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Abstract: In this study, we introduce and study new fuzzy-interval integral is known as
fuzzy-interval double integral, where the integrand is fuzzy-interval-valued functions (FIVFs). Also,
some fundamental properties are also investigated. Moreover, we present a new class of convex
fuzzy-interval-valued functions is known as coordinated convex fuzzy-interval-valued functions
(coordinated convex FIVFs) through fuzzy order relation (FOR). The FOR (<) and fuzzy inclusion
relation (2) are two different concepts. With the help of fuzzy-interval double integral and FOR,
we have proved that coordinated convex fuzzy-IVF establish a strong relationship between
Hermite-Hadamard (HH-) and Hermite-Hadamard-Fejér (H H-Fejér) inequalities. With the support of
this relation, we also derive some related HH-inequalities for the product of coordinated convex
FIVFs. Some special cases are also discussed. Useful examples that verify the applicability of the
theory developed in this study are presented. The concepts and techniques of this paper may be a
starting point for further research in this area.
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1. Introduction

It is a familiar fact that integral inequalities have many applications in different mathematical
segments as in the theory of differential and integral equation control theory, statistic, among others.
Over the past two decades, integral inequalities have attracted good numbers of research to devote
themselves because of the importance in different fields. Therefore, several generalizations of
classical integral inequalities were obtained in the real, interval and fuzzy spaces. In all of those,
HH-inequalities establish strong relationship between different classes of convex functions and have
an important place in many areas of mathematics. This double inequality, introduced by Hermite [1]
and Hadamard [2], express that if convex function T:I — R on an interval [ = [u, V] satisfies the
following inequality:

u+v

T(2) <= [IT(w)do <

T + T7W)
2 2

6]
for all u,v € I. If T is concave, then double inequality (Eq 1) is reversed. A one step forward,
Sarikaya et al. provided the fractional version of inequality (Eq 1) in [3]. Moreover, midpoint and
trapezoidal inequalities [4,5], which are commonly used in special means and measures errors, are
the most well-known results associated with these inequalities. But, the most familiar version of
inequality (Eq 1) is known as Hermite-Hadamard-Fejér inequality, was presented by Fejér [6] as
follows:

Let 7:1 > R be a convex function on an interval [ = [u,v] with u < v ,and let Q:] =

[u,v] € R - R, with 2 > 0, be a integrable and symmetric function with respect to uzﬂ Then, we

have the following inequality:

T (%) f;!)(w)da) < f;T(w).Q(a))da) < Mf;!)(w)dw ()

If T is concave, then double inequality (Eq 2) is reversed. If 2(w) = 1, then we obtain Eq (1) from
Eq (2). Many inequalities can be obtained for convex functions using inequality (Eq 2) and the
special symmetric function 2(w). Similarly, many Scholars used fractional integrals to construct
new versions of inequality (Eq 2), obtaining new bounds the left- and right-hand of sides of
inequality (Eq 2), see [7-9]. What are more, some inequalities for the product of two coordinated
convex functions was firstly discussed by Latif and Alomari in [10]. Besides, the most general
versions of inequalities were given by Ozdemir et al. [11,12] through product of two coordinated
s-convex functions and product of two coordinated h-convex functions. Through fractional integral,
Budak and Sarikaya [13] established the strong relationship between new HH-type inequality and the
product of two coordinated convex functions.

On the other hand, interval analysis is a well-known method for dealing interval uncertainty; it
is an important material that is used in mathematical and computer models. Ramon E. Moore [14],
dubbed the “father of Interval analysis” published the first book on the subject in 1966. Thereafter,
many authors in the mathematical community have paid close attention to this area of research. In
light of this, Sadowska [15] arrived at the following conclusion for an IVF:

Let T:[u,v]c R—-> R/ be a convex interval-valued function (convex-IVF) given by
T(w) = [T.(w),T*(w)] for all w € [u,v], where T,(w) and T*(w) are convex and concave
functions, respectively. If T is interval Riemann integrable (in sort, /R-integrable), then
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Tw+ T(v)

T (ﬂ) > (IR) [/ T(w)dw 2 3)

2 v-u

Note that, the inclusion relation Eq (3) is reversed when T is concave-IVF. Following that, many
scholars used inclusion relations and various integral operators to establish a close relationship
between inequality and IVFs. Recently, Costa [16] obtained Jensen’s type inequality for fuzzy-IVF.
Costa and Roman-Flores [17,18] introduced different types of inequalities for fuzzy-IVF and IVF,
and discussed their properties. Roman-Flores et al. [19] derived Gronwall for IVFs. Moreover,
Chalco-Cano et al. [20,21] presented Ostrowski-type inequalities for IVFs by using the generalized
Hukuhara derivative and provided applications in numerical integration in IVF. Nikodem et al. [22],
and Matkowski and Nikodem [23] presented the new versions of Jensen inequality for strongly
convex and convex functions. Zhao et al. [24,25] derived Chebyshev, Jensen’s and HH-type
inequalities for IVFs. Recently, Zhang et al. [26] generalized the Jensen inequalities and defined new
version of Jensen’s inequalities [16] for set-valued and fuzzy-set-valued functions through pseudo
order relation. After that, for convex-IVF, Budek [27] established interval-valued fractional
Riemann-Liouville HH-inequality by means of inclusion relation. For more useful details, see [28—34]
and the references therein.

Recently, Khan et al. [35] introduced the new class of convex fuzzy mappings is known as
(hq, hy)-convex FIVFs by means of FOR and presented the following new version of HH-type
inequality for (hy, h,)-convex FIVF involving fuzzy-interval Riemann integrals:
Theorem 1.1. Let 7:[u,v] > F, be a (hy, hy)-convex FIVF with hy,h,:[0,1] > Rt and
hq G) h, (l # 0. Then, from 6-levels, we get the collection of IVFs Ty:[u,v] c R - ]R;: are
given by Ty(w) = [T (w,0),T*(w,0)] for all w € [u,v] and for all 6 €[0,1]. If T is
fuzzy-interval Riemann integrable (in sort, FR-integrable), then

m F(*) <= FR) [ T(@)do < [Fw) F T f; @ k(1 -1)dr @)

If hy(t) =7 and h,(t) = 1, then from Theorem 1.1, we get following the result for convex FIVF:

~ 1 ~ T T T
F (“—;”) <= (FR) [} T(w)dw < T ¥ 7W) . Tw) (5)

A one step forward, Khan et al. introduced new classes of convex and generalized convex FIVF,
and derived new fractional HH-type and HH-type inequalities for convex FIVF [36], h-convex
FIVF [37], (hy, hy) -preinvex FIVF [38], log-s-convex FIVFs in the second sense [39],
LR-log-h-convex IVFs [40], harmonically convex FIVFs [41] and the references therein. We refer to
the readers for further analysis of literature on the applications and properties of fuzzy-interval, and
inequalities and generalized convex fuzzy mappings, see [42—51] and the references therein.

2. Preliminaries

Let R be the set of real numbers and R; be the space of all closed and bounded intervals of R,
and @ € R; be defined by

w=|w, 0| ={weER| w,<w<w"}, (@, o €R)

If w, = @w”*, then @ is said to be degenerate. If @, = 0, then [w,, @] is called positive interval.
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The set of all positive interval is denoted by R} and defined as R} = {[w,, @*]: [@,, @*] €
R, and @, > 0}.
Let o € R and pw be defined by

lew., 0w"] if ¢ =0,
ocw=9 {0} if o=0, (6)
[ow*, ow,] if o <O.

