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Abstract: In this study, we introduce and study new fuzzy-interval integral is known as 
fuzzy-interval double integral, where the integrand is fuzzy-interval-valued functions (FIVFs). Also, 
some fundamental properties are also investigated. Moreover, we present a new class of convex 
fuzzy-interval-valued functions is known as coordinated convex fuzzy-interval-valued functions 
(coordinated convex FIVFs) through fuzzy order relation (FOR). The FOR ≼  and fuzzy inclusion 
relation ⊇  are two different concepts. With the help of fuzzy-interval double integral and FOR, 
we have proved that coordinated convex fuzzy-IVF establish a strong relationship between 
Hermite-Hadamard (𝐻𝐻-) and Hermite-Hadamard-Fejér (𝐻𝐻-Fejér) inequalities. With the support of 
this relation, we also derive some related 𝐻𝐻-inequalities for the product of coordinated convex 
FIVFs. Some special cases are also discussed. Useful examples that verify the applicability of the 
theory developed in this study are presented. The concepts and techniques of this paper may be a 
starting point for further research in this area. 
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1. Introduction 

It is a familiar fact that integral inequalities have many applications in different mathematical 
segments as in the theory of differential and integral equation control theory, statistic, among others. 
Over the past two decades, integral inequalities have attracted good numbers of research to devote 
themselves because of the importance in different fields. Therefore, several generalizations of 
classical integral inequalities were obtained in the real, interval and fuzzy spaces.  In all of those, 
𝐻𝐻-inequalities establish strong relationship between different classes of convex functions and have 
an important place in many areas of mathematics.  This double inequality, introduced by Hermite [1] 
and Hadamard [2], express that if convex function 𝒯: 𝐼 → ℝ on an interval  𝐼 𝑢, 𝜈  satisfies the 
following inequality: 

𝒯  𝒯 𝜔 𝑑𝜔 𝒯   𝒯
                      (1) 

for all 𝑢, 𝜈 ∈ 𝐼. If 𝒯 is concave, then double inequality (Eq 1) is reversed. A one step forward, 
Sarikaya et al. provided the fractional version of inequality (Eq 1) in [3]. Moreover, midpoint and 
trapezoidal inequalities [4,5], which are commonly used in special means and measures errors, are 
the most well-known results associated with these inequalities. But, the most familiar version of 
inequality (Eq 1) is known as Hermite-Hadamard-Fejér inequality, was presented by Fejér [6] as 
follows:  

Let 𝒯: 𝐼 → ℝ  be a convex function on an interval  𝐼 𝑢, 𝜈  with 𝑢  𝜈 , and let 𝛺: 𝐼

𝑢, 𝜈 ⊂ ℝ → ℝ, with 𝛺 0, be a integrable and symmetric function with respect to . Then, we 

have the following inequality: 

𝒯 𝛺 𝜔 𝑑𝜔  𝒯 𝜔 𝛺 𝜔 𝑑𝜔 𝒯  𝒯 𝛺 𝜔 𝑑𝜔           (2) 

If 𝒯 is concave, then double inequality (Eq 2) is reversed. If 𝛺 𝜔 1, then we obtain Eq (1) from 
Eq (2). Many inequalities can be obtained for convex functions using inequality (Eq 2) and the 
special symmetric function 𝛺 𝜔 . Similarly, many Scholars used fractional integrals to construct 
new versions of inequality (Eq 2), obtaining new bounds the left- and right-hand of sides of 
inequality (Eq 2), see [7–9]. What are more, some inequalities for the product of two coordinated 
convex functions was firstly discussed by Latif and Alomari in [10]. Besides, the most general 
versions of inequalities were given by Ozdemir et al. [11,12] through product of two coordinated 
s-convex functions and product of two coordinated h-convex functions. Through fractional integral, 
Budak and Sarikaya [13] established the strong relationship between new 𝐻𝐻-type inequality and the 
product of two coordinated convex functions.  

On the other hand, interval analysis is a well-known method for dealing interval uncertainty; it 
is an important material that is used in mathematical and computer models. Ramon E. Moore [14], 
dubbed the “father of Interval analysis” published the first book on the subject in 1966. Thereafter, 
many authors in the mathematical community have paid close attention to this area of research. In 
light of this, Sadowska [15] arrived at the following conclusion for an IVF: 

Let  𝒯: 𝑢, 𝜈 ⊂ ℝ → ℝ  be a convex interval-valued function (convex-IVF) given by 
𝒯 𝜔 𝒯∗ 𝜔 , 𝒯∗ 𝜔  for all 𝜔 ∈ 𝑢, 𝜈 , where 𝒯∗ 𝜔  and  𝒯∗ 𝜔  are convex and concave 
functions, respectively. If 𝒯 is interval Riemann integrable (in sort, 𝐼𝑅-integrable), then 
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𝒯 ⊇  𝐼𝑅 𝒯 𝜔 𝑑𝜔 ⊇  𝒯  𝒯
                 (3) 

Note that, the inclusion relation Eq (3) is reversed when 𝒯 is concave-IVF.  Following that, many 
scholars used inclusion relations and various integral operators to establish a close relationship 
between inequality and IVFs. Recently, Costa [16] obtained Jensen’s type inequality for fuzzy-IVF. 
Costa and Roman-Flores [17,18] introduced different types of inequalities for fuzzy-IVF and IVF, 
and discussed their properties. Roman-Flores et al. [19] derived Gronwall for IVFs. Moreover, 
Chalco-Cano et al. [20,21] presented Ostrowski-type inequalities for IVFs by using the generalized 
Hukuhara derivative and provided applications in numerical integration in IVF. Nikodem et al. [22], 
and Matkowski and Nikodem [23] presented the new versions of Jensen inequality for strongly 
convex and convex functions. Zhao et al. [24,25] derived Chebyshev, Jensen’s and 𝐻𝐻-type 
inequalities for IVFs. Recently, Zhang et al. [26] generalized the Jensen inequalities and defined new 
version of Jensen’s inequalities [16] for set-valued and fuzzy-set-valued functions through pseudo 
order relation. After that, for convex-IVF, Budek [27] established interval-valued fractional 
Riemann-Liouville 𝐻𝐻-inequality by means of inclusion relation. For more useful details, see [28–34] 
and the references therein. 

