫
Ω

up + p(CFC1γ + θ)
∫

Ω

up. (3.6)

To conduct Moser’s iteration, we use Gagliardo-Nirenberg interpolation to decompose the right-hand∫
Ω

up into
∫

Ω
|u

p
2 | and

∫
Ω
|∇u

p
2 |2 so that the latter one can be cancelled if its coefficient is set appropriately.

Indeed, by Gagliardo-Nirenberg interpolation inequality and Young’s inequality with parameter
η > 0 and with index 1

α
and 1

1−α one may have∫
Ω

|u|p =‖u
p
2 ‖2L2(Ω) ≤ c2‖∇u

p
2 ‖2αL2(Ω)‖u

p
2 ‖

2(1−α)
Lq(Ω) + c3‖u

p
2 ‖2Ls(Ω)

≤c2η‖∇u
p
2 ‖2L2(Ω) + c2

(1
η

) α
1−α
‖u

p
2 ‖2Lq(Ω) + c3‖u

p
2 ‖2Ls(Ω)

(3.7)

with α =
1
q−

1
2

1
n + 1

q−
1
2
∈ (0, 1) as 1 ≤ q < 2. Then associated with Eq (3.5), by taking q = s = 1 in Eq (3.7)

we may infer that α = 1
2
n +1

, α
1−α = n

2 , and

p(p − 1)c2
1K2

2

2c0

∫
Ω

|u|p ≤
(p − 1)c0

p

∫
Ω

|∇u
p
2 |2 + pn+2 c4

( ∫
Ω

|u
p
2 |
)2

(3.8)

where we have taken η =
2c2

0
p2c2(c1K2)2 and c4 =

(
c3 +

c2(c1K2
√

c2)n

(
√

2c0)n

)
·

(c1K2)2

2c0
. Therefore, we derive

d
dt

∫
Ω

up + p(θ −CFC1γ)
∫

Ω

up ≤ pn+2 c4

( ∫
Ω

|u
p
2 |
)2
.

In regard to Eq (3.6), taking q = s = 1 in Eq (3.7) again will produce that

p(CFC1γ + θ)
∫

Ω

up ≤
(p − 1)c0

p

∫
Ω

|∇u
p
2 |2 + pn+2 c5

( ∫
Ω

|u
p
2 |
)2

(3.9)

where we have set η =
(p−1)c0

p2c2(CFC1γ+θ) and c5 =
(
c3 +

(c2
√

CFC1γ+θ)n

(
√

c0)n

)
· (CFC1γ + θ). Hence Eqs (3.8) and

(3.9) jointly show that
d
dt

∫
Ω

up + pθ
∫

Ω

up ≤ pn+2 c6

( ∫
Ω

|u
p
2 |
)2

(3.10)

with c6 = c4 + c5.
To sum up, by letting κ := θ − CFC1γ > 0 in case (I) or κ := θ > 0 in case (II), there is a constant

c7 := max{c4, c6} which is independent of p, such that

d
dt

∫
Ω

up + pκ
∫

Ω

up ≤ c7 pn+2
( ∫

Ω

|u
p
2 |
)2
≤ c7 pn+2 sup

t∈[0,T )

( ∫
Ω

|u
p
2 |
)2
, p ≥ 2,

on (0,T ) ⊂ (0,Tmax). Notice that the rightmost term above is unrelated to time variable t. Then solving
this inequality with respect to t on (0,T ) ⊂ (0,Tmax) gives∫

Ω

up(t, x) dx ≤
∫

Ω

up
0(x) dx +

c7

κ
pn+1 sup

t∈[0,T )

( ∫
Ω

|u
p
2 (t, x)| dx

)2
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≤
(
|Ω| +

c7

κ
+ 1

)
pn+1 max

{
‖u0‖L∞(Ω), sup

t∈[0,T )

( ∫
Ω

|u
p
2 (t, x)| dx

) 2
p
}p

.

This indicates
F̃(p) ≤

(
|Ω| +

c7

κ
+ 1

) 1
p p

n+1
p F̃(p/2)

with F̃(p) := max
{
‖u0‖L∞(Ω), supt∈[0,T )

( ∫
Ω

up(t, x) dx
) 1

p
}
. Denoting c8 = |Ω| + c7

κ
+ 1 and setting p =

2i, i = 1, 2, 3, · · · , then we have

F̃(2i) ≤ c
∑i

k=1 2−k

8 2
∑i

k=1
k

2(n+1)k F̃(1) ≤ c8 2
2n+1

(2n+1−1)2 F̃(1)

and F̃(1) =
{
‖u0‖L∞(Ω), supt∈[0,T )

∫
Ω

u(t, x) dx
}
≤

{
‖u0‖L∞(Ω), C

}
where C is from Eq (3.4) and thus is

independent of i,Tmax and T. Finally, letting i→ +∞ concludes that for all t ∈ (0,T ) ⊂ (0,Tmax),

‖u(t, ·)‖L∞(Ω) ≤ c8 2
2n+1

(2n+1−1)2
{
‖u0‖L∞(Ω), C

}
.

Hence such an estimate holds for all t ∈ (0,Tmax) due to T arbitrarily in (0,Tmax). This completes the
proof.

Remark 3.3. By rewriting the third component in Eq (1.4) as

wt = dw∆w − w + R

with R = w + w f (w) − uF(w), then one may apply Lemma 3.4 to this equation after a rescaling. Since
in view of Lemma 3.3 and Lemma 3.5, one may infer that

‖R(t, ·)‖L∞(Ω) ≤ C(‖w(t, ·)‖L∞(Ω) + ‖u(t, ·)‖L∞(Ω)) ≤ C for all t ∈ (0,Tmax),

with constants C,C independent of Tmax. It follows that

‖w(t, ·)‖W1
∞(Ω) ≤ C for all t ∈ (0,Tmax),

if w0(x) ∈ W1
∞(Ω) where constant C is independent of Tmax.

This remark is useful to prove asymptotic stability in the next section.