Then the Minkowski difference ¢ — @, addition @ + ¢ and @w X ¢ for w,& € R, are defined by

[E*:E*] - ['(D'*,'ZD'*] = [6* — Wy, S;* - Gf*],

.8+ [w.o] = +@, &+a’], (7

and

[E*: 5*] X [ZD'*,ZD'*] = [mln{f*w*’ E*w*’ f*w-*’ E*w*}r max{E*w*, E*w*' E*w*, S*W*}]

The inclusion " € " means that
¢ € w ifand only if,[£,,&7] € [w,,@w*], ifand only if @, <¢,, & < @™ (8)
Remark 2.1. [41] The relation " <; " defined on R; by

[£.,¢7] < [w,, @*] ifand only if ¢, < w,, & < @”, 9)

for all [¢,,&*], [w,, @*] € R;, itis an order relation. For given [£,,¢*], [@,,@*] € R,;, we say that
[¢.,¢*] <, [w,,@w*] ifand only if &, < w,, & < w™.

For [£,,¢*], [@,, @*] € R;, the Hausdorff~-Pompeiu distance between intervals [&,,&*] and
[w,, @*] is defined by

d([§.¢7] [w, @™ ]) = max{lS, — @], [§" —@"|} (10)

It is familiar fact that (IR;, d) is a complete metric space.

A fuzzy subset T of R is characterize by a mapping &:R — [0, 1] called the membership
function, for each fuzzy set and 8 € (0, 1], then O-level sets of & is denoted and defined as follows
(o ={u€eR| &) =6} If 6 =0, then supp(é) = {w € R| é(w) > 0} is called support of &.
By [£]° we define the closure of supp(§).

Let F(R) be the collection of all fuzzy sets and & € F(R) be a fuzzy set. Then, we define the
following:

1) & issaid to be normal if there exists w € R and é(w) = 1;

2) ¢ is said to be upper semi continuous on R if for given w € R, there exist € > 0 there exist
6 >0 suchthat {(w) —&(y) < ¢ forall y € R with |w —y| < §;

3) ¢ issaid to be fuzzy convex if &g is convex for every 6 € [0, 1];

4) & is compactly supported if supp(¢) is compact.

A fuzzy set is called a fuzzy number or fuzzy interval if it has properties 1)-4). We denote by
F, the family of all fuzzy intervals.

Let £ € F, be a fuzzy-interval, if and only if, 8-levels [¢]? is a nonempty compact convex
set of R. From these definitions, we have

[£1° = [£.(6),¢7(6)],
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where
§.(0) = inflw € R| {(w) =6}, §7(0) = sup{w € R| §(w) =6}
Proposition 2.2. [17] If ¢, @ € Fy, then relation " <" defined on F, by
§ < w if and only if, [£]? <, [w]?, for all 6 €[0,1], (11)

this relation is known as partial order relation.

For §,@ € F, and ¢ € R, the sum éFw, product ¢ X @, scalar product g.¢ and sum with
scalar are defined by:

Then, for all 8 € [0,1], we have

[{F@]® =[5]° + [@]° (12)
[§ X @]’ = [§1° x [ @] (13)

[e-¢1° = 0.[¢]° (14)
[eF £1° =0 +[¢]° (15)

For ¢ € F, such that & = @+, then by this result we have existence of Hukuhara difference of
¢ and @, and we say that Y is the H-difference of ¢ and @, and denoted by ¢{=w. If
H-difference exists, then

W)*(6) = E=@)"(0) = &"(8) —@"(0), ¥).(0) = §=w).(0) = ¢.(0) —w.(6) (16)

Definition 2.3. [32] The IVF T:A= [a, b] X [u,v] = R* is said to be coordinated convex function
on A if
T(ta+ (A —=1)b,su+ (1 —5s)v)

<tsT(a,u)+t(1—-5)T(a,v) + (1 —1)sT(b,u) + (1 —1)(1 —s)T(b,Vv) (17)

for all (a,b),(u,v) €A1 and ,7,s5 € [0,1]. If inequality (Eq 17) is reversed, then T is called
coordinated concave IVF on A.
Definition 2.4. [44] The FIVF T:[u,v] - F, is said to be convex FIVF on [u,V] if

Tax+(1-1w) stTx) ¥ 1-1)T(w), (18)

for all x,w € [u,v],t € [0,1], where T(x) = 0. If T is concave FIVF on [u,V], then inequality
(Eq 18) is reversed.

Definition 2.5. [35] Let hy,h,:[0,1] € [u,v] > R* such that hy,h, 0 . Then, FIVF
T:[u,v] » F, issaid to be (hy, hy)-convex FIVF on [u,v] if

Tax+(1 -7 ) h@h,1-0)T®)Fh (1 —1)h,(7) T(w) (19)

for all x,w € [u,v],T €[0,1], where T(x) > 0. If T is (hy,h,)-concave on [u,Vv], then
inequality (Eq 19) is reversed.
Remark 2.6. [35] If h,(t) =1, then (hq, h,)-convex FIVF becomes h;-convex FIVF, that is

Tax+(1-10) S h@T®)Fh(A-1)T(w), V x,w € [u,v],T € [0,1] (20)
If hy(t) =1,hy(t) =1, then (hq, h,)-convex FIVF becomes convex FIVF, that is
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Tax+ (1 -1Dw) < T@)FA-1)T(w), V x,0 € [u,v],7 €[0,1] (21)
If hi(t) = hy(t) =1, then (hq, h,)-convex FIVF becomes P-convex FIVF, that is
Tax+ (1 -1w) < T@)FT (), V x,0 € [u,v],T €[0,1] (22)
Theorem 2.7. [35] Let 7,7 : [u,v] » F, be two (hy, hy)-convex FIVFs with hy, hy:[0,1] > R*
and hl( )hz( ) # 0. Then, from 6O-levels, we get the collection of IVFs Ty, Jg: [u,v]Cc R -
R} are given by Ty(x) = [7,(x,0),T*(x,0)] and Jg(x) = [J.(x,0),T*(x,0)] for all x € [u,v]
and for all 8 € [0,1].If T X J is fuzzy Riemann integrable, then

— (FR) [ T(x) X J(x)dx < M (w,v) f, Thy (1) hy(1 — 7)]2dr

FN V) f; hy(0) hy(@) by (1 = ©) hy(1 — 7) dt (23)
and,
—1 — T I () <= (FR) [[T)I)dx F N (u,v) [ [hy () hy(1 -
2[m(3) 3)] (5)9(5) <5 - °
D12de FM (w,v) [ hy (1) hy(0) by (1 — ©) hy(1 — 1) dt (24)
where

M) =TWXJw) F TW)XJW), Nwv) =T XJW) ¥ TW) XJw),
My (u,v) = [M.((w,v),8),M*((w,v),0)], No(w,v) = [M.((w,v),0),N*((w,v),0)]
Remark 2.8. If hy(t) = 7 and h,(r) = 1, then Eq (23) reduces to the result for convex FIVF:
— (FR) [} T(x) X J@)dx < M w)F N (u,v) (25)

And if hy(t) =7 and h,(t) = 1, then Eq (24) reduces to the result for convex FIVF:

~ A 1 = N~ A ~1 ~ 1
2 T(XY) % J (%) <L FR) [ T(@) X J@)dx F2M@nF TF@wv)  (@6)
Theorem 2.9. Let T:[u,v] —» F, be a convex FIVF with u < v. Then, from 8-levels, we get the

collection of IVFs Ty:[u,v] € R » R are given by Ty(x) = [T.(x,0),T*(x,0)] for all x €
[u,v] and for all 6 € [0,1]. If T € TR(yuyye) and 2:[u,v] » R,2(x) =0, symmetric with

respect to uzi, and f;.()(x)dx > 0, then

TWFT W)

(FR)f T(x)N(x)dx < .