Recently, Khan et al. [35] introduced the new class of convex fuzzy mappings is known as 
ℎ , ℎ -convex FIVFs by means of FOR and presented the following new version of 𝐻𝐻-type 

inequality for ℎ , ℎ -convex FIVF involving fuzzy-interval Riemann integrals: 
Theorem 1.1. Let  𝒯: 𝑢, 𝜈 → 𝔽  be a ℎ , ℎ -convex FIVF with ℎ , ℎ : 0, 1 → ℝ  and 
ℎ ℎ 0. Then, from 𝜃-levels, we get the collection of IVFs 𝒯 : 𝑢, 𝜈 ⊂ ℝ → ℝ  are 
given by 𝒯 𝜔 𝒯∗ 𝜔, 𝜃 , 𝒯∗ 𝜔, 𝜃  for all 𝜔 ∈ 𝑢, 𝜈  and for all 𝜃 ∈ 0, 1 . If 𝒯  is 
fuzzy-interval Riemann integrable (in sort, 𝐹𝑅-integrable), then 

 𝒯 ≼  𝐹𝑅 𝒯 𝜔 𝑑𝜔 ≼ 𝒯 𝑢   𝒯 𝜈 ℎ 𝜏 ℎ 1 𝜏 𝑑𝜏  (4) 

If ℎ 𝜏 𝜏 and ℎ 𝜏 ≡ 1, then from Theorem 1.1, we get following the result for convex FIVF: 

𝒯 ≼  𝐹𝑅 𝒯 𝜔 𝑑𝜔 ≼
 

𝒯   𝒯                     (5) 

A one step forward, Khan et al. introduced new classes of convex and generalized convex FIVF, 
and derived new fractional 𝐻𝐻-type and 𝐻𝐻-type inequalities for convex FIVF [36], ℎ-convex 
FIVF [37], ℎ , ℎ -preinvex FIVF [38], log-s-convex FIVFs in the second sense [39], 
LR-log-ℎ-convex IVFs [40], harmonically convex FIVFs [41] and the references therein. We refer to 
the readers for further analysis of literature on the applications and properties of fuzzy-interval, and 
inequalities and generalized convex fuzzy mappings, see [42–51] and the references therein. 

2. Preliminaries 

Let ℝ be the set of real numbers and ℝ  be the space of all closed and bounded intervals of ℝ, 
and 𝜛 ∈ ℝ  be defined by 

𝜛 𝜛∗, 𝜛∗ 𝜔 ∈ ℝ| 𝜛∗ 𝜔 𝜛∗ , 𝜛∗, 𝜛∗ ∈ ℝ  

If 𝜛∗ 𝜛∗, then 𝜛 is said to be degenerate. If 𝜛∗ 0, then 𝜛∗, 𝜛∗  is called positive interval. 
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The set of all positive interval is denoted by ℝ  and defined as ℝ 𝜛∗, 𝜛∗ : 𝜛∗, 𝜛∗ ∈
ℝ  and 𝜛∗ 0 .  

Let 𝜚 ∈ ℝ and 𝜚𝜛 be defined by 

𝜚. 𝜛

 
𝜚𝜛∗, 𝜚𝜛∗  if 𝜚 0,

0    if  𝜚 0,
𝜚𝜛∗, 𝜚𝜛∗   if 𝜚 0.

                           (6) 

Then the Minkowski difference 𝜉 𝜛, addition 𝜛 𝜉 and 𝜛 𝜉 for 𝜛, 𝜉 ∈ ℝ  are defined by 

𝜉∗, 𝜉∗ 𝜛∗, 𝜛∗  𝜉∗ 𝜛∗, 𝜉∗ 𝜛∗ ,
𝜉∗, 𝜉∗ 𝜛∗, 𝜛∗  𝜉∗ 𝜛∗, 𝜉∗ 𝜛∗ ,

                     (7) 

and 

𝜉∗, 𝜉∗ 𝜛∗, 𝜛∗ 𝑚𝑖𝑛 𝜉∗𝜛∗, 𝜉∗𝜛∗, 𝜉∗𝜛∗, 𝜉∗𝜛∗ , 𝑚𝑎𝑥 𝜉∗𝜛∗, 𝜉∗𝜛∗, 𝜉∗𝜛∗, 𝜉∗𝜛∗ .  

The inclusion " ⊆ " means that  
𝜉 ⊆ 𝜛 if and only if, 𝜉∗, 𝜉∗ ⊆ 𝜛∗, 𝜛∗ , if and only if  𝜛∗ 𝜉∗, 𝜉∗ 𝜛∗.     (8) 

Remark 2.1. [41] The relation " " defined on ℝ  by 

𝜉∗, 𝜉∗ 𝜛∗, 𝜛∗  if and only if 𝜉∗ 𝜛∗, 𝜉∗ 𝜛∗,              (9) 

for all 𝜉∗, 𝜉∗ , 𝜛∗, 𝜛∗ ∈ ℝ , it is an order relation. For given 𝜉∗, 𝜉∗ , 𝜛∗, 𝜛∗ ∈ ℝ , we say that 
𝜉∗, 𝜉∗ 𝜛∗, 𝜛∗  if and only if 𝜉∗ 𝜛∗, 𝜉∗ 𝜛∗. 

For 𝜉∗, 𝜉∗ , 𝜛∗, 𝜛∗ ∈ ℝ , the Hausdorff–Pompeiu distance between intervals 𝜉∗, 𝜉∗  and 
𝜛∗, 𝜛∗  is defined by 

𝑑 𝜉∗, 𝜉∗ , 𝜛∗, 𝜛∗ 𝑚𝑎𝑥 |𝜉∗  𝜛∗|, |𝜉∗ 𝜛∗|                (10) 

It is familiar fact that ℝ , 𝑑  is a complete metric space. 
A fuzzy subset 𝑇 of ℝ is characterize by a mapping 𝜉: ℝ → 0, 1  called the membership 

function, for each fuzzy set and 𝜃 ∈ 0, 1 , then 𝜃-level sets of 𝜉 is denoted and defined as follows 
𝜉 𝑢 ∈ ℝ| 𝜉 𝑢 𝜃 . If 𝜃 0, then 𝑠𝑢𝑝𝑝 𝜉 𝜔 ∈ ℝ| 𝜉 𝜔 0  is called support of 𝜉. 
By 𝜉  we define the closure of 𝑠𝑢𝑝𝑝 𝜉 . 

Let 𝔽 ℝ  be the collection of all fuzzy sets and 𝜉 ∈ 𝔽 ℝ  be a fuzzy set. Then, we define the 
following: 
1) 𝜉 is said to be normal if there exists 𝜔 ∈ ℝ and 𝜉 𝜔 1; 
2) 𝜉 is said to be upper semi continuous on ℝ if for given 𝜔 ∈ ℝ, there exist 𝜀 0 there exist 

𝛿 0 such that 𝜉 𝜔 𝜉 𝑦 𝜀 for all 𝑦 ∈ ℝ with |𝜔 𝑦| 𝛿; 
3) 𝜉 is said to be fuzzy convex if 𝜉  is convex for every 𝜃 ∈ 0, 1 ; 
4) 𝜉 is compactly supported if 𝑠𝑢𝑝𝑝 𝜉  is compact. 

A fuzzy set is called a fuzzy number or fuzzy interval if it has properties 1)–4). We denote by 
𝔽  the family of all fuzzy intervals. 