3.3. Proof of Theorem 2.1

Proof. Lemma 3.1 has shown the existence of local unique classical solution to Eq (1.4). The
extendability standard of such a classical solution in Lemma 3.2 can be satisfied by Lemma 3.3,
Lemma 3.5, and Remark 3.2. So one can obtain the global existence of unique classical solution to Eq
(1.4), and the regularity Eq (2.1). Finally the estimate Eq (2.2) holds for all t > 0 by Remark 3.2,
Lemma 3.5 and Remark 3.3.
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4. Global asymptotic stability

In the last section we have proved that system (1.4) possesses a unique global-in-time classical
solution under (H1)–(H3). In this section we concentrate on its longtime behaviors if (H4) holds in
addition. To this end, we introduce the following two basic lemmas.

Lemma 4.1. If F fulfills condition (H3), then a function

ζ(z) :=
∫ z

κ

F(η) − F(κ)
F(η)

dη (4.1)

is nonnegative and convex. Furthermore, if z→ κ then

F′(κ)
4F(κ)

(z − κ)2 ≤ ζ(z) ≤
F′(κ)
F(κ)

(z − κ)2.

This lemma can be proved by doing Talyor’s expansion of ζ(z) with respect to z up to its second
order derivative at z = κ (ζ(κ) = ζ′(κ) = 0). One may refer to Lemma 4.1 in [6] for more details.

We below summarize limit property of a dynamic system (cf. Chap.4 in [35]) that we will use later.
Given a dynamic system (nonlinear semigroup) {S (t) : t ≥ 0} on a complete metric space (M, ‖ · ‖).
Then for a real-valued continuous function L(x), x ∈ M, we say L(x) is a Lyapunov function of this
dynamic system if for all t ≥ 0, x ∈ M and δ ∈ R,

dL(S (t)x)
dt

:= lim
δ→0+

sup
L(S (t + δ)x) − L(S (t)x)

δ
≤ 0.

For any x ∈ M, Γ(x) := {S (t)x : t ≥ 0} denotes the trajectory through x. In particular, we call x is an
equilibrium point of the dynamic system if Γ(x) = {x}.

Lemma 4.2. Let E := {x ∈ M : dL(S (t)x)
dt = 0}. Denote by Z := {x ∈ E : S (t)x ∈ E for all t ≥ 0} the

largest invariant subset of E. For some x0 ∈ M, if the trajectory Γ(x0) = {S (t)x0 : t ≥ 0} is contained
in a compact set ofM, then there are two properties for the ω-limit setVω(x0) of Γ(x0) (or x0) as:

(i) Vω(x0) ⊂ Z;

(ii) S (t)x0 → Z as t → ∞,

whereVω(x0) :=
{

lim
k→+∞

S (tk)x0 ∈ M : ∃ tk > 0, lim
k→+∞

tk = +∞
}

=
⋂
τ≥0
{S (t)x0 : t ≥ τ}.

Additionally if all y ∈ E are equilibria and all elements of E are isolated from each other, then
Vω(x0) consists of equilibria and contains only one element.

Lemma 4.1 may help us to construct Lyapunov functions we need. Lemma 4.2 indicates that one
may apply Lemma 4.2 to corresponding Lyapunov functions, in order to investigate the global
asymptotic stability of the prey–only state (0, βK

σ
,K) and the coexistence state (u∗, v∗,w∗). Indeed,

Theorem 2.1 means that system (1.4) has the unique global-in-time classical solution
(u, v,w) ∈ C2(Ω,R3) which is continuous to its initial value (u0, v0,w0) =: u0(x) ∈ C2(Ω,R3). This
indicates that system (1.4) can generate a dynamic system on C2(Ω,R3), still denoted by {S (t) : t ≥ 0},
such that S (t)u0 := u(t, x; u0(x)) := (u(t, x; u0(x)), v(t, x; v0(x)),w(t, x; w0(x))) ∈ C2(Ω,R3), and S (0) is
an identity, i.e., S (0)u0(x) = u0(x) for any u0(x) ∈ C2(Ω,R3). Then {S (t)u0 : t ≥ 0} is a trajectory
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through u0(x) which can be contained in a compact subset of C2(Ω,R3) by Eq (2.2) and one
estimation similar to the Eqs (46) and (48) in Theorem 4.1 of [36]. The (0, βK

σ
,K) and (u∗, v∗,w∗) can

be viewed as two equilibria of this dynamic system.
In addition, (H2) and (H4) indicate that F′(w) > 0 and −ϕ′(w) > 0 are continuous on [0,C] for any

C > 0. Thus
min

w∈[0,C]
F′(w) min

w∈[0,C]
(−ϕ′(w)) (4.2)

exists and is strictly positive.
With these preparations at hand, we below prove 1) of the Theorem 2.2.

4.1. Asymptotical stability of prey-only steady state

Lemma 4.3. Let (H1)− (H4) hold and (u, v,w) be a globally classical solution of Eq (1.4) obtained in
Theorem 2.1. Then the prey–only state (0, βK

σ
,K) is globally asymptotic stable provided that F(K) ≤ θ

γ
.

Furthermore, if F(K) < θ
γ
, there are constants c̄1, c̄2,T0 > 0 such that for t > T0 > 0

‖u(t, ·)‖L∞(Ω) +
∥∥∥v(t, ·) − βK

σ

∥∥∥
L∞(Ω)

+ ‖w(t, ·) − K‖L∞(Ω) ≤ c̄2e−
c̄1t

2(n+1) .

Proof. We may construct a function for t > 0 that

L1(t) := L1(u(t), v(t),w(t)) :=
1
γ

∫
Ω

u +
M
2

∫
Ω

(
v −

βK
σ

)2
+

∫
Ω

∫ w

K

F(η) − F(K)
F(η)

dη

where (u, v,w) is the classical solution to Eq (1.4) and the constant M > 0 is to be determined after Eq
(4.5).