7(2) < 27)

) f n( Ydx
If T is concave FIVF, then inequality (Eq 27) is reversed.

Mathematical Biosciences and Engineering Volume 18, Issue 5, 6552-6580.



6558

2.1 Fuzzy-interval double integral and convexity

Firstly, we shall define fuzzy-interval double integrable.
AFIVF T:[a,b] > F, is said to be continuous at x, if for each € there exista § such that

d(F(x), T (x0)) <.

Whenever |x — x| < §. Atagged partition of [a, b] is any finite ordered subset P; having the form
PP=fa=x,< 2, < x3<x4< ZXg.... < x, = b}.

Let P(8,[a, b]) be the set of all P; € P(6,[a, b]) such that A(x;) < &. Then, P; is called §-fine.
For each set of numbers [x;_;, %;], where 1 <i < k, choose an arbitrary point 7; and taking
the sum

S(T, Py, 8,[a,b]) =T, T () (% — x4-1) (28)

where T:[a,b] > Fy. We call S(T,Py,8[a, b]) an integral sum of T corresponding to P; €
P(6,[a,b]). Let C([a,b],Fy) be the collection of continuous FIVFs.

If P, £ [x;_1, #;] such that P, € P(§,[a,b]), where 1 <i<k, and P, = [a)j_l, a)j] such
that P, € P(J,[u,v]), where 1 <j <n, then rectangles A;;= [x;_;, x;] X [a)j_l, wj] partition
the rectangle A= [a, b] X [u,v] and the points (ni,wj) € [x;_q, x;] X [a)j_l, wj]. Let P(5,A) be
the collection of all §-fine partition P = P; X P, of A.

Similarly to Eq (28), we have

S(T, Py, 6,8) = iy Yoy T(niwy) (e — 2-0) (w) — wj—1) = T X0 T (e wy) A4y ; (29)

an integral sum of J:A= [a, b] X [u,v] - F,, where AA; ;j be the of rectangle.
Definition 2.1.1. A function T:[a,b] = R is called Riemann integrable (R-integrable) on [a, b] if
there exists B € R such that, for each €, there exists 6 > 0 such that

IS(T,P1,5, [a;b]) _BI < €,

for every Riemann sum of T corresponding to P; € P(6,[a, b]) and for arbitrary choice of n; €
[x;,_1, #;] for 1 <i < k. Then, we say that B is the R-integral of 7 on [a,b] and is denote by

B=(R) [ T(x)dx.

Definition 2.1.2. [25] A function T7:[a,b] = R; is called interval Riemann integrable
(IR-integrable) on [a, b] if there exists B € R; such that, for each e, there exists § > 0 such that

d(S(T,P;,8,[a,bl),B) <k,

for every Riemann sum of T corresponding to P; € P(6,[a, b]) and for arbitrary choice of n; €
[x;,_1, #;] for 1 <i < k. Then, we say that B is the IR-integral of T on [a, b] and is denote by

B =(IR) [, T (x)dx.

Definition 2.1.3. A function 7:[a,b] > F, is called fuzzy-interval Riemann integrable
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(FR-integrable) on [a, b] if there exists B € FF, such that, for each ¢, there exists § > 0 such that
d(S(7,Py,8,[a b]),B) <k,

for every Riemann sum of T corresponding to P; € P(§,[a, b]) and for arbitrary choice of 7n; €

[x;_1, x;] for 1 <i < k. Then, we say that B is the FR-integral of 7 on [a,b] and is denote

by B = (R) [] T(x)dx.

Definition 2.1.4. [24] A function T:A= [a, b] X [u,v] = R, is called interval double integral
(ID-integrable) on A if there exists B € R; such that, for each e, there exists & > 0 such that

d(S(TJ Pl 6' A)' B) < 67
for every Riemann sum of T corresponding to P € P(§,A) and for arbitrary choice of (ni, Wj) €
[2;_1, x;] X [w]-_l, wj] for 1<i<k and 1 <j <n. Then, we say that B is the IR-integral of

T on A and is denote by B = (ID) f; fJT(x, w)dwdzx or B = (ID) [f, TdA.

Theorem 2.1.5. [14] If T:[u,v] € R - R; is an IVF given by (x) [T.(x),T*(x)], then T is
Riemann integrable over [u,v] if and only if, 7, and T* both are Riemann integrable over [u,V]
such that

UR) [ T@dx = |(R) [} T.()dx, (R) [} T* (x)dx] (30)

The collection of all Riemann integrable real valued functions and Riemann integrable IVF is
denoted by R, and TRp,,;, respectively.

Note that, the Theorem 2.1.6 is also true for interval double integrals. The collection of all double
integrable IVF is denoted TO,, respectively.
Theorem 2.1.6. [24] Let A= [a, b] X [u,v]. If T:A— R, is ID-integrable on A, then we have

(ID) f: fJT(x, w)dwdx = (IR) f:(IR) f:f]‘(x, w)dwdzx.

Definition 2.1.7. A function 7: A= [a, b] X [u,v] = F, is called fuzzy-interval double integrable
(FD-integrable) on A if there exists B € [, such that, for each e, there exists § > 0 such that

d(S(7,P,8,A),B) <,
for every Riemann sum of T corresponding to P € P(5,A) and for arbitrary choice (ni,wj) €

[2;_1, 2] X [w]-_l, wj] for 1<i<k and 1 <j <n. Then, we say that B is the FR-integral of

T on A and is denote by B = (FD) f; f:ff"(x, w)dwdx or B = (FD) ffA TdA.
Definition 2.1.8. A fuzzy-interval-valued map T:A= [a,b] X [u,v] - F, is called FIVF on

coordinates. Then, from 8-levels, we get the collection of IVFs T: Ac R? - R; on coordinates are
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given by Tp(x, w) = [7;((96, w),G),T*((x, w),@)] for all (x,w) € A. Here, for each 6 € [0,1],
the end point real valued functions 7.(.,80),7*(.,0):(x,w) » R are called lower and upper
functions of Tj.

Definition 2.1.9. Let 7:A= [a,b] X [u,v] € R? > F, be a coordinate FIVF. Then, T (x, ) is
said to be continuous at (x,w) € A= [a,b] X [u,v], if for each 8 € [0,1], both end point
functions Tk((x, w),@) and T *((x, w),@) are continuous at (x, w) € A.

Definition 2.1.10. Let 7:A= [a, b] X [u,v] € R? - F, be a FIVF on coordinates. Then, fuzzy

double integral of T over A= [a, b] x [u,Vv], denoted by (FD) f: f:ff"(x, w)dwdzx, it is defined
level-wise by

[(FD) [T, a))da)dx]e = (D) [} [V Ty (x, w)dwdz
= (IR) [ (IR) [ Ty (x, w)dwdz, (1)

for all 8 € [0,1], T is FD-integrable over A if (FD) f: f;/f‘(x, w)dwdx € F,. Note that, if end

point functions are Lebesgue-integrable, then T is fuzzy double Aumann-integrable function over A.
Theorem 2.1.11. Let T7:Ac R? —» F, be a FIVF on coordinates. Then, from 6-levels, we get the

collection of IVFs Ty:Ac R? - R, are given by Tp(x, w) = [7;((96, w),@),T*((x, w),@)] for all
(x,w) € A= [a, b] X [u,v] and for all 6 € [0,1]. Then, T is FD-integrable over A if and only if,
Tk((x, w),@) and T *((x, w),@) both are D-integrable over A. Moreover, if T is FD-integrable

over A, then

(FD) 7 7 7z, )dwdz|” = [(FR) [L(FR) f] T, w)dwdx]g

= (IR) [ (IR) [, Ty(x, w)dwdx = (D) [} [ Ty(x, w)dwdzx (32)

forall 6 € [0,1].