Let 𝜉 ∈  𝔽  be a fuzzy-interval, if and only if, 𝜃-levels 𝜉  is a nonempty compact convex 
set of ℝ. From these definitions, we have  

𝜉 𝜉∗ 𝜃 , 𝜉∗ 𝜃 , 
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where 

𝜉∗ 𝜃 𝑖𝑛𝑓 𝜔 ∈ ℝ| 𝜉 𝜔 𝜃 , 𝜉∗ 𝜃 𝑠𝑢𝑝 𝜔 ∈ ℝ| 𝜉 𝜔 𝜃 . 

Proposition 2.2. [17] If 𝜉, 𝜛 ∈ 𝔽 , then relation " ≼ " defined on 𝔽  by 

𝜉 ≼ 𝜛 if and only if,  𝜉 𝜛 , for all 𝜃 ∈ 0, 1 ,           (11) 

this relation is known as partial order relation. 
For 𝜉, 𝜛 ∈ 𝔽  and 𝜚 ∈ ℝ, the sum 𝜉 𝜛, product 𝜉 𝜛, scalar product 𝜚. 𝜉 and sum with 

scalar are defined by: 
Then, for all 𝜃 ∈ 0, 1 , we have 

𝜉 𝜛  𝜉 𝜛                              (12) 

𝜉 𝜛 𝜉  𝜛                             (13) 

𝜚. 𝜉 𝜚. 𝜉                                   (14) 

𝜚  𝜉 𝜚 𝜉                                 (15) 

For 𝜓 ∈ 𝔽   such that 𝜉 𝜛 𝜓, then by this result we have existence of Hukuhara difference of 
𝜉  and 𝜛 , and we say that 𝜓  is the H-difference of  𝜉  and 𝜛,  and denoted by 𝜉 𝜛 . If 
H-difference exists, then 

𝜓 ∗ 𝜃 𝜉 𝜛 ∗ 𝜃 𝜉∗ 𝜃 𝜛∗ 𝜃 , 𝜓 ∗ 𝜃 𝜉 𝜛 ∗ 𝜃 𝜉∗ 𝜃 𝜛∗ 𝜃    (16) 

Definition 2.3. [32] The IVF 𝒯: ∆ 𝑎, 𝑏 𝑢, 𝜈 → ℝ  is said to be coordinated convex function 
on ∆ if  
 𝒯 𝜏𝑎 1 𝜏 𝑏, 𝑠𝑢 1 𝑠 𝜈   

𝜏𝑠𝒯 𝑎, 𝑢 𝜏 1 𝑠 𝒯 𝑎, 𝜈 1 𝜏 𝑠𝒯 𝑏, 𝑢 1 𝜏 1 𝑠 𝒯 𝑏, 𝜈     (17) 

for all 𝑎, 𝑏 , 𝑢, 𝜈 ∈ ∆, 𝜏 and , 𝜏, 𝑠 ∈ 0, 1 . If inequality (Eq 17) is reversed, then 𝒯 is called 
coordinated concave IVF on ∆. 
Definition 2.4. [44] The FIVF 𝒯: 𝑢, 𝜈 → 𝔽  is said to be convex FIVF on 𝑢, 𝜈  if  

𝒯 𝜏𝓍 1 𝜏 𝜔 ≼ 𝜏𝒯 𝓍   1 𝜏 𝒯 𝜔 ,                    (18) 

for all 𝓍, 𝜔 ∈ 𝑢, 𝜈 , 𝜏 ∈ 0, 1 , where 𝒯 𝓍 ≽ 0. If 𝒯 is concave FIVF on 𝑢, 𝜈 , then inequality 
(Eq 18) is reversed. 
Definition 2.5. [35] Let ℎ , ℎ : 0, 1 ⊆ 𝑢, 𝜈 → ℝ  such that ℎ , ℎ ≢ 0  . Then, FIVF 
𝒯: 𝑢, 𝜈 → 𝔽  is said to be ℎ , ℎ -convex FIVF on 𝑢, 𝜈  if  

𝒯 𝜏𝓍 1 𝜏 𝜔 ≼ ℎ 𝜏 ℎ 1 𝜏 𝒯 𝓍 ℎ 1 𝜏 ℎ 𝜏 𝒯 𝜔        (19) 

for all  𝓍, 𝜔 ∈ 𝑢, 𝜈 , 𝜏 ∈ 0, 1 ,  where 𝒯 𝓍 ≽ 0.  If 𝒯  is ℎ , ℎ -concave on 𝑢, 𝜈 , then 
inequality (Eq 19) is reversed. 
Remark 2.6. [35] If ℎ 𝜏 ≡ 1, then ℎ , ℎ -convex FIVF becomes ℎ -convex FIVF, that is 

𝒯 𝜏𝓍 1 𝜏 𝜔 ≼ ℎ 𝜏 𝒯 𝓍 ℎ 1 𝜏 𝒯 𝜔 , ∀ 𝓍, 𝜔 ∈ 𝑢, 𝜈 , 𝜏 ∈ 0, 1       (20) 

If ℎ 𝜏 𝜏, ℎ 𝜏 ≡ 1, then ℎ , ℎ -convex FIVF becomes convex FIVF, that is 
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𝒯 𝜏𝓍 1 𝜏 𝜔 ≼ 𝜏𝒯 𝓍 1 𝜏 𝒯 𝜔 , ∀ 𝓍, 𝜔 ∈ 𝑢, 𝜈 , 𝜏 ∈ 0, 1         (21) 

If ℎ 𝜏 ℎ 𝜏 ≡ 1, then ℎ , ℎ -convex FIVF becomes 𝑃-convex FIVF, that is 

𝒯 𝜏𝓍 1 𝜏 𝜔 ≼ 𝒯 𝓍 𝒯 𝜔 , ∀ 𝓍, 𝜔 ∈ 𝑢, 𝜈 , 𝜏 ∈ 0, 1              (22) 

Theorem 2.7. [35] Let 𝒯, 𝒥 ∶ 𝑢, 𝜈 → 𝔽  be two ℎ , ℎ -convex FIVFs with ℎ , ℎ : 0, 1 → ℝ  

and ℎ ℎ 0. Then, from 𝜃-levels, we get the collection of IVFs 𝒯 , 𝒥 : 𝑢, 𝜈 ⊂ ℝ →

ℝ  are given by 𝒯 𝓍 𝒯∗ 𝓍, 𝜃 , 𝒯∗ 𝓍, 𝜃  and 𝒥 𝓍 𝒥∗ 𝓍, 𝜃 , 𝒥∗ 𝓍, 𝜃  for all 𝓍 ∈ 𝑢, 𝜈  
and for all 𝜃 ∈ 0, 1 . If 𝒯 𝒥 is fuzzy Riemann integrable, then 