Next we show that L1 is a Lyapunov function, i.e., dL1
dt ≤ 0 for all (u, v,w) solving Eq (1.4). Indeed,

under the zero-Neumann boundary condition in Eq (1.4), one has

dL1

dt
=

1
γ

∫
Ω

ut + M
∫

Ω

(
v −

βK
σ

)
vt +

∫
Ω

F(w) − F(K)
F(w)

wt

=
1
γ

∫
Ω

(γuF(w) − θu − `u2) +

∫
Ω

F(w) − F(K)
F(w)

wt + M
∫

Ω

(
v −

βK
σ

)
vt.

(4.3)

Moreover, ∫
Ω

F(w) − F(K)
F(w)

wt =

∫
Ω

F(w) − F(K)
F(w)

(
dw∆w + w f (w) − uF(w)

)
= −

∫
Ω

dwF(K)F′(w)
|∇w|2

F2(w)
+

∫
Ω

F(w) − F(K)
F(w)

(w f (w) − uF(w))

and from f (K) = 0 in (H2) we may derive that∫
Ω

F(w) − F(K)
F(w)

w f (w) =

∫
Ω

(w f (w)
F(w)

−
K f (K)
F(K)

)
(F(w) − F(K))

=

∫
Ω

ϕ′(w1)F′(w2)(w − K)2

where ϕ(w) =
w f (w)
F(w) , wi is between w and K, i = 1, 2, in addition to

−

∫
Ω

F(w) − F(K)
F(w)

uF(w) =

∫
Ω

F(K)u −
∫

Ω

F(w)u.
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On the other hand, by βwc = σvc and wc = K, one may infer that

M
∫

Ω

(
v −

βK
σ

)
vt = M

∫
Ω

(
v −

βK
σ

)
(dv∆v + βw − σv)

= − Mdv

∫
Ω

∇
(
v −

βK
σ

)
∇v + M

∫
Ω

(
v −

βK
σ

)
(βw − σv)

= − Mdv

∫
Ω

∣∣∣∣∇(v − βK
σ

)∣∣∣∣2 + Mβ

∫
Ω

(
v −

βK
σ

)
(w − K) − Mσ

∫
Ω

(
v −

βK
σ

)2

and using the Young’s inequality with ε will yield

Mβ

∫
Ω

(
v −

βK
σ

)
(w − K) ≤ Mβ

∫
Ω

[
ε

2

(
v −

βK
σ

)2
+

(w − K)2

2ε

]
(4.4)

for any ε > 0, Mβ > 0.
Then by using the assumption F(K) ≤ θ

γ
, setting 0 < ε ≤ 2σ

β
, and by invoking the estimates from

Eqs (4.3) and (4.4) one may update Eq (4.3) that

dL1

dt
=

∫
Ω

(
F(K) −

θ

γ

)
u −

∫
Ω

`u2

γ
− dwF(K)

∫
Ω

F′(w)
|∇w|2

F2(w)

+

∫
Ω

ϕ′(w1)F′(w2)(w − K)2 − Mdv

∫
Ω

∣∣∣∣∇(v − βK
σ

)∣∣∣∣2
− Mσ

∫
Ω

(
v −

βK
σ

)2
+ Mβ

∫
Ω

(
v −

βK
σ

)
(w − K)

≤

∫
Ω

(
F(K) −

θ

γ

)
u +

∫
Ω

(
ϕ′(w1)F′(w2) +

Mβ

2ε

)
(w − K)2

− M(σ −
εβ

2
)
∫

Ω

(
v −

βK
σ

)2

≤

∫
Ω

(
ϕ′(w1)F′(w2) +

Mβ

2ε

)
(w − K)2.

(4.5)

In light of Lemma 3.3 we know 0 < w1,w2 ≤ C1 with C1 = max
{
K, ‖w0‖L∞(Ω)

}
. Hence making use

of Eq (4.2) and taking

0 < M ≤
4σ
β2 min

w∈[0,C1]
F′(w) min

w∈[0,C1]
(−ϕ′(w))

will conclude that dL1
dt ≤ 0.

For each t > 0, we let

L1(t) =

∫
Ω

u
γ

+

∫
Ω

M
2

(
v −

βK
σ

)2
+

∫
Ω

∫ w

K

F(η) − F(K)
F(η)

dη =:
∫

Ω

H1(u, v,w).

HereH1(u, v,w) := u
γ

+ M
2

(
v − βK

σ

)2
+ ζ(w) is a convex function of (u, v,w) in view of Lemma 4.1 with

κ = K. H1(u, v,w) has no more than one minimum point, so does L1(t) in the sense of (u, v,w). The
equation dL1(t)

dt = 0 thus has at most one solution in the sense of (u, v,w), which implies that dL1(t)
dt = 0

if and only if (u, v,w) = (0, βK
σ
,K). Then Lemma 4.2 concludes that the solution of Eq (1.4) which is

bounded will approach (0, βK
σ
,K) as t → ∞. In other words, (0, βK

σ
,K) is globally asymptotic stable.
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We can further ascertain the corresponding convergent rate. Due to F(K) < θ
γ
, the first inequality in

Eq (4.5), and Lemma 4.1, there exists a constant ĉ1 > 0 such that

dL1(t)
dt

≤ −ĉ1L1(t), for t > 0.

Solving this inequality shows
L1(t) ≤ ĉ2e−ĉ1t, for t > 0

where the constant ĉ2 > 0 depends only on L1(0). Lemma 4.1 also signifies that there is a T1 > 0 such
that

1
γ

∫
Ω

u +
M
2

∫
Ω

(
v −

βK
σ

)2
+

∫
Ω

F′(K)
4F(K)

(w − K)2 ≤ ĉ2e−ĉ1t, for t ≥ T1

which means

‖u(t, ·)‖L1(Ω) +
∥∥∥v(t, ·) − βK

σ

∥∥∥
L2(Ω)

+ ‖w(t, ·) − K‖L2(Ω) ≤ ĉ3e−
ĉ1
2 t, for t ≥ T1

with ĉ3 = 3 max
{
ĉ2γ,

(2ĉ2
M )1/2,

(4F(K)ĉ2
F′(K)

)1/2}
.