Proof. The proof of this theorem follows immediately by the Definition 2.1.10 of fuzzy double
integral of FIVF.

The family of all FD-integrable FIVFs over coordinates is denoted by FO, forall 6 € [0, 1].
Theorem 2.1.12. Let ¢ € R,and 7, J € FO,. Then,

1) o € FO, and

(FD) [f, oTdA = o(FD) [, TdA.
2) TF J€ FO,,and
(FD) [f,(T+J)dA = (FD) [f, TdAF(FD) [[, JdA.
3) suppose that A; and A, are non-overlapping, then
(FD) [f, o, TdA = (FD) | fAlff‘dA +(FD) ff,, TdA.

Proof. The proof of Theorem 2.1.12 is straightforward so it is omitted.
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Now we define the new class, namely, coordinated convex FIVF by means of FOR.
Definition 2.1.13. The FIVF 7:A- F, is said to be coordinated convex FIVF on A if

T(a+ (1 —-1)b,su+(1—-s))
< tsT(a,w)Ft(1 = s)T(a,v)F(1 — 1)sT (b,u)F(1 —1)(1 — )T (b,v) (33)

for all (a,b),(u,v) €A, and t,s € [0,1], where T(x) > 0. If inequality (Eq 33) is reversed,
then T is called coordinate concave FIVF on A.

The proof of Lemma 2.1.14 is straightforward will be omitted here.

Lemma 2.1.14. Let 7:A— F, be an coordinated FIVF on A. Then, T is coordinated convex FIVF
on A, if and only if there exist two coordinated convex FIVFs T,:[u,v] = F,, T,(w) = T(x,w)
and 7,,:[a,b] » F,, T,,(w) = T (u, w).

Proof. From the definition of coordinated FIVF, it can be easily proved.

From Lemma 2.1.14, we can easily note each convex FIVF is coordinated convex FIVF. But the
converse is not true, see Example 2.1.16.

Theorem 2.1.15. Let T7:A— F, be a FIVF on A. Then, from 6-levels, we get the collection of
IVFs Tp:A— R} c R, are given by

Ty (x,w) = [T.((x, w), 0),T*((x, w),0)], (34)

for all (x,w) € A and forall 8 € [0,1]. Then, T is coordinated convex FIVF on A, if and only if,
forall 6 € [0,1], 7;((94, w), 6) and T *((x, ), 9) are coordinated convex function.

Proof. Assume that for each 6 € [0,1], 7.(x,0) and T*(x,6) are coordinated convex on A. Then,
from Eq (33), for all (a,b),(u,v) € A,7 and s € [0,1] we have

ﬂ((ra + (1 —-1)b,su+ (1 —s)v), 6)

< ‘L'STk((a, u), 0) +t(1— s)f]fk((a, V), 0) +s(1 - t)f];((a, u), 0) +(1-91- s)i?;((a, V), 0),
and

T*((Ta +(1—-17)b,su+(1- s)v),@)
< TSfE((a, u), 9) +t(1- S)T*((a, V), 6) +s(1- t)T*((a, u), 0) +(1-7(1- S)T*((a, V), 9),

Then, by Eqs (34), (6) and (7), we obtain
%((m +(1—-17)b,su+(1- s)v))

= [Z((Ta + (1 —17)b,su+ (1—-s)v), 9),7"*((Ta +(1—-17)b,su+(1- s)v),@)]
<, 15[7.((a,w),0), 7 ((@,u),0)] + t(1 = 5) [T.((@,),6),T+((a, v),6) |

+s(1 - D[ ((aw),0),7* ((aw),8)] + 1 — 1)1 - )|[7.((av),0),7*((a,v),0)]
That is
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T(a+ (1 —-1)b,su+(1—-s)v)
<tsT(a,WFr(1 - )T (a,v)F(1 —1)sT(b,w)F(1 —1)(1 —5)T(b,v),

hence, T is coordinated convex FIVF on A .
Conversely, let T be coordinated convex FIVF on A. Then, for all (a,b),(u,v) €A,7 and s €
[0,1], we have

T(a+ (1 —-1)b,su+(1—-s)v)
<tsT(a,W)Fr(1 - )T (a,V)F(1 —1)sT (b,w)F(1 —1)(1 —5)T(b,v).

Therefore, again from Eq (34), for each 8 € [0, 1], we have
Tg((ra +(1—-17)b,su+(1-— s)v))
= [Tk((ra + (1 —=1)b,su+ (1—s)v), 0),7’*((Ta + (1 —1)b,su+ (1—s)v), 9)]

Again, Egs (12) and (14), we obtain
sTp(a,u) + 1(1 — s)Tp(a,v) + (1 —1)sTy(b,u) + (1 —1)(1 — s)Tp(b,v)
= Ts[ﬂl((a, u), 9),17"*((a, u), 9)] +t(1 - s)[ﬂ}((a, v),@),T*((a, v),B)]
+s(1 - D[ ((aw),0),7* ((aw),8)] + 1 — 1)1 - )|[7.((a,v),0),7*((a,v),0)],
for all x,w € A and 7 € [0,1]. Then, by coordinated convexity of 7, we have for all x,w € A
and 7 € [0,1] such that
Tk((ra + (1 —1)b,su+ (1—s)v), 6)
<tsT.(a,u) + (1 = 8)T.(a,v) + (1 —1)sT.(b,u) + (1 —1)(1 — s)T.(b,v),

and

T*((Ta + (1 —1)b,su+ (1—s)v), 9)
<tsT*(aq,u) +1T(1 —s)T*(a,v) + A —1D)sT*(b,u) + (1 —1)(1 = s)T*(b,v),

for each 6 € [0,1]. Hence, the result follows.
Example 2.1.16. We consider the FIVFs 7:[0,1] x [0,1] - F, defined by,

= o € [0, xw]
xw

xw

0 otherwise

Then, for each 6 € [0,1], we have Ty(x) = [0xw, (2 — 8)xw]. Since end point functions
ﬂ((x, ), 9), T *((x, ), 8) are coordinate concave functions for each 8 € [0,1]. Hence T (x,w)

is coordinate concave FIVF.
From Example 2.1.16, it can be easily seen that each coordinated convex FIVF is not a convex FIVF.
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Theorem 2.1.17. Let A be a coordinated convex set, and let 7:A— F, be a FIVF. Then, from
-levels, we obtain the collection of IVFs Ty: A—» Rf c R, are given by

To(x, w) = [7;((96, w),G),T*((x, w),@)] (35)

for all (x,w) € A and for all 8 € [0,1]. Then, T is coordinated convex FIVF on A, if and only if,
forall 6 € [0,1], Z((x, w), 9) and T *((x, ), 9) are coordinated convex function.

Proof. The demonstration of proof of Theorem 2.1.17 is similar to the demonstration proof of
Theorem 2.1.15.
Theorem 2.1.18. We consider the FIVFs T:[0,1] x [0,1] = F, defined by,
(o2
2(6-e*)(6-e®)’

T(x)(0) = 4(6—e*)(6-e®)-0 v o v e
2(6—e*)(6—-e®) ' o€ (2(6—e*)(6—e®),4(6 —e*)(6 —e®)]

0, otherwise

€ [0,2(6 —e*)(6 —e®)]

Then, for each 6 € [0,1], we have Tp(x) = [20(6 —e*)(6 —e®), (4 —20)(6 —e*)(6 —e®) ].
Since end point functions Tk((x, a)),@), T *((x, W), 9) are coordinate concave functions for each
0 € [0,1]. Hence T (x,w) is coordinate concave FIVF.