 𝐹𝑅 𝒯 𝑥 𝒥 𝑥 𝑑𝑥 ≼ ℳ 𝑢, 𝜈 ℎ 𝜏 ℎ 1 𝜏 𝑑𝜏  

𝒩 𝑢, 𝜈 ℎ 𝜏 ℎ 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 𝑑𝜏       (23) 

and,  

 𝒯 𝒥 ≼  𝐹𝑅 𝒯 𝑥 𝒥 𝑥 𝑑𝓍  𝒩 𝑢, 𝜈 ℎ 𝜏 ℎ 1

𝜏 𝑑𝜏 ℳ 𝑢, 𝜈 ℎ 𝜏 ℎ 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 𝑑𝜏                (24) 

where 

 ℳ 𝑢, 𝜈 𝒯 𝑢 𝒥 𝑢   𝒯 𝜈 𝒥 𝜈 , 𝒩 𝑢, 𝜈 𝒯 𝑢 𝒥 𝜈   𝒯 𝜈 𝒥 𝑢 ,  

ℳ 𝑢, 𝜈 ℳ∗ 𝑢, 𝜈 , 𝜃 , ℳ∗ 𝑢, 𝜈 , 𝜃 , 𝒩 𝑢, 𝜈 𝒩∗ 𝑢, 𝜈 , 𝜃 , 𝒩∗ 𝑢, 𝜈 , 𝜃 . 

Remark 2.8. If ℎ 𝜏 𝜏 and ℎ 𝜏 ≡ 1, then Eq (23) reduces to the result for convex FIVF: 

 𝐹𝑅 𝒯 𝓍 𝒥 𝓍 𝑑𝓍 ≼ ℳ 𝑢, 𝜈  𝒩 𝑢, 𝜈              (25) 

And if ℎ 𝜏 𝜏 and ℎ 𝜏 ≡ 1, then Eq (24) reduces to the result for convex FIVF: 

2 𝒯 𝒥 ≼  𝐹𝑅 𝒯 𝓍 𝒥 𝓍 𝑑𝓍 ℳ 𝑢, 𝜈  𝒩 𝑢, 𝜈    (26) 

Theorem 2.9. Let 𝒯: 𝑢, 𝜈 → 𝔽  be a convex FIVF with 𝑢 𝜈. Then, from 𝜃-levels, we get the 
collection of IVFs 𝒯 : 𝑢, 𝜈 ⊂ ℝ → ℝ  are given by 𝒯 𝓍 𝒯∗ 𝓍, 𝜃 , 𝒯∗ 𝓍, 𝜃  for all 𝓍 ∈

𝑢, 𝜈  and for all 𝜃 ∈ 0, 1 . If 𝒯 ∈  𝒯ℛ , ,  and 𝛺: 𝑢, 𝜈 → ℝ, 𝛺 𝓍 0, symmetric with 

respect to , and 𝛺 𝓍 𝑑𝓍 0, then 

𝒯 ≼
𝓍 𝓍

 𝐹𝑅 𝒯 𝓍 𝛺 𝓍 𝑑𝓍 ≼ 𝒯 𝒯
               (27) 

If 𝒯 is concave FIVF, then inequality (Eq 27) is reversed. 
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2.1 Fuzzy-interval double integral and convexity 

Firstly, we shall define fuzzy-interval double integrable. 
A FIVF 𝒯: 𝑎, 𝑏 → 𝔽  is said to be continuous at 𝓍  if for each 𝜖 there exist a 𝛿 such that 

𝑑 𝒯 𝓍 , 𝒯 𝓍 𝜖, 

Whenever |𝓍 𝓍 | 𝛿. A tagged partition of 𝑎, 𝑏  is any finite ordered subset 𝑃  having the form 

𝑃 𝑎 𝓍  𝓍  𝓍 𝓍  𝓍 … … 𝓍 𝑏 . 

Let 𝒫 𝛿, 𝑎, 𝑏  be the set of all 𝑃 ∈ 𝒫 𝛿, 𝑎, 𝑏  such that ∆ 𝓍 𝛿. Then, 𝑃  is called 𝛿-fine. 
For each set of numbers 𝓍 , 𝓍 , where 1 𝑖 𝑘, choose an arbitrary point  𝜂  and taking 
the sum 

𝑆 𝒯, 𝑃 , 𝛿, 𝑎, 𝑏 ∑ 𝒯 𝜂 𝓍 𝓍                    (28) 

where 𝒯: 𝑎, 𝑏 → 𝔽 . We call  𝑆 𝒯, 𝑃 , 𝛿 𝑎, 𝑏  an integral sum of  𝒯 corresponding to 𝑃 ∈
𝒫 𝛿, 𝑎, 𝑏 . Let 𝐶 𝑎, 𝑏 , 𝔽  be the collection of continuous FIVFs. 

If 𝑃 ≜ 𝓍 , 𝓍  such that 𝑃 ∈ 𝒫 𝛿, 𝑎, 𝑏 , where 1 𝑖 𝑘, and 𝑃 ≜ 𝜔 , 𝜔  such 

that 𝑃 ∈ 𝒫 𝛿, 𝑢, 𝜈 , where 1 𝑗 𝑛, then rectangles ∆ , 𝓍 , 𝓍 𝜔 , 𝜔  partition 

the rectangle ∆ 𝑎, 𝑏 𝑢, 𝜈  and the points 𝜂 , 𝑤 ∈ 𝓍 , 𝓍 𝜔 , 𝜔 . Let 𝒫 𝛿, ∆  be 

the collection of all 𝛿-fine partition 𝑃 𝑃 𝑃  of ∆. 
Similarly to Eq (28), we have  

𝑆 𝒯, 𝑃 , 𝛿, ∆ ∑ ∑ 𝒯 𝜂 , 𝑤 𝓍 𝓍 𝜔 𝜔 ∑ ∑ 𝒯 𝜂 , 𝑤 ∆𝐴 ,   (29) 

an integral sum of  𝒯: ∆ 𝑎, 𝑏 𝑢, 𝜈 → 𝔽 , where ∆𝐴 ,  be the of rectangle. 
Definition 2.1.1. A function 𝒯: 𝑎, 𝑏 → ℝ is called Riemann integrable (𝑅-integrable) on 𝑎, 𝑏  if 
there exists 𝐵 ∈ ℝ such that, for each 𝜖, there exists 𝛿 0 such that  

|𝑆 𝒯, 𝑃 , 𝛿, 𝑎, 𝑏 𝐵| 𝜖,  

for every Riemann sum of 𝒯 corresponding to 𝑃 ∈ 𝒫 𝛿, 𝑎, 𝑏  and for arbitrary choice of 𝜂 ∈
𝓍 , 𝓍  for 1 𝑖 𝑘. Then, we say that 𝐵 is the 𝑅-integral of 𝒯 on 𝑎, 𝑏  and is denote by 

𝐵 𝑅 𝒯 𝓍 𝑑𝓍. 