We next may strengthen this convergence rate. Since (u, v,w) is a classical solution to Eq (1.4), then
by Eq (2.2) there exists a constant ĉ4 > 0 such that ‖u‖L∞(Ω), ‖∇v‖L∞(Ω), ‖∇w‖L∞(Ω) ≤ ĉ4 when t > T1 > 0.
Similar to the estimation of Eqs (46) and (48) in Theorem 4.1 of [36] and by semigroup theory and
Lp-Lq estimate, there exist ĉ′4 > 0 and ε ∈ (0, 1) such that ‖w(t, ·)‖C2+ε (Ω̄), ‖v(t, ·)‖C2+ε (Ω̄) ≤ ĉ′4 for all
t > T ′1 > 0. Denote T0 = max{T1,T ′1}. One can apply the Theorem 7.2 or 7.4 in Chap.V of [37] to the
first equation of Eq (1.4) which can be rewritten as ut − d(v)∆u + b(t, x, u,∇u) = 0 with

b(t, x, u,∇u) = −[d′(v)∇v − χ(v)∇v] · ∇u + [χ′(v)(∇v · ∇v) + χ(v)∆v]u − γuF(w) + θu + `u2.

Then there exits another constant, still denoted by ĉ4, such that ‖∇u‖L∞(Ω) ≤ ĉ4 for all t > T0.

An application of Gagliardo–Nirenberg interpolation inequality may yield that for all t > T0,

‖u‖L∞(Ω) ≤ ĉ5(‖∇u‖
n

n+1
L∞(Ω)‖u‖

1
n+1
L1(Ω) + ‖u‖L1(Ω)) ≤ ĉ6e−

ĉ1t
2(n+1) ,∥∥∥v − βK

σ

∥∥∥
L∞(Ω)

≤ ĉ7
(∥∥∥∇(v − βK

σ
)
∥∥∥ n

n+2

L∞(Ω)

∥∥∥v − βK
σ

∥∥∥ 2
n+2

L2(Ω)
+

∥∥∥v − βK
σ

∥∥∥
L2(Ω)

)
≤ ĉ8e−

ĉ1t
n+2 ,

‖w − K‖L∞(Ω) ≤ ĉ9
(
‖∇(w − K)‖

n
n+2
L∞(Ω)‖w − K‖

2
n+2
L2(Ω) + ‖w − K‖L2(Ω)

)
≤ ĉ10e−

ĉ1t
n+2 ,

where ĉ6 := ĉ5(ĉ
n

n+1
4 ĉ

1
n+1
3 + ĉ3), ĉ8 := ĉ7(ĉ

n
n+2
4 ĉ

2
n+2
3 + ĉ3), and ĉ10 := ĉ9(ĉ

n
n+2
4 ĉ

2
n+2
3 + ĉ3). Therefore,

‖u‖L∞(Ω) +
∥∥∥v − βK

σ

∥∥∥
L∞(Ω)

+ ‖w − K‖L∞(Ω) ≤ ĉ11e−
ĉ1t

2(n+1) , t > T0

with ĉ11 := ĉ6 + ĉ8 + ĉ10. This completes the proof.

4.2. Asymptotical stability of coexistence steady state

As is shown in Eq (2.3), the positive coexistence state (u∗, v∗,w∗) should satisfy

u∗F(w∗) = w∗ f (w∗) =
u∗(θ + `u∗)

γ
> 0 , v∗ =

βw∗
σ

> 0, w∗ > 0.

We are now in a position to prove part 2) of the Theorem 2.2.
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Lemma 4.4. Let (H1)− (H4) hold and (u, v,w) be the global classical solution of Eq (1.4) obtained in
Theorem 2.1. If the coexistence steady state (u∗, v∗,w∗) exists and

max
0<v≤K2

χ(v)2

d(v)
≤

16dvγσ

β2u∗
min

w̃1∈[0,C1]
{−ϕ′(w̃1)} min

w̃2∈[0,C1]
{F′(w̃2)}, (4.6)

with K2 from Remark 3.2 and C1 = max
{
K, ‖w0‖L∞(Ω)

}
and ϕ(w) =

w f (w)
F(w) , then the (u∗, v∗,w∗) is globally

asymptotic stable. Moreover, there are three constants c̃1, c̃2,T1 > 0 such that

‖u(t, ·) − u∗‖L∞(Ω) +
∥∥∥v(t, ·) − v∗

∥∥∥
L∞(Ω)

+ ‖w(t, ·) − w∗‖L∞(Ω) ≤ c̃1e−
c̃2t
n+2 , t > T1.

Proof. We may construct the following function for t > 0 that

L2(t) := L2(u(t), v(t),w(t)) :=
1
γ

∫
Ω

(
u − u∗ − u∗ ln

u
u∗

)
+

M
2

∫
Ω

(v − v∗)2 +

∫
Ω

∫ w

w∗

F(η) − F(w∗)
F(η)

dη

where (u, v,w) is the global classical solution of Eq (1.4) and M > 0 is a constant to be determined in
Eq (4.9). Similar to Lemma 4.3, we first verify dL2(t)

dt ≤ 0. Replacing ut, vt,wt in the following equality
may yield

dL2(t)
dt

=
1
γ

∫
Ω

(ut −
u∗
u

ut) + M
∫

Ω

(v − v∗)vt +

∫
Ω

F(w) − F(w∗)
F(w)

wt

=
1
γ

∫
Ω

(γuF(w) − θu − `u2) −
u∗
γ

∫
Ω

(
d(v)
|∇u|2

u2 − χ(v)
∇u · ∇v

u
+ (γF(w) − θ − `u)

)
+ M

∫
Ω

(
− dv|∇v|2 + (v − v∗)(βw − σv)

)
−

∫
Ω

dwF(w∗)
F′(w)
F2(w)

|∇w|2

+

∫
Ω

(w f (w)
F(w)

− u
)
(F(w) − F(w∗)).