In the next results, to avoid confusion, we will not include the symbols (R), (IR), (FR), (ID), and
(FD) before the integral sign.

3. Fuzzy-interval Hermite-Hadamard inequalities

In this section, we propose HH- and HH-Fejér inequalities for coordinated convex FIVFs, and
verify with the help of some nontrivial example.

Theorem 3.1. Let T:A— F, be a coordinate convex FIVF on A. Then, from 6-levels, we get the
collection of IVFs Ty:A— R are given by Tp(x,w) = [Tk((x, w),@),f]"*((x, ), 9)] for all
(x,w) € A and for all 6 € [0, 1]. Then, following inequality holds:

7)<l T () T T (57 0) do

< 5o Ju i T w)dwdx

> 4(b-a) [f:T(x' u) dx+ f:ff(x, v)dx]

+

4(1/ W U T(a, w)dw ¥ f T (b, w)dw]

T(aWFT (b,w)FT (av)FT(b,v)
4

A

(36)

If T(x) concave FIVF then,
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755 7 T () T T (57 0) do

b (v &
Z oo Ja Ju T w)dwdz

=

4(b

T(aw)FT (bW FT (av)FT (b,v)

7 " (37)
Proof. Let T:[a, b] — F, be a coordinated convex FIVF. Then, by hypothesis, we have
4T (“”’ ”Z) F(ra+ (1 —1)b,u+ (1 - DOVFF((1 —Da + b, (1 — Du + ).
By using Theorem 3.9, for every 8 € [0, 1], we have
b
AT, ((a; L, 9) < 7.((a + (1 - Db, ru+ (1 — 1)), 6)
47" <(a+b u+v) 9) < T*((Ta +(1—-17)b,tu+ (1 -1)V), 0)
2
By using Lemma 2.1.14, we have
27, ((x, uzi) , 9) < Ik((x, uw+ (1 —1)v), 9) + Tk((x, A -7u+1tv), 9)
(38)
27" ((2,2Y),0) < 7*(Geru + (L= D), 0) + 7*(Gx, (1 = Du + ), 6)
and
27, ((a+b ),9) < Tk((ra +(1—-1)b,w), 9) + 7. (((1 —T)a + th, a)), 9)
(39)

27" ((%2,0),60) < 7 ((ra + (1= Db, 0),0) + 7" (((1 - Da + tb, ),0)
From Eqs (38) and (39), we have
2[7.((#22),0), 7" ((=22).0)] = [7:(Geru + (1 = ©v),0),7 (G 7 +
A=), )]+ [7((x, A —Du+1),0), 7 ((x,(1 —Du + 1v),0)]

and

2 [7; ((%b,a)),e) T ((azi,w)ﬁ)] < [7(ta+ (1 = 1)b,w),0),7*((za + (1 — 1)b,w), )]

+[i7;((ra + (1 -1)b,w), 9),7"*((Ta + (1 -1)b,w), 9)]
It follows that

Tg(x u—w) < e, tu+ (A —1)v) + Ty, 1 —T)u + 10) (40)
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and

a+b

7*9(— a)) <, Ty(ta+ (1 — )b, w) + Ty(ra + (1 — T)b, w) (41)

Since Ty(x,.) and Ty(.,w), both are coordinated convex-IVFs, then from inequality (Eq 5), for
every 6 € [0, 1], inequality (Eqs 40 and 41) we have

u+v

To(xu)+ To(x,v)

2

(42)

and

T(a,w)+ Ty(b,w)

b
Ty (%7 0) S 55 fa Tor w)dz <, (43)

Dividing double inequality (Eq 42) by (b — a), and integrating with respect to x over [a,b], we
have

1 b u+v
EfaTa( )dx —Im f f Ty (x, w)dwdx

b b
= Z0b-a) fa Tp(x, u)dx + fa Ty (x, v)dx] (44)

Similarly, dividing double inequality (Eq 43) by (v —u), and integrating with respect to x over

[u,v], we have

+b 1 b
_f To (a )dw S s y—. fa f;Tg(x,w)dwdx

ST u)[f Tp(a, w)dw + ff]]g(b w)dw] (45)

By adding Eqs (44) and (45), we have
1[ 1 b u+v a+b
2 loma o T (0 557) de 2 176 (57 0) do)

Slm f f Tg(x w)dwdx

[f: Top(x,u)dx + f:fﬁg(x, v)dx] +

<! 70-w [f Ty(a, w)dw + f Ty (b, a))da)] (46)

4(1/
Since T 1is FIVF, then inequality (Eq 46), we have

T (e ) ¥ LT (5 0) do] < gy i LT w)dwds

[f T (x,u)dx F f T (x, v)dx] F [f T(a,w)dw F f T (b, w)dw] (47)

4(b a) (v u)

From the left side of inequality (Eq 5), for each 8 € [0, 1], we have
+b u+ +
T (55 it 1% () d @)

T (222 <= 7% (52 0) do (49)

2
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Taking addition of inequality (Eq 48) with inequality (Eq 49), we have

(522 S 2 () w0 (2,0 ]

Since T is a FIVF, then it follows that

T2 L 07 (0 dx ¥ [1T (22, 0)do| (50)

2 2

Now from right side of inequality (Eq 5), for every 6 € [0, 1], we have

1 b (@) o)
—1a a 0 V X ((L’I') J (b,v)

b f :7 (-X’ )d Sl% ( )
1 v (av) )

V—ufuje(a;w)dw <192—9au )

v-u-u 0 ) I 25

By adding inequalities (Eqs 51-54), we have
[f: Ty (2, u) dx + f: Ty (x, v)dx] +

[f Ty(a, w)dw + fng(b w)dw]

4(b—-a) 4(v u)

Tp(a,u)+Ty(b,u)+Tg(a,v)+Tg(b,v)
4

=

Since T is a FIVF, then it follows that

oo ¥ [, T, w)do]
< T(aW)FT (bW FT (av)FT (b,v) (55)
4

By combining inequalities Eqs (47), (50) and (55), we get the desired result.
Example 3.2. We consider the FIVFs 7:[0,1] x [0,1] = F, defined by,

7 x w

(z(6+ex)(6+ew)’ o €[0,2(6+e*)(6+e?)]
T(:XJ)(O‘) - 4(6+e*)(6+e®)—0o x ) x )

26rer)orew) 7 € (2(6 +e*)(6 +e),4(6 +e*)(6 + e)]
0, otherwise

Then, for each 6 € [0,1], we have Tp(x) = [20(6 +e*)(6 +e®),(4 +20)(6 +e*)(6 +e%) ].
Since end point functions Ik((x, w),@), T *((x, w), 6) are coordinate concave functions for each

6 € [0,1]. Hence T (x,w) is coordinate concave FIVF.

a+b u+v 1,2
% () = (54 e2)

22 +6) 6+ e%)z ]
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—nf ﬂ"g(xu—w)d +—f Tg(ﬂ w)dw] [49(6+e%)(5+e),4(2+9)(6+e§)(5+e)]

m 7Y Ty (x, w)dwdx = [20(5 + €)%,2(2 + 6)(5 + €)? |

4(b a) [

=[60(5+e)(13+¢e),2+0)(5+e)(13+¢e)]

Tp(a,u)+Tp(b,u)+Tp(a,v)+Tp(bv) _ [9 (6+e)(20+e)+49

" ; ,2(2+6)

(6+e)(20+e)+49]
2

That is
12

[29 (s+ ei)2 22+6)(6+ez) | < [40(6+ e%) (5+e),42+06)(6+ e%) S+e) |

<;[2005+e)%,202+6)5+e)? 1<, [6(5+e)(13+¢e),(2+0)(5+e)(13+e)]

<, [9 (6+e)(20+e)+49

’ 2(2 n 9) (6+e)(20+e)+49].