Definition 2.1.2. [25] A function 𝒯: 𝑎, 𝑏 → ℝ  is called interval Riemann integrable 
(𝐼𝑅-integrable) on 𝑎, 𝑏  if there exists 𝐵 ∈ ℝ  such that, for each 𝜖, there exists 𝛿 0 such that   

𝑑 𝑆 𝒯, 𝑃 , 𝛿, 𝑎, 𝑏 , 𝐵 𝜖,  

for every Riemann sum of 𝒯 corresponding to 𝑃 ∈ 𝒫 𝛿, 𝑎, 𝑏  and for arbitrary choice of 𝜂 ∈
𝓍 , 𝓍  for 1 𝑖 𝑘. Then, we say that 𝐵 is the 𝐼𝑅-integral of 𝒯 on 𝑎, 𝑏  and is denote by 

𝐵 𝐼𝑅 𝒯 𝓍 𝑑𝓍.  

Definition 2.1.3. A function 𝒯: 𝑎, 𝑏 → 𝔽  is called fuzzy-interval Riemann integrable 
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(𝐹𝑅-integrable) on 𝑎, 𝑏  if there exists 𝐵 ∈ 𝔽  such that, for each 𝜖, there exists 𝛿 0 such that   

𝑑 𝑆 𝒯, 𝑃 , 𝛿, 𝑎, 𝑏 , 𝐵 𝜖, 

for every Riemann sum of 𝒯 corresponding to 𝑃 ∈ 𝒫 𝛿, 𝑎, 𝑏  and for arbitrary choice of 𝜂 ∈
𝓍 , 𝓍  for 1 𝑖 𝑘. Then, we say that 𝐵 is the 𝐹𝑅-integral of 𝒯 on 𝑎, 𝑏  and is denote 

by 𝐵 𝐼𝑅 𝒯 𝓍 𝑑𝓍. 

Definition 2.1.4. [24] A function 𝒯: ∆ 𝑎, 𝑏 𝑢, 𝜈 → ℝ  is called interval double integral 
(𝐼𝐷-integrable) on ∆ if there exists 𝐵 ∈ ℝ  such that, for each 𝜖, there exists 𝛿 0 such that   

𝑑 𝑆 𝒯, 𝑃, 𝛿, ∆ , 𝐵 𝜖,  

for every Riemann sum of 𝒯 corresponding to 𝑃 ∈ 𝒫 𝛿, ∆  and for arbitrary choice of 𝜂 , 𝑤 ∈

𝓍 , 𝓍 𝜔 , 𝜔  for 1 𝑖 𝑘 and 1 𝑗 𝑛. Then, we say that 𝐵 is the 𝐼𝑅-integral of 

𝒯 on ∆ and is denote by 𝐵 𝐼𝐷 𝒯 𝓍, 𝜔 𝑑𝜔𝑑𝓍 or 𝐵 𝐼𝐷 ∬ 𝒯𝑑𝐴
 

∆ . 

Theorem 2.1.5. [14] If 𝒯: 𝑢, 𝜈 ⊂ ℝ → ℝ  is an IVF given by 𝓍  𝒯∗ 𝓍 , 𝒯∗ 𝓍 , then 𝒯 is 
Riemann integrable over 𝑢, 𝜈  if and only if, 𝒯∗ and 𝒯∗ both are Riemann integrable over 𝑢, 𝜈  
such that 

𝐼𝑅 𝒯 𝓍 𝑑𝓍  𝑅 𝒯∗ 𝓍 𝑑𝓍 , 𝑅 𝒯∗ 𝓍 𝑑𝓍
 

               (30) 

The collection of all Riemann integrable real valued functions and Riemann integrable IVF is 

denoted by ℛ ,  and 𝔗ℛ , , respectively. 

Note that, the Theorem 2.1.6 is also true for interval double integrals. The collection of all double 
integrable IVF is denoted  𝔗𝔒∆, respectively. 
Theorem 2.1.6. [24] Let ∆ 𝑎, 𝑏 𝑢, 𝜈 . If 𝒯: ∆→ ℝ  is 𝐼𝐷-integrable on ∆, then we have 

𝐼𝐷 𝒯 𝓍, 𝜔 𝑑𝜔𝑑𝓍 𝐼𝑅 𝐼𝑅 𝒯 𝓍, 𝜔 𝑑𝜔𝑑𝓍. 

Definition 2.1.7. A function 𝒯: ∆ 𝑎, 𝑏 𝑢, 𝜈 → 𝔽  is called fuzzy-interval double integrable 
(𝐹𝐷-integrable) on ∆ if there exists 𝐵 ∈ 𝔽  such that, for each 𝜖, there exists 𝛿 0 such that   

𝑑 𝑆 𝒯, 𝑃, 𝛿, ∆ , 𝐵 𝜖, 

for every Riemann sum of 𝒯 corresponding to 𝑃 ∈ 𝒫 𝛿, ∆  and for arbitrary choice 𝜂 , 𝑤 ∈

𝓍 , 𝓍 𝜔 , 𝜔  for 1 𝑖 𝑘 and 1 𝑗 𝑛. Then, we say that 𝐵 is the 𝐹𝑅-integral of 

𝒯 on ∆ and is denote by 𝐵 𝐹𝐷 𝒯 𝓍, 𝜔 𝑑𝜔𝑑𝓍 or 𝐵 𝐹𝐷 ∬ 𝒯𝑑𝐴
 

∆ .  

Definition 2.1.8. A fuzzy-interval-valued map  𝒯: ∆ 𝑎, 𝑏 𝑢, 𝜈 → 𝔽  is called FIVF on 

coordinates. Then, from 𝜃-levels, we get the collection of IVFs 𝒯 : ∆⊂ ℝ → ℝ  on coordinates are 
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given by 𝒯 𝓍, 𝜔 𝒯∗ 𝓍, 𝜔 , 𝜃 , 𝒯∗ 𝓍, 𝜔 , 𝜃  for all 𝓍, 𝜔 ∈ ∆. Here, for each 𝜃 ∈ 0, 1 , 

the end point real valued functions 𝒯∗ . , 𝜃 , 𝒯∗ . , 𝜃 : 𝓍, 𝜔 → ℝ  are called lower and upper 

functions of 𝒯 . 