(4.7)

For the terms above involving ∇u and ∇v and for u , 0, one may notice that

−
u∗
γ

∫
Ω

(
d(v)
|∇u|2

u2 − χ(v)
∇u · ∇v

u
)
− M

∫
Ω

dv|∇v|2 = −
u∗
γ

∫
Ω

(∇u
u
,∇v

)
H

(∇u
u
,∇v

)τ
≤ 0

where τ refers to transpose and

H :=

 d(v) −
χ(v)

2

−
χ(v)

2
γMdv

u∗


is positive semi-definite when

M ≥ max
0<v≤C1

u∗χ(v)2

4dvγd(v)
. (4.8)

Here 0 < v(t, x) < C1 for all t > 0 and all x ∈ Ω, owning to Remark 3.2 and the regularity Eq (2.1) in
Theorem 2.1. In terms of u∗ =

w∗ f (w∗)
F(w∗)

one may obtain that∫
Ω

(w f (w)
F(w)

− u
)
(F(w) − F(w∗)) =

∫
Ω

(w f (w)
F(w)

−
w∗ f (w∗)
F(w∗)

+ u∗ − u
)
(F(w) − F(w∗))
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=

∫
Ω

ϕ′(w̃1)F′(w̃2)(w − w∗)2 −

∫
Ω

(F(w) − F(w∗))(u − u∗)

where ϕ(w) =
w f (w)
F(w) , w̃i lies between w and w∗, i = 1, 2. In light of `u∗ + θ = γF(w∗), we have

1
γ

∫
Ω

(γuF(w) − θu − `u2) −
u∗
γ

∫
Ω

(γF(w) − θ − `u) =
1
γ

∫
Ω

(u − u∗)(γF(w) − θ − `u)

=
1
γ

∫
Ω

(u − u∗)
[
γF(w) − θ − `u − (γF(w∗) − θ − `u∗)

]
=

∫
Ω

(u − u∗)(F(w) − F(w∗)) −
`

γ

∫
Ω

(u − u∗)2.

Note that (v− v∗)(βw−σv) = β(v− v∗)(w−w∗)−σ(v− v∗)2 by v∗ =
βw∗
σ

. One can derive from Young’s
inequality that

M
∫

Ω

(v − v∗)(βw − σv) = −Mσ

∫
Ω

(v − v∗)2 + Mβ

∫
Ω

(v − v∗)(w − w∗)

≤M
(βε

2
− σ

) ∫
Ω

(v − v∗)2 +
Mβ

2ε

∫
Ω

(w − w∗)2

≤
Mβ

2ε

∫
Ω

(w − w∗)2,

for 0 ≤ βε

2 ≤ σ or 0 < ε ≤ 2σ
β
. Consequently, we know

dL2(t)
dt

≤ − dwF(w∗)
∫

Ω

F′(w)
F2(w)

|∇w|2 +

∫
Ω

(
ϕ′(w̃1)F′(w̃2) +

Mβ

2ε

)
(w − w∗)2.

Lemma 3.3 shows 0 < w̃1, w̃2 ≤ C1 with C1 = max
{
K, ‖w0‖L∞(Ω)

}
. Thus by Eq (4.2) we can set

0 < M ≤
4σ
β2 min

[0,C1]

{
− ϕ′(w̃1)

}
min
[0,C1]

{
F′(w̃2)

}
. (4.9)

Then Eq (4.6) implies there exists a M > 0 such that both Eqs (4.8) and (4.9) hold, which means
dL2(t)

dt ≤ 0.
Next we claim that dL2(t)

dt = 0 will lead to (u, v,w) = (u∗, v∗,w∗). In fact,

L2(t) =
1
γ

∫
Ω

(
u − u∗ − u∗ ln

u
u∗

)
+

M
2

∫
Ω

(v − v∗)2 +

∫
Ω

∫ w

w∗

F(η) − g(w∗)
F(η)

dη =:
∫

Ω

H2(u, v,w)

and H2(u, v,w) = 1
γ

(
u − u∗ − u∗ ln u

u∗

)
+ M

2 (v − v∗)2 +
∫ w

w∗
F(η)−F(w∗)

F(η) dη is a nonnegative convex function
of (u, v,w) based on Lemma 4.1, the expansion Eq (4.10), and on Eq (4.11) as below. So the equation
dL2(t)

dt = 0 has at most one minimum point in the sense of (u, v,w). Together with (u, v,w) = (u∗, v∗,w∗)
leading to dL2(t)

dt = 0, thus we may infer that the equation dL2(t)
dt = 0 indicates (u, v,w) = (u∗, v∗,w∗),

which concludes that dL2(t)
dt = 0 if and only if (u, v,w) = (u∗, v∗,w∗). Then by Lemma 4.2 the solution

(u, v,w) of Eq (1.4) which is bounded will converges to (u∗, v∗,w∗) as t → ∞. In other words, (u∗, v∗,w∗)
is globally asymptotic stable.
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We can further acquire its the convergent rate. Indeed, letting κ = w∗ in Lemma 4.1 means

ζ(w) = ζ(w∗) + ζ′(w∗)(w − w∗) +
1
2
ζ′′(w̃)(w − w∗)2 =

F(w∗)F′(w̃)
2F2(w̃)

(w − w∗)2 ≥ 0, (4.10)

with w̃ lying between w and w∗. Furthermore, denoting ρ(u) = u − u∗ − u∗ ln u
u∗

and doing its Taylor
expansion at u = u∗ may show

ρ(u) = ρ(u∗) + ρ′(u∗)(u − u∗) +
1
2
ρ′′(ũ)(u − u∗)2 =

u∗
2ũ2 (u − u∗)2 ≥ 0, (4.11)

where ũ lies between u and u∗. Lemma 3.5 and the regularity Eq (2.1) jointly show that there exists a
T̃1 > 0 such that 0 < δ ≤ u ≤ C2 < ∞ as t > T̃1 , which means u∗

2C2
2
≤

u∗
2ũ2 ≤

u∗
2δ2 . Again observing the

derivations from Eqs (4.7) to (4.9), there is a constant c̃0 > 0 such that

dL2(t)
dt

≤ −c̃0L2(t), for all t > T̃1.