Hence, Theorem 3.1 has been verified.

We now give HH-Fejér inequality for coordinated convex FIVFs by means of FOR in the following
result.

Theorem 3.3. Let T:A= [a,b] X [u,v] » F, be a coordinated convex FIVF with a < b and
u < v. Then, from B-levels, we get the collection of IVFs Jy: A— R} are given by Ty(x, w) =

[I];((x, a)),H),IT*((x, w),H)] for all (x,w) € A and for all 8 € [0,1]. Let 2:[a,b] » R with
Q) 20, [ Q()dx>0 and W:u,v] >R with W(w) 20, [ W(w)dw >0, be two

symmetric functions with respect to azi and uzi respectively. Then, following inequality holds:

i_,(olsz’u;-v) < 1If — fa T( u“’)_()(x)dx"‘—f Wrie ffg”‘(a;rb )W(w)dwl
1

<
S Po@adr [Pww)dw

<m[f T (%, u)dx+f T (x, v)dx]

[P [ T (x, )0 ()W () dwds

~

W[f T(a w)dw+f T(b a))da)]

T(aWFT (b,w)FT (av)F¥T (b,v)

< 4

(56)

Proof. Since T both is a coordinated convex FIVF on A, it follows that functions, then by Lemma
2.1.14, there exist

T [uv] > Fy, T,(w) =T (x,w), T,:[a,b] > F,, T,(x) =T (x,w).
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Thus from inequality (Eq 27), for each 6 € [0,1], we have

u+v 1 Tp,, W)+, (v)
To, () < Tt b T (@)W (@)do <, 222

and

The above inequalities can be written as

T (x,u)+Tg(x,v)
2

To (#°57) S rmiran e To e )W (@)do <, (57)

and

Tp(a,w)+Tg(b,w)
2

T (500) S ot o T 0@ <, (58)

Multiplying Eq (57) by £2(x) and then integrating the resultant with respect to x over [a, b], we have

121 Ty (e, )2 ()W () dwdz <, [2 2ETED g () az. (59)

b
fa Ty (x —).Q(x)dx < —f s da .

Now, multiplying Eq (58) by W(w) and then integrating the resultant with respect to w over
[u, v], we have

1% (57 0) Wwdo <, 71 Ty (2, 0) () W(w)dzdw <, [} 2O 9 (40)dw (60)

N rz( Ydx
Since [} Q(x)dx > 0 and [, W(w)dw > 0, then dividing Egs (59) and (60) by [ 2(x)dx > 0

and f;W(w)dw > 0, respectively, we get

f Ty (x ( ).Q(x)dx + f:Tg (ﬂ w)W(a))dwl

fW( Ydw

1
fn( Ydx

1 b rv
=1 P ptdx [P Ww)do Jo Ju To(x, 0)2()W (w)dwdr.

1 b Ty (x,u)+Ty(x,v) 1 b Ty(a,w)+Tg(b,w)
<
- lffn(x)dx fa 4 2(x)dx + Jp W(w)dw fa 4 W(w)dwl (61)

Now, from the left part of double inequalities (Eqs 57 and 58), we obtain

a+b u+v 1 v a+b
% ( T) = f;w(w)dw fu Te (_ w) W(w)dw (62)
and
a+b u+v 1 b u+v
7 (55 < Tatasda 7o (#257) 2()dx (63)
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Summing the inequalities (Eqs 62 and 63), we get

7 (42, 55%) 3 ks 00 (357 ) 4

1
2 2 21 [, 2x)ax

L7 (%2 o) W(a))dwl (64)

fW( Ydw

Similarly, from the right part of Eqs (57) and (58), we can obtain

Wf Tp(a, ) W(w)dw < w (65)

Tarn b To (b, )W (w)do < ) (66)
and

5 prEY [P Ty, u)0(x)dx <, 2@ o0 (67)

I prEy Jo To e <, R0 (65)

Adding Eqgs (65)—(68) and dividing by 4, we get

f Ty (a, ©)W(w)dw +f Ty (b, 0)W(w)dw]| + f Tp (2, W) (x)dx +

4f W(w)dw[ f !2( )dx [

To(a,u)+Ty(av)+Ty(b,u)+Ty(b,v)
4

[2 Ty (x, 0@ dx] <, (69)

Combing inequalities Eqs (61), (64) and (69), we obtain

0 (42.22) e 0 (52 s+

2 2 Jg 2(x)dx

f; Ty (asz, a)) W(a))dwl

1 b rv
Y f‘fﬂ(x)dxbe(w)dw fa fu T(x, w)2(x)W(w)dwdx.

<1 Tt L To(@ @W@)de + [/ 75(b, 0) W (@)do]

+m[f Ty (6, (%) dz + [ Ty (2, v)Q(x) dz]

Tp(a,w)+Ty(a,v) n T (b,u)+Ty(b,v) n Tp(a,u)+Ty(bu) n To(a,v)+Tg(b,v)
2 2 2 2

</

That is

~ (fa+b u+v 1 1 b = u+v b s (a+b
(%5 <5L;Q(x)dx .7 (= )”(x)d“fwT 7 (5 )W(“’)d“’l

<57
J, e@dx [ W(w)dw

<m[f T (%, u)dx+f T (x, v)dx]

[P [ T (2, 0)0()W () dwds
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~

m[f T(a a))dw+f T(b w)dw]

T(aWFT (b,w)FT (av)F¥T (b,v)
4

}A

Hence, this concludes the proof.

We now obtain some HH-inequalities for the product of coordinated convex FIVFs. These
inequalities are refinements of some known inequalities, see [11,13].

Theorem 3.4. Let 7,J : A= [a,b] X [u,v] € R? > F, be two coordinated convex FIVFs on A,
whose O-levels Ty, Jg:[a, b] X [u,v] » R} are defined by Tp(x, w) = [I];((x, w), 9),7"*((x, a)),@)]
and Jo(x, w) = [J*((x, a)),B),J*((x, a)),H)] for all (x,w) €A and for all 6 € [0,1]. Then,
following inequality holds:

—(b P f f T(x, ) X J(x, w)dwdx < % (a,b,u,v)-T—%JV[(a,b,u,v)q‘-%ﬁ(a,b,u,v)

where
P(a,b,u,v) =T(a,w) XJ(auw) F T(a,v) X J(a,v)FT(b,u) XJb,u) F T(b,v)XJ(b,v)

M(a,b,u,v) =7 (a, u)xJ(a V) F T(a,v) XJ(a,WFT(b,uw) XJb,v) F T(b,v) XJ(b,u)
FT(a,uw)XJb,u) F Tb,v) XJ(a,)FT(bu) XJla,u) F T(a,v)XJb,v)

N(a,bu,v) =T (a,u) XJb,v) F T w XJla,v)F Tb,v)XJ(a,w)FT(b,u) X J(a,v)
and for each 6 € [0,1], P(a,b,u,v), M(a,b,u,v) and N (a,b,u,v) are defined as follows:

Py(a,b,u,v) = [P.((a,b,u,v),0),P*((a,b,u,v),0)],
My(a,b,u,v) = [M*((a, b,u, v),@),]\/[*((a, b,u, v),H)],

Ny(a,b,u,v) = [M.((a b,u,v),0),N*((a, b,uv),0).