Definition 2.1.9. Let 𝒯: ∆ 𝑎, 𝑏 𝑢, 𝜈 ⊂ ℝ → 𝔽  be a coordinate FIVF. Then, 𝒯 𝓍, 𝜔  is 

said to be continuous at 𝓍, 𝜔 ∈ ∆ 𝑎, 𝑏 𝑢, 𝜈 ,  if for each 𝜃 ∈ 0, 1 ,  both end point 

functions 𝒯∗ 𝓍, 𝜔 , 𝜃  and 𝒯∗ 𝓍, 𝜔 , 𝜃  are continuous at 𝓍, 𝜔 ∈ ∆. 
Definition 2.1.10. Let 𝒯: ∆ 𝑎, 𝑏 𝑢, 𝜈 ⊂ ℝ → 𝔽  be a FIVF on coordinates. Then, fuzzy 

double integral of 𝒯 over ∆ 𝑎, 𝑏 𝑢, 𝜈 , denoted by 𝐹𝐷 𝒯 𝓍, 𝜔 𝑑𝜔𝑑𝓍, it is defined 

level-wise by  

𝐹𝐷 𝒯 𝓍, 𝜔 𝑑𝜔𝑑𝓍
𝜽

𝐼𝐷 𝒯 𝓍, 𝜔 𝑑𝜔𝑑𝓍  

𝐼𝑅 𝐼𝑅 𝒯 𝓍, 𝜔 𝑑𝜔𝑑𝓍,      (31) 

for all 𝜃 ∈ 0, 1 , 𝒯 is 𝐹𝐷-integrable over ∆ if 𝐹𝐷 𝒯 𝓍, 𝜔 𝑑𝜔𝑑𝓍 ∈ 𝔽 . Note that, if end 

point functions are Lebesgue-integrable, then 𝒯 is fuzzy double Aumann-integrable function over ∆. 
Theorem 2.1.11. Let 𝒯: ∆⊂ ℝ → 𝔽  be a FIVF on coordinates. Then, from 𝜃-levels, we get the 

collection of IVFs 𝒯 : ∆⊂ ℝ → ℝ  are given by 𝒯 𝓍, 𝜔 𝒯∗ 𝓍, 𝜔 , 𝜃 , 𝒯∗ 𝓍, 𝜔 , 𝜃  for all 

𝓍, 𝜔 ∈ ∆ 𝑎, 𝑏 𝑢, 𝜈  and for all 𝜃 ∈ 0, 1 . Then, 𝒯 is 𝐹𝐷-integrable over ∆ if and only if, 

𝒯∗ 𝓍, 𝜔 , 𝜃  and 𝒯∗ 𝓍, 𝜔 , 𝜃  both are 𝐷-integrable over ∆. Moreover, if 𝒯 is 𝐹𝐷-integrable 

over ∆, then 

𝐹𝐷 𝒯 𝓍, 𝜔 𝑑𝜔𝑑𝓍
 

 𝐹𝑅 𝐹𝑅 𝒯 𝓍, 𝜔 𝑑𝜔𝑑𝓍   

𝐼𝑅 𝐼𝑅 𝒯 𝓍, 𝜔 𝑑𝜔𝑑𝓍 𝐼𝐷 𝒯 𝓍, 𝜔 𝑑𝜔𝑑𝓍        (32) 

for all 𝜃 ∈ 0, 1 . 
Proof. The proof of this theorem follows immediately by the Definition 2.1.10 of fuzzy double 
integral of FIVF.  
The family of all 𝐹𝐷-integrable FIVFs over coordinates is denoted by ℱ𝔒∆ for all 𝜃 ∈ 0, 1 . 
Theorem 2.1.12. Let 𝜚 ∈ ℝ, and 𝒯, 𝒥 ∈  ℱ𝔒∆. Then,   
1) 𝜚𝒯 ∈  ℱ𝔒∆ and  

𝐹𝐷 ∬ 𝜚𝒯𝑑𝐴
 

∆ 𝜚 𝐹𝐷 ∬ 𝒯𝑑𝐴
 

∆ . 

2) 𝒯  𝒥 ∈  ℱ𝔒∆, and  

𝐹𝐷 ∬ 𝒯 𝒥 𝑑𝐴
 

∆ 𝐹𝐷 ∬ 𝒯𝑑𝐴
 

∆ 𝐹𝐷 ∬ 𝒥𝑑𝐴
 

∆ . 

3) suppose that ∆  and ∆  are non-overlapping, then 

𝐹𝐷 ∬ 𝒯𝑑𝐴 𝐹𝐷 ∬ 𝒯𝑑𝐴 𝐹𝐷 ∬ 𝒯𝑑𝐴
 

∆
 

∆
 

∆ ∪∆ . 

Proof. The proof of Theorem 2.1.12 is straightforward so it is omitted. 
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Now we define the new class, namely, coordinated convex FIVF by means of FOR. 
Definition 2.1.13. The FIVF 𝒯: ∆→ 𝔽  is said to be coordinated convex FIVF on ∆ if  

 𝒯 𝜏𝑎 1 𝜏 𝑏, 𝑠𝑢 1 𝑠 𝜈  

≼ 𝜏𝑠𝒯 𝑎, 𝑢 𝜏 1 𝑠 𝒯 𝑎, 𝜈 1 𝜏 𝑠𝒯 𝑏, 𝑢 1 𝜏 1 𝑠 𝒯 𝑏, 𝜈       (33) 

for all 𝑎, 𝑏 , 𝑢, 𝜈 ∈ ∆,  and 𝜏, 𝑠 ∈ 0, 1 , where 𝒯 𝓍 ≽ 0. If inequality (Eq 33) is reversed, 
then 𝒯 is called coordinate concave FIVF on ∆. 
The proof of Lemma 2.1.14 is straightforward will be omitted here. 
Lemma 2.1.14. Let 𝒯: ∆→ 𝔽  be an coordinated FIVF on ∆. Then, 𝒯 is coordinated convex FIVF 
on ∆, if and only if there exist two coordinated convex FIVFs 𝒯𝓍: 𝑢, 𝜈 → 𝔽 , 𝒯𝓍 𝑤 𝒯 𝓍, 𝑤  
and 𝒯 : 𝑎, 𝑏 → 𝔽 , 𝒯 𝑢 𝒯 𝑢, 𝜔 . 
Proof. From the definition of coordinated FIVF, it can be easily proved. 
From Lemma 2.1.14, we can easily note each convex FIVF is coordinated convex FIVF. But the 
converse is not true, see Example 2.1.16. 
Theorem 2.1.15. Let 𝒯: ∆→ 𝔽  be a FIVF on ∆. Then, from 𝜃-levels, we get the collection of 
IVFs 𝒯 : ∆→ ℝ ⊂ ℝ  are given by 

𝒯 𝓍, 𝜔 𝒯∗ 𝓍, 𝜔 , 𝜃 , 𝒯∗ 𝓍, 𝜔 , 𝜃 ,                   (34) 

for all 𝓍, 𝜔 ∈ ∆ and for all 𝜃 ∈ 0, 1 . Then, 𝒯 is coordinated convex FIVF on ∆, if and only if, 

for all 𝜃 ∈ 0, 1 , 𝒯∗ 𝓍, 𝜔 , 𝜃  and 𝒯∗ 𝓍, 𝜔 , 𝜃  are coordinated convex function.  