Analogous to the corresponding parts in proving Lemma 4.3, there exist two constants c̃1, c̃2 > 0
and T1 ≥ T̃1 > 0 such that

‖u(t, ·) − u∗‖L∞(Ω) +
∥∥∥v(t, ·) − v∗

∥∥∥
L∞(Ω)

+ ‖w(t, ·) − w∗‖L∞(Ω) ≤ c̃1e−
c̃2t
n+2 , t > T1.

5. Linear instability and patterns

The previous sections involve that there exists the unique global classical solution to Eq (1.4) and it
may approach its steady states exponentially under suitable conditions. However, there is no discussion
of instability on its steady states. To figure this out, we below shall analyse linear instability of these
constant steady states and then numerically explore the impact of density-dependent d(v) and χ(v) on
the patterns.

5.1. Linear instability

Proposition 5.1. Assume that (uc, vc,wc) is the constant steady state of the system (1.4). Then the
(uc, vc,wc) is linearly instable if there exists at least one λ j in Eq (5.4) having strictly positive real part
(viz. one of Eqs (5.5)–(5.7) holds); It is linearly stable if all the real parts of λ j are strictly negative.

Proof. We first linearize the system (1.4) at (uc, vc,wc) as

∂

∂t


u
v
w

 =


d(vc)∆ + B1 −ucχ(vc)∆ B2

0 dv∆ − σ β

B3 0 dw∆ + B4




u − uc

v − vc

w − wc

 =: Bw̃ (5.1)

where w̃ := (u − uc, v − vc,w − wc)τ,

B1 := γF(wc) − θ − 2`uc, B2 := γucF′w(wc),
B3 := −F(wc), B4 := f (wc) + wc f ′(wc) − ucF′w(wc).
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In order to obtain the eigenvalues (denoted by {λ j}
∞
j=0) of the linear operator B, we invoke the

following eigenvalue problem:  −∆Φ(x) = µΦ(x), x ∈ Ω,

∇Φ(x) · ~n = 0, x ∈ ∂Ω,

the eigenvalues {µ j}
∞
j=0 of which, without counting the finite multiplicities, can be formulated as

0 = µ0 < µ1 < µ2 < · · · < µm < · · · .

Then to {µ j}
∞
j=0 the corresponding eigenfunctions, denoted by {φ j(x)}∞j=0 in L2(Ω), constitute an

orthonormal basis of L2(Ω). Plus ∂w̃
∂t = ∂w

∂t , we thus can formulate a general solution w̃ to Eq (5.1)
(note ∂w̃

∂t = Bw̃ = λw̃) in the form of components (in particular spatial parts in L2(Ω)) as

u − uc =

∞∑
j=0

u jφ j(x)eλ jt, v − vc =

∞∑
j=0

v jφ j(x)eλ jt, w − wc =

∞∑
j=0

w jφ j(x)eλ jt, (5.2)

where u j, v j,w j are constants for all j. Note that if there is a j such that u j = v j = w j = 0, one may
automatically remove the corresponding terms in Eq (5.2). In this fashion we have

P jw̃ :=


−d(vc)µ j + B1 −ucχ(vc)µ j B2

0 −dvµ j − σ β

B3 0 −dwµ j + B4

 w̃ = λ jw̃, (5.3)

which is equivalent to
det (λ jI − P j) = 0, j = 0, 1, 2, . . .

or the eigenpolynomial
λ3

j + a1λ
2
j + a2λ j + a3 = 0, j = 0, 1, 2, . . . (5.4)

where I is a 3 × 3 unit matrix and other real-valued coefficients are:

a1 = − Trace (P j) =
(
d(vc) + dv + dw

)
µ j + σ − B1 − B4,

a2 = det

 −d(vc)µ j + B1 −ucχ(vc)µ j

0 −dvµ j − σ

 + det

 −dvµ j − σ β

0 −dwµ j + B4

 ,
a3 = − det(P j) = (B1 − d(vc)µ j)(σ + dvµ j)(B4 − dwµ j) − B3B2(σ + dvµ j) + B3βucχ(vc)µ j.

Denote p = a2 −
a1

2

3 , q = 2a1
3

27 −
a1a2

3 + a3, ϑ = ei 2π
3 = −1

2 +
√

3
2 i with i =

√
−1, and Ξ =

q2

4 +
p3

27 . Then
by Cardano’s formula for every j one can specify three roots of Eq (5.4) as:

λ(1)
j = −

a1

3
+

3

√
−q
2

+
√

Ξ +
3

√
−q
2
−
√

Ξ,

λ(2)
j = −

a1

3
+ ϑ

3

√
−q
2

+
√

Ξ + ϑ2 3

√
−q
2
−
√

Ξ,

λ(3)
j = −

a1

3
+ ϑ2 3

√
−q
2

+
√

Ξ + ϑ
3

√
−q
2
−
√

Ξ.

Consequently, we may identify the linear instability by requiring one of the real parts of these roots to
be strictly positive in the following cases:
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• When Ξ > 0, one may readily see that −q
2 ±
√

Ξ ∈ R and thus λ(1)
j is real and λ(2)

j , λ(3)
j are complex

numbers. So we require

max
{
Re(λ(1)

j ), Re(λ(2)
j ), Re(λ(3)

j )
}

= −
a1

3
+ max

{
Λ,
−Λ

2

}
> 0 (5.5)

with Λ := 3
√
−q
2 +
√

Ξ +
3
√
−q
2 −
√

Ξ;

• When Ξ = 0 then λ(1)
j , λ(2)

j and λ(3)
j are real (by ϑ + ϑ2 = −1) and λ(2)

j = λ(3)
j . Then we demand

max
{
Re(λ(1)

j ), Re(λ(2)
j ), Re(λ(3)

j )
}

= −
a1

3
+ max

{
2Λ0, −Λ0

}
> 0 (5.6)

with Λ0 := 3
√
−q
2 ;

• When Ξ < 0, λ(1)
j , λ(2)

j , and λ(3)
j are real but different from each other. So we need

max
{
λ(1)

j , λ
(2)
j , λ

(3)
j

}
> 0. (5.7)

This completes the proof.