Proof. Let 7 and J both are coordinated convex FIVFs on [a,b] X [u, v]. Then
T(ta+ (1- T)b,su~+ (1—s)v)
<157 (a,WFt(1 — )T (a,v)F(1 —1)sT(b,w)F(1 —1)(1 = 5)T(b,v)
and
Jra+ (1 - T)b,su~+ (1->s)v)
< tsJ(a,uw)F1(1 —5)J(a,V)FA —1)sJ(b,w)F(1 —1)(1 = s)J(b, V).
Since 7 and J both are coordinated convex FIVFs, then by Lemma 2.1.14, there exist
T lwvl > Fo, T(0) =T(x,0),  Ju:lwvl = Fo, Julw) = J(x w),
and
To:la,b] > Fo, T(x) = T(x,w),  Ju:la bl > Fo, Ju®) = J(x, ).
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Since T, J,, T, and J, are FIVFs, then by inequality (Eq 25), we have

= [} T (@) X Ju(@)dx <5 [7,(@) X Ju(@) + Ty(B) X Ju )] +£ [T, (@) X
Jo®) + T(b) X Jy(@)]
and

— [0 T(@) X Je(@)dow < S [T) x J.) + T(v) X TW)] + 2 [T (w) %

JM+ T.(w) xJ, )]
For each 0 € [0, 1], we have

L [V Ty, (%) X Jo, (¥)dx <, 2 [Ty, (@) X Jg (@) + Ty, (b) X Jg, (B)] +

o=

75, (@) X Jg, (D) + Ty, (b) X Jg ()]
and

= [!Ty, (@) x Jo,(@)dow <, 5[Tp, () X Jo, (@) + Ty, () X Jo, ()] +

o=

[75,, (W) X Jo, (V) + Ty, (W) X Jp, (V)]
The above inequalities can be written as
L [Ty, 0) X Jo (%, 0)dx <, 3 [Ty(a,0) X Jg(a,0) + Tp(b, ) x Jg(b, )]

+

o |-

(7o (@, @) X Jo (b, @) + Ty(b,w) X Jp(a, )] (70)
and
— [V Tp(x, ) X Jo (&, @)dw <; 5 [Tp(x,w) X Jo(x,0) + Ty(,v) X Jp (V)]

+= [Ty (1) X Jp (o, 0) + Ty(,v) X Jo (2, )] (71)

Firstly we solve inequality (Eq 70), taking integration on the both sides of inequality with respect to
w over interval [u,v] and dividing both sides by v — u, we have

S
(b—a)(v-u)

1
3(v—u)

1) T (x, ) x Jo(x, 0)dwdx < ——— [ [Ty(a,0) X Jo(a,0) + Ty(b,w) X

1
6(v—u)

Jo(b, w)]dw + [ [Ty (@, ) X Jo(b, ) + Tp(b,w) X Jo(a, )] dw (72)

Now again by inequality (Eq 25), for each 6 € [0, 1], we have

1
(v-u)

[} To(a, ) x Jo(a, w)dw <, 5 J[To(a,u) X Jo(a,w) + Ty(a,v) x Jo(a,v)]ldw
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+: [ [To(au) x Jp@v) + Ty(aw) x Jpla,V)]dw  (73)

[ T5(b, ) X Jp (b, @)dw <, 5 [} [T5(b,w) X Jg(b,uw) + Ty(b,v) x J(b,V)]dw

+2 [ 1Tp(b,w) X Jg(b,v) + Ty(b,u) x Jo(a,V)]dw  (74)

J;, To(a, 0) X Jg(b,w) dw < 7 f[Te(a u) X Jo(b,u) + Tp(a,v) X Jp(b,v)]dw

(v- u)

+ % L To(a,u) X Jo(b,v) + Ty(a,v) X Jo(b,w)ldew  (75)

o b To (b, @) X Jo(a,0) do < 5 [ 1T (b, w) X Jo(a,w) + Tp(b,v) X Jo(a,v)]dew

+2 [T (b, w) X Jo(a,v) + Ty(b,v) X Jp(aw)]dw  (76)

From Egs (73)—(76), inequality (Eq 72) we have

1

b 1 1
Y /. f;Tg(x, w) X Jo (%, w)dwdzx <; 5 Pa(a,b,u,v) + - Mp(a,b,u,v) +

1
e Ne(a,b,u,v)
That is

1= ~ 1 ~ ~ 1 ~
(b— a)(v w) f f T(x a)) XJ(JC w)dwdx EP(CL,b,u,V)-I—EM(a,b,u,v)-l—gj\/'(a’b’u’v)

Hence, this concludes the proof of theorem.

Theorem 3.5. Let 7, : A= [a,b] X [u,v] € R? > F, be two convex FIVFs. Then, from 6-levels,
we get the collection of IVFs Tp, Jo:Ac R? > Rf are given by Tp(x) =
[I];((x, a)),H),IT*((x, w),H)] and Jo(x) = [J*((x, w),@),J*((x, w),H)] for all (x,w) € A and
for all @ € [0, 1]. Then, following inequality holds:

P () <

2 2

b a)—(v ” f f T(x, w) X J(x, w)dwdx F —P(abuv)+ M(abuv)+ N(abuv)

where P(a,b,u,v), M (a,b,u,v) and N(a,b,u,v) are given in Theorem 3.4.
Proof. Since T,J : A— F, be two convex FIVFs, then from inequality (Eq 26) and for each 6 €
[0,1], we have

2 (522 0) o (S22120) =1 2 (07 (52) o (s 2)

() x (022 ¢ 5 (022 %30 (022)
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P2l (02) 0 (529 + 9 (62) o (02)] o
and
275 (50 5) ¥ 3s ((7055) <1 K (557 0) x 00 (57 0) do

a+b

17 (57 u) o (52 u) + 7 (52.0) %30 (57.v)]

() <o ()4 7 (Z0) (2] oo

Summing the inequalities (Eqs 77 and 78), then taking the multiplication of the resultant one by 2,
we obtain

a+b u+v a+b u+v 2 b u+v u+v 2 v a+b
87) (57, °57) x 3o (52 57) <1 Jo %o (2557) % 9o (2.7°57) dx + 757 1150 (57 0) x

o (2. ) e () (022 2 (022 e (022 2 (2.

2 2’

a+b

3o (57 u) + 270 (57,) % 30 (529)] 527 (0.757) x 3 (0.757) + 27 (b57)

2
o (052 22 (220) 0 (£2.0) 25 (S2.0) 3, (2] 9

Now, with the help of integral inequality (Eq 26) for each integral on the right-hand side of Eq (79),
we have

1 (022) 500 022)
=i ﬁ J,) Ty (a, w) X Jg(a, w)dw +%[f]}9(a, w) X Jola,u) + Tp(a,v) x Je(a,v)]

+ [%(a, U,) X (79(0" V) + ng(Cl, V) X Je(a; U,)] (80)

[SSH T

27y (b:257) % 0 (5.25)
SI ﬁ f;%(brw)XJe(b'w)dw +%[7'9(bru)x(.79(b!u)+ :Tg(b,l/)x(jg(b,l/)]
+3 [T (b,w) X Jp(b,v) + Tp(b,v) X Jo(b,uw)] @81)

2%y (@.57) % 9o (b.°5)
< = [ T5(a,0) x Jo(b,w)dw +=[Tp(a,u) x Jg(b,u) + Ty(a,v) x Jo(b,v)]

+

[OSI EY

[ﬂb(a, U,) X Je(b»V) + %(a, V) X J@(b' U,)] (82)
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o7 (02 x 30 (022)

<

1 [ To(b,w) X Jela,@)dw +=2[Ty(b,w) X Jo(a,u) + Ty(b,v) X Jp(a,v)]

+

[SSI T

[ng(b,U,) X Je(a;V) + %(b, V) X (79(0" U,)] (83)

= [ Ty(xw) x Jo(x,wdx +=[Ty(a,u) X Jp(a,w) + Tp(b,u) X Jo (b, w)]
#5155 ) <30 (57 ) + 9 (557 ) % 36 (574

T,
o7 (42.4) 0 (2.1

2 )

(84)

<150z Jo T ) x Jo@dx +[Ty(a,v) X Jo(a,v) + Ty(b,v) x Jo(b,V)]
A (22 ) % 0 (B2 7 (E20) w0 (420)

o7 (42, %30 (2.)