Proof. Assume that for each 𝜃 ∈ 0, 1 , 𝒯∗ 𝓍, 𝜃  and 𝒯∗ 𝓍, 𝜃  are coordinated convex on ∆. Then, 
from Eq (33), for all 𝑎, 𝑏 , 𝑢, 𝜈 ∈ ∆, 𝜏 and 𝑠 ∈ 0, 1  we have 

𝒯∗ 𝜏𝑎 1 𝜏 𝑏, 𝑠𝑢 1 𝑠 𝜈 , 𝜃   

𝜏𝑠𝒯∗ 𝑎, 𝑢 , 𝜃 𝑡 1 𝑠 𝒯∗ 𝑎, 𝜈 , 𝜃 𝑠 1 𝑡 𝒯∗ 𝑎, 𝑢 , 𝜃 1 𝜏 1 𝑠 𝒯∗ 𝑎, 𝜈 , 𝜃 , 

and 

𝒯∗ 𝜏𝑎 1 𝜏 𝑏, 𝑠𝑢 1 𝑠 𝜈 , 𝜃   

𝜏𝑠𝒯∗ 𝑎, 𝑢 , 𝜃 𝑡 1 𝑠 𝒯∗ 𝑎, 𝜈 , 𝜃 𝑠 1 𝑡 𝒯∗ 𝑎, 𝑢 , 𝜃 1 𝜏 1 𝑠 𝒯∗ 𝑎, 𝜈 , 𝜃 , 

Then, by Eqs (34), (6) and (7), we obtain 

𝒯 𝜏𝑎 1 𝜏 𝑏, 𝑠𝑢 1 𝑠 𝜈   

𝒯∗ 𝜏𝑎 1 𝜏 𝑏, 𝑠𝑢 1 𝑠 𝜈 , 𝜃 , 𝒯∗ 𝜏𝑎 1 𝜏 𝑏, 𝑠𝑢 1 𝑠 𝜈 , 𝜃   

𝜏𝑠 𝒯∗ 𝑎, 𝑢 , 𝜃 , 𝒯∗ 𝑎, 𝑢 , 𝜃 𝑡 1 𝑠 𝒯∗ 𝑎, 𝜈 , 𝜃 , 𝒯
   
∗ 𝑎, 𝜈 , 𝜃  

𝑠 1 𝜏 𝒯∗ 𝑎, 𝑢 , 𝜃 , 𝒯∗ 𝑎, 𝑢 , 𝜃 1 𝜏 1 𝑠 𝒯∗ 𝑎, 𝜈 , 𝜃 , 𝒯∗ 𝑎, 𝜈 , 𝜃   

That is 
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𝒯 𝜏𝑎 1 𝜏 𝑏, 𝑠𝑢 1 𝑠 𝜈  
≼ 𝜏𝑠𝒯 𝑎, 𝑢 𝜏 1 𝑠 𝒯 𝑎, 𝜈 1 𝜏 𝑠𝒯 𝑏, 𝑢 1 𝜏 1 𝑠 𝒯 𝑏, 𝜈 , 

hence, 𝒯 is coordinated convex FIVF on ∆ . 
Conversely, let 𝒯 be coordinated convex FIVF on ∆. Then, for all 𝑎, 𝑏 , 𝑢, 𝜈 ∈ ∆, 𝜏 and 𝑠 ∈
0, 1 , we have 

𝒯 𝜏𝑎 1 𝜏 𝑏, 𝑠𝑢 1 𝑠 𝜈  
≼ 𝜏𝑠𝒯 𝑎, 𝑢 𝜏 1 𝑠 𝒯 𝑎, 𝜈 1 𝜏 𝑠𝒯 𝑏, 𝑢 1 𝜏 1 𝑠 𝒯 𝑏, 𝜈 . 

Therefore, again from Eq (34), for each 𝜃 ∈ 0, 1 , we have 

𝒯 𝜏𝑎 1 𝜏 𝑏, 𝑠𝑢 1 𝑠 𝜈   

𝒯∗ 𝜏𝑎 1 𝜏 𝑏, 𝑠𝑢 1 𝑠 𝜈 , 𝜃 , 𝒯∗ 𝜏𝑎 1 𝜏 𝑏, 𝑠𝑢 1 𝑠 𝜈 , 𝜃 .  

Again, Eqs (12) and (14), we obtain 

𝜏𝑠𝒯 𝑎, 𝑢 𝜏 1 𝑠 𝒯 𝑎, 𝜈 1 𝜏 𝑠𝒯 𝑏, 𝑢 1 𝜏 1 𝑠 𝒯 𝑏, 𝜈   

𝜏𝑠 𝒯∗ 𝑎, 𝑢 , 𝜃 , 𝒯∗ 𝑎, 𝑢 , 𝜃 𝑡 1 𝑠 𝒯∗ 𝑎, 𝜈 , 𝜃 , 𝒯∗ 𝑎, 𝜈 , 𝜃   

𝑠 1 𝜏 𝒯∗ 𝑎, 𝑢 , 𝜃 , 𝒯∗ 𝑎, 𝑢 , 𝜃 1 𝜏 1 𝑠 𝒯∗ 𝑎, 𝜈 , 𝜃 , 𝒯∗ 𝑎, 𝜈 , 𝜃 , 

for all 𝓍, 𝜔 ∈ ∆ and 𝜏 ∈ 0, 1 . Then, by coordinated convexity of 𝒯, we have for all 𝓍, 𝜔 ∈ ∆ 
and 𝜏 ∈ 0, 1  such that 

𝒯∗ 𝜏𝑎 1 𝜏 𝑏, 𝑠𝑢 1 𝑠 𝜈 , 𝜃  

𝜏𝑠𝒯∗ 𝑎, 𝑢 𝜏 1 𝑠 𝒯∗ 𝑎, 𝜈 1 𝜏 𝑠𝒯∗ 𝑏, 𝑢 1 𝜏 1 𝑠 𝒯∗ 𝑏, 𝜈 , 

and 

𝒯∗ 𝜏𝑎 1 𝜏 𝑏, 𝑠𝑢 1 𝑠 𝜈 , 𝜃  

𝜏𝑠𝒯∗ 𝑎, 𝑢 𝜏 1 𝑠 𝒯∗ 𝑎, 𝜈 1 𝜏 𝑠𝒯∗ 𝑏, 𝑢 1 𝜏 1 𝑠 𝒯∗ 𝑏, 𝜈 , 

for each 𝜃 ∈ 0, 1 . Hence, the result follows. 
Example 2.1.16. We consider the FIVFs 𝒯: 0, 1 0, 1 → 𝔽  defined by,  

𝒯 𝓍 𝜎

 

𝓍
                       𝜎 ∈ 0, 𝓍𝜔

𝓍

𝓍
                 𝜎 ∈ 𝓍𝜔, 2𝓍𝜔

0                       otherwise

  