Note that Proposition 5.1 does not concisely show how the density-dependent d(v) and χ(v) directly
affect the patterns. So we next resort to numerical simulations with parameters taken hypothetically.
The units of these parameters can be inferred from pp.252–262 of [1].

5.2. Numerical simulation in one-dimensional case

When motility function d(v) and prey-taxis sensitivity function χ(v) are constants, one may find
(cf. [21]) that the coexistence state of spatial one-dimensional model (1.2) (i.e., Eq (1.4) with ` = 0)
becomes unstable regarding small perturbation (by increasing prey-taxis coefficient). In this
subsection, we shall show that some density-dependent d(v) and χ(v) can stabilize such a stationary
state but this stabilization effect can be weakened by enhancement of conversion rate.

To show this difference, we remain unchanged some parameters and functions taken in [21], except
for d(v), χ(v) and conversion rate γ. Specifically, the growth rate function of prey is Θ-logistic type

f (w) = r
(
1 −

(w
K

)Θ)
, r, K > 0, Θ ≥ 1,

and the functional response function is Ivlev type

F(w) = c(1 − e−ςw), ς > 1, c > 0.

Let Ω = (0, L) and take other parameters in Table 1. Thus we derive from Eq (2.3) (with ` = 0)
that (u∗, v∗,w∗) ≈ (1.2599, 1.3787, 0.6267). In addition, we set initial value as u0(x) = u∗ + 0.01 ·
cos(πx), v0(x) = v∗ + 0.01 · sin(πx),w0(x) = w∗ + 0.01 · cos(πx).

When d(v) = 0.002533 and χ(v) = 1, one can still derive the patterns (cf. (a) in Figure 1) that are
analogous to the first row of Figure 7 in [21]. However, if we replace them by density-dependent forms
such as d(v) = 1

1+e8v−1 or 1
1+8v , things will become different.
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Table 1. Parameters selection–I.

γ θ ` dv dw σ β K r c Θ ς L

1.2 0.45 0 0.0001 0.09 0.2 0.44 1 1 1 3 0.75 1

Precisely, it is not difficult to see from (a) to (d) in Figure 1 that some density-dependent d(v)
and χ(v) of exponential or algebraic form may flatten, or we say stabilize, the pattern bifurcating
from the coexistence steady state (u∗, v∗,w∗) under small perturbations. However, this effect might be
suppressed by increasing conversion rate. For example, after resetting conversion rate γ, approximate
time-periodic patterns can appear, like the change from (d) to (e) in Figure 1. In addition, by enhancing
γ in Figure 1(b), (c) (for instance, by letting γ = 26), the system may produce patterns like Figure 1(d)
as well.

5.3. Numerical simulation in two-dimensional case

An individual-based modelling method to simulate one population whose individuals undergo
density-dependent movement in 2-dimensional spatial domain can be see in [38]. For two populations
spatially in a 2-dimensional disc, i.e., one predator and one prey considered in the system (1.4) with
` > 0, some density-dependent d(v) and χ(v) may help to change the spatial distribution similarity
which exists in non-density-dependent case between predators and signals of prey.

We herein set the growth rate function of prey as

f (w) = r
(
1 −

w
K

)
, r, K > 0,

and take the functional response function to be the Holling type II

F(w) =
w

c + w
, c > 0,

together with different values of r and different forms of d(v) and χ(v) specified below Figures 2 and
3. Without loss of generality, we may adopt initial values as

u0(x, y) = uc + Q(x, y), v0(x, y) = vc + Q(x, y), w0(x, y) = wc + Q(x, y),

where Q(x, y) = cos πx+cos πy, (x, y) ∈ B3(0)–a circle with radius 3 and centre at the origin, (uc, vc,wc)
may equal to (0, 0, 0), (0, βK

σ
,K) or (u∗, v∗,w∗), the last of which exists as γr > θ, u∗ = w∗ =

K(γr−θ)
K`+γr and

v∗ =
Kβ(γr−θ)
σ(K`+γr) . Other specific parameters are given in Table 2.

Table 2. Parameters selection–II.

γ θ ` β σ K dv dw c

10 1 1 10 12 10 0.1 0.1 1

Figures 2 and 3 present the spatial distribution of predator, chemicals released by prey and of prey,
in a circular domain at time t = 50 and t = 500. We may observe that:
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(a) χ(v) = 1, d(v) = 0.002533

(b) χ(v) = 8/(1 + 8v)2, d(v) = 1/(1 + 8v)

(c) χ(v) = 8e8(v−1)/(1 + e8(v−1))2, d(v) = 1/(1 + e8(v−1))

(d) χ(v) = 8/(1 + 8v)2, d(v) = 1/(1 + e8(v−1))

(e) χ(v) = 8/(1 + 8v)2, d(v) = 1/(1 + e8(v−1)), γ = 18

Figure 1. Here (u∗, v∗,w∗) ≈ (1.2599, 1.3787, 0.6267) from (a) to (d) and (u∗, v∗,w∗) ≈
(1.3502, 0.0743, 0.0338) in (e).
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(i) non-constant steady states exist since the corresponding patterns have few changes from time
t = 50 to t = 500. Parameter r seems important in producing more abundant patterns after other
parameters are fixed, for example (a) and (b) in Figure 2 and that in Figure 3, or (c) and (d) in
Figure 2 and that in Figure 3;

(ii) if d(v) and χ(v) are constants, spatial distribution of predators and chemoattractant are very
similar; The density-dependent decays of d(v) and χ(v) may lower the similarities, but the extent
may be effected by other parameters, like r in f .