2 )

(85)

< = f To(ew) X Jo(x,v)dx +<[Tp(a,u) X Jo(a,v) + Tp(b,u) X Jo(b,v)]
A (2 0) 30 (S20) + 75 (22,0) 30 (22.0)

— (86)
o1 (2.) 3022,

= ﬁ f:TH(x, V) X Jo(x,u)dx + % [To(a,v) X Jp(a,u) + T(b,v) X Jo(b,u)]

2 ()0 (S2.0) + 7 (220) w0 (522,
From Egs (80)—(87), we have

o (222 22) x4 (22,29

2’ 2

87)

i B 5 () an w0 (E20) 00 (20)
1

+ om0 [ To(a, ) x Jo(a, w)dw + - (vl_u) [ To (b, w) X Jo (b, w)dw

1

b 1 b
t st-a Jo To(x,u) X Jo (2, w)dx + o-a) J, To(x,v) X Jo(x,v)dx
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f Ty(a,w) X Jo(b,w)dw + f Ty(b, w) X Jg(a,w)dw

3(1/ u) Ju 3(V u) vu

+

f Ty (2, 1) X Jo(x,v)dx +

f;TH(x’ V) X Jo(x,u)dx

3(b a) 3 (b

+ 1—18P9(a, b,u,v) + g]\/{g(a, b,u,v) + SNQ(Q, b,u,v) (88)

Now, again with the help of integral inequality (Eq 26) for first two integrals on the right-hand side
of Eq (88), we have the following relation

2 b
re Ju T (2 57) % 90 (2757) d
S,m f f Ty (2, w) X Jg(x, w)dwdx

1
3(b—a)

L2170 (1) X Jo (1) + Ty, v) X Jo (o, v)]dae

1
6(b—a)-a

L2170 (w, %) X Jg(x,v) + Tp(x,v) x Jo(x,w)] dx, (89)

— f f]"g(ﬂ (U)X‘jg(ﬂ a))dx

S,m f f Ty (x, w) X Jg(x, w)dwdx

[ [To(a, @) X Jo(a, ) + Ty(b, w) X Jo(b, w)]dw

3(1/ u)Ju

L [Ty(a, ) x Jg(b, ) + To(b,w) X Jo(a, )] dw (90)

6(v u)’u
From Egs (89) and (90), we have

b b
87-'9 (a+ u+v) Je (a+ u+V) < m f f Tg(x a)) X Jg(x w)da)dx +

1
3(b—-a)“’a

LT () X Jo(x,u) + Ty, v) x Jo(x,v)]dx + S 175 (1) X Jg (x,v) +

6(b a)

"7y (a, @) x

To(x,v) X Jg(x,u)] dx + 3( 1—u) u

b rv
(b- a)( fa u

J@(ar (l)) + :Tg(b, (l)) X J@(b! (U)]

Jo(a,w)]dw + [V Ty(a,w) x Jo(a, w)dw + [V Ty(b, w) X Jg(b,w)dw +

6(1/ u) Ju 6(v u) Ju

f;TH(x’ V) X Jo(x,v)dx

[ To (x,u) X Jo (2, w)dx +

6(b a) 6(b

Jo(b, w)dw Ry f Ty (b, w) X Jg(a,w)dw +

3(b f Ty (2, 1) X Jo(x,v)dx +

3(b > f To(x,v) X Jg(x,u)dx + —Pg(a b,u,v) + = Mg(a b,u,v) + = ]\fg(a b,u,v)
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It follows that

o (52) 13 (522)

L [To (e, w) X Jo(ae,w) + Ty, v) X Jo(x,v)]da

2

+ 3(b—-a)“’a

s [T6 (e ) X Jo (V) + Ty (i, v) X Jp (0] de

—— ["[Ta(a, @) X Jg(a,0) + Ty(b, ) X Jo(b, w)]dw

3(1/ u) ‘u

+362 u)f [To(a, w) X Jg(b,w) + Ty(b,w) X Jg(a,w)] dw

+ EPg(abuv)+ J\/[g(abuv)+ ]\fg(abuv) 91)

Now, using integral inequality (Eq 25) for integrals on the right-hand side of Eq (91), we have the
following relation

ﬁ ffffe(x, u) X Jo(x,w)dx <, é[Te(a, u) X Jo(a,u) + Ty(b,u) X Jg(b,u)] +§[Te(a, u) X
J@(b' u) + :Tg(b, u) X Jg(a,U)] (92)

P f To(x,v) X Jo(x,v)dx < 3 [Te(a v) X Jg(a,v) + Tp(b,v) X Jo(b,v)] + - [Tg(a,v) X
Je(b»V) + %(b,V) X (79(0" V)] (93)

— [, Ty, w) x Jo(x,v)dx <; 5 [To(a,u) X Jo(@,v) + Tp(b,u) X Jo(b,v)] +< [Ty(a,u) x
Jg(b,V) + %(b' u) X (79(610 V)] (94)

a f To(x,v) X Jo(x,Wdx <; - [Te(a v) X Jo(a,u) + To(b,v) X Jo(b,w)] + - [%(a V) X
Je(b»u) + %(b, V) X (79(0" U,)] (95)

— [ Tp(a, @) X Jp(a,w)dw <; < [Tp(a,1) X Jg(a,u) + Tp(a,v) X Jo(a, )] + = [Tp(a,u) X
Jo(a,v) + TJp(a,v) X Jg(a,u)] (96)

— [ Ty(b,w) X Jo(b,w)dw <, - [Te(b w) X Jo(b,u) + To(b,v) X Jo(b,v)] + - [Vb(b.u) X
Je(b»V) + %(b,V) X Jg(b, U,)] (97)

— [ Tp(a, @) X Jo(b, w)dw <; > [Ty(a,u) X Jo(b,u) + Tp(a,v) X Jo(b,v)] + £ [Ty(a,u) X
Jo(b,v) + To(a,v) X Jg(b, u)] (98)
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— [ Ty(b,w) X Jo(a,w)dw < - [Te(b w) X Jo(a,u) + Tp(b,v) X Jo(a,v)] + - [Vb(b,u) X
Je(a; V) + %(b, V) X (79(0" U,)] (99)

From Egs (92)—(99), inequality (Eq 91) we have

4 %(w ﬂ) <_70 (a+b u+v

> )Slm f f To (2, w) X Jo(x, w)dwdx +

%Pg(a, b,u,v) + 3—76Mg(a, b,u,v) + %Ng(a, b,u,v)
That 1s

P R () <

b= a)—(v ” f f T(x,0) X J(x,w)dwdx F —P(abuv)+ M(abuv)+ N(abuv)

4. Conclusions and future plan

In this study, firstly we introduced the notion of double integrals where the integrand is FIVFs.
Secondly, we have presented the new class of convex FIVFs is known as coordinated convex FIVFs
by means of FOR. Then, we established a strong relationship between HH-inequalities and
coordinated convex FIVFs through FOR and fuzzy double integral. In future, we shall try to explore
this concept for generalized coordinated FIVF, and with the help of fuzzy fractional integral
operators; we shall derive some new versions of fuzzy-interval HH-type inequalities by means of
FOR. We hope that this concept will be helpful for other authors to contribute their roles in different
fields of sciences.
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