5.4. Biological explanation of the simulations

System (1.4) describes a spatiotemporal evolution process of an isolated ecosystem within a domain
Ω, which includes two populations i.e., one predator and one prey. The most arresting feature in Eq
(1.4) is that the predators may search for the prey as their food, mainly through chemoattractants
released by the prey, since some factors including natural camouflage, the environment of the prey,
range of visibility of the predators, etc., result in many difficulties for the predators in finding the prey
directly. So the chemoattractants usually have diffused relatively far from the prey before they are
perceived by the predators. Here u(x, t), v(x, t), and w(x, t) refer to population density of the predators,
concentration of the chemical signals, and population density of the prey, respectively. The system
being isolated means that there might be negligible quantities of the predators, the prey, and the prey
signals crossing the boundary of Ω, compared with overwhelming majorities of them (the predators,
the prey, and the prey signals) within Ω. Other organisms living in Ω are not taken into consideration
in the Eq (1.4).

Theorem 2.1 states that the system (1.4) has a global-in-time classical solution which is continuous
to its initial value, when (H1)–(H3) are satisfied. As a result, for given initial densities u0(x), v0(x) and
w0(x), one can predict by the unique classical solution of Eq (1.4) the density of the predators, the prey
signals and the prey, at any time 0 < t < ∞ and any spatial position x ∈ Ω. The obtained L∞ bound in
Theorem 2.1 signifies that there is a maximal density for all three of them.

Theorem 2.2 illustrates that in some cases (if (H4) holds), the spatial distributions of the predators,
the prey signals, and the prey in Ω may be approximately homogeneous as the time goes by. This
is, as it should be, a much ideal case, but at least the large-time behavior of such a solution indicates
a trend through which one can foresee whether this ecosystem can evolve into exclusion state (prey
being extinct in Ω) or coexistence state over time. So this tendency which can be viewed as an early
warning, makes significantly biological sense to protect the biodiversity and ecological balance in the
domain Ω.

For simplicity, in regard to numerical simulations we only list the patterns which bifurcate from
coexistence steady state in Subsections 5.2 and 5.3 (the case of exclusion state is similar). In
Subsection 5.2, (a) of Figure 1 recovers the pattern corresponding to the point A in Figure 7 obtained
in [21] with d(v) and χ(v) being constants, which is the starting point of our simulations. Then in (b)
and (c) of Figure 1, we set χ(v) = −d′(v) with d(v) satisfying algebraic decay and exponential decay
respectively. Finally in Figure 1 (d) and (e) we remove the relation χ(v) = −d′(v) and take χ(v) and
d(v) to be algebraic and exponential decay severally. From this process we see that random motility
function d(v) and indirect prey-taxis sensitivity χ(v), being density-dependent form, may help the
spatial distribution (of the predators, the prey signals, and the prey) to be approximately

Mathematical Biosciences and Engineering Volume 18, Issue 5, 6672–6699



6695

(a) Time t=50, χ(v) = 1, d(v) = 4, r = 8

(b) Time t=500, χ(v) = 1, d(v) = 4, r = 8

(c) Time t=50, χ(v) = 10
(1+10v)2 , d(v) = 1

1+e10v−1 , r = 8

(d) Time t=500, χ(v) = 10
(1+10v)2 , d(v) = 1

1+e10v−1 , r = 8

Figure 2. By numerical simulation, different values of constant steady state (uc, vc,wc) give
the analogous resulting graphics. Here we take (u∗, v∗,w∗) = (8.7778, 7.3148, 8.7778) for
example. Density dependent d(v) and χ(v) may change the patterns of the predator density u
and the prey signal density v but have little effect on that of prey density w.
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(a) Time t=50, χ(v) = 1, d(v) = 4, r = 10

(b) Time t=500, χ(v) = 1, d(v) = 4, r = 10

(c) Time t=50, χ(v) = 10
(1+10v)2 , d(v) = 1

1+e10v−1 , r = 10

(d) Time t=500, χ(v) = 10
(1+10v)2 , d(v) = 1

1+e10v−1 , r = 10

Figure 3. Here (u∗, v∗,w∗) = (9, 7.5, 9). Compared with Figure 2, we only change the value
of r and readily see that the impact of the density-dependent d(v) and χ(v) on patterns of u
and v, in particular for v, may be subjected to the value of r. Still the d(v) and χ(v) cannot
distinctly affect that of prey density w.
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homogeneous. Because one may observe that the spatial distributions of Figure 1 (b)–(e) become
more even than that of Figuere 1 (a), although the approximate time-periodic pattern may appear
when the conversation rate γ is increased.

All simulations in Subsection 5.2 are spatial 1-dimensional case, which matter in theory. What will
happen in spatial 2-dimensional case makes more realistic sense, which is the aim of Subsection 5.3.
Firstly, we see the spatial distribution of high density for both the prey signals and the prey, either in
Figures 2 or 3, stagger a little bit each other (instead of being overlap) in position (this point can also
be seen in Figure 1 but it is not so distinct). This is consistent with the feature of indirect prey-taxis that
signals of the prey have diffused a distance far from the prey before they are captured by the predators.
Secondly, when χ(v) and d(v) are constants (cf. (a), (b) in Figures 2 and 3), we find that the spatial
distribution of the predators and of the prey signals are highly similar, since the predators conduct the
signals-based (indirect prey-taxis) foraging strategy to search for the prey. However, the χ(v) and d(v)
in density-dependent form (cf. (c), (d) in Figures 2 and 3) may lower similarity of spatial distribution
between the predators and the prey chemicals. Finally, increasing the value of r (from f (w)) in Figure 2
may yield Figure 3 from which one may infer that some parameters in Eq (1.4), like r, are important
to produce abundant patterns.
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