Then, for each 𝜃 ∈ 0, 1 ,  we have 𝒯 𝓍 𝜃𝓍𝜔, 2 𝜃 𝓍𝜔 . Since end point functions 

𝒯∗ 𝓍, 𝜔 , 𝜃 , 𝒯∗ 𝓍, 𝜔 , 𝜃  are coordinate concave functions for each 𝜃 ∈ 0, 1 . Hence 𝒯 𝓍, 𝜔  

is coordinate concave FIVF. 
From Example 2.1.16, it can be easily seen that each coordinated convex FIVF is not a convex FIVF. 
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Theorem 2.1.17. Let ∆ be a coordinated convex set, and let 𝒯: ∆→ 𝔽  be a FIVF. Then, from 
𝜃-levels, we obtain the collection of IVFs 𝒯 : ∆→ ℝ ⊂ ℝ  are given by 

𝒯 𝓍, 𝜔 𝒯∗ 𝓍, 𝜔 , 𝜃 , 𝒯∗ 𝓍, 𝜔 , 𝜃                      (35) 

for all 𝓍, 𝜔 ∈ ∆ and for all 𝜃 ∈ 0, 1 . Then, 𝒯 is coordinated convex FIVF on ∆, if and only if, 

for all 𝜃 ∈ 0, 1 , 𝒯∗ 𝓍, 𝜔 , 𝜃  and 𝒯∗ 𝓍, 𝜔 , 𝜃  are coordinated convex function.  

Proof. The demonstration of proof of Theorem 2.1.17 is similar to the demonstration proof of 
Theorem 2.1.15.  
Theorem 2.1.18. We consider the FIVFs 𝒯: 0, 1 0, 1 → 𝔽  defined by,  

𝒯 𝓍 𝜎

⎩
⎨

⎧ 𝓍 ,                                 𝜎 ∈ 0, 2 6 𝑒𝓍 6 𝑒
𝓍

𝓍 ,    𝜎 ∈ 2 6 𝑒𝓍 6 𝑒 , 4 6 𝑒𝓍 6 𝑒

 0,                                                      otherwise

  

Then, for each 𝜃 ∈ 0, 1 , we have 𝒯 𝓍 2𝜃 6 𝑒𝓍 6 𝑒 , 4 2𝜃 6 𝑒𝓍 6 𝑒  . 
Since end point functions 𝒯∗ 𝓍, 𝜔 , 𝜃 , 𝒯∗ 𝓍, 𝜔 , 𝜃  are coordinate concave functions for each 
𝜃 ∈ 0, 1 . Hence 𝒯 𝓍, 𝜔  is coordinate concave FIVF.  
In the next results, to avoid confusion, we will not include the symbols 𝑅 , 𝐼𝑅 , 𝐹𝑅 , 𝐼𝐷 , and 
𝐹𝐷  before the integral sign. 

3. Fuzzy-interval Hermite-Hadamard inequalities 

In this section, we propose 𝐻𝐻- and 𝐻𝐻-Fejér inequalities for coordinated convex FIVFs, and 
verify with the help of some nontrivial example.  

Theorem 3.1. Let  𝒯: ∆→ 𝔽  be a coordinate convex FIVF on ∆. Then, from 𝜃-levels, we get the 

collection of IVFs 𝒯 : ∆→ ℝ  are given by 𝒯 𝓍, 𝜔 𝒯∗ 𝓍, 𝜔 , 𝜃 , 𝒯∗ 𝓍, 𝜔 , 𝜃  for all 

𝓍, 𝜔 ∈ ∆ and for all 𝜃 ∈ 0, 1 . Then, following inequality holds:  

𝒯 , ≼
 

𝒯 𝓍, 𝑑𝓍 𝒯 , 𝜔 𝑑𝜔   

       ≼  𝒯 𝓍, 𝜔 𝑑𝜔𝑑𝑥 

   ≼
 

𝒯 𝓍, 𝑢 𝑑𝓍  𝒯 𝓍, 𝜈 𝑑𝓍   

 

𝒯 𝑎, 𝜔 𝑑𝜔  𝒯 𝑏, 𝜔 𝑑𝜔   

≼ 𝒯 , 𝒯 , 𝒯 , 𝒯 ,
            (36) 

If 𝒯 𝓍  concave FIVF then, 
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𝒯 , ≽
 

𝒯 𝓍, 𝑑𝓍 𝒯 , 𝜔 𝑑𝜔   

 ≽  𝒯 𝓍, 𝜔 𝑑𝜔𝑑𝓍 

≽
 

𝒯 𝓍, 𝑢 𝑑𝓍  𝒯 𝓍, 𝜈 𝑑𝓍
 

𝒯 𝑎, 𝜔 𝑑𝜔  𝒯 𝑏, 𝜔 𝑑𝜔   

≽ 𝒯 , 𝒯 , 𝒯 , 𝒯 ,
                 (37) 

Proof. Let 𝒯: 𝑎, 𝑏 → 𝔽  be a coordinated convex FIVF. Then, by hypothesis, we have 

4𝒯 , ≼ 𝒯 𝜏𝑎 1 𝜏 𝑏, 𝜏𝑢 1 𝜏 𝜈 𝒯 1 𝜏 𝑎 𝜏𝑏, 1 𝜏 𝑢 𝜏𝜈 .  

By using Theorem 3.9, for every 𝜃 ∈ 0, 1 , we have  

4𝒯∗ , , 𝜃 𝒯∗ 𝜏𝑎 1 𝜏 𝑏, 𝜏𝑢 1 𝜏 𝜈 , 𝜃   

4𝒯∗ , , 𝜃 𝒯∗ 𝜏𝑎 1 𝜏 𝑏, 𝜏𝑢 1 𝜏 𝜈 , 𝜃   

By using Lemma 2.1.14, we have 

2𝒯∗ 𝓍, , 𝜃 𝒯∗ 𝓍, 𝜏𝑢 1 𝜏 𝜈 , 𝜃 𝒯∗ 𝓍, 1 𝜏 𝑢 𝜏𝜈 , 𝜃   

2𝒯∗ 𝓍, , 𝜃 𝒯∗ 𝓍, 𝜏𝑢 1 𝜏 𝜈 , 𝜃 𝒯∗ 𝓍, 1 𝜏 𝑢 𝜏𝜈 , 𝜃
     (38) 

and 

2𝒯∗ , 𝜔 , 𝜃 𝒯∗ 𝜏𝑎 1 𝜏 𝑏, 𝜔 , 𝜃 𝒯∗ 1 𝜏 𝑎 𝑡𝑏, 𝜔 , 𝜃   

2𝒯∗ , 𝜔 , 𝜃 𝒯∗ 𝜏𝑎 1 𝜏 𝑏, 𝜔 , 𝜃 𝒯∗ 1 𝜏 𝑎 𝑡𝑏, 𝜔 , 𝜃
     (39) 

From Eqs (38) and (39), we have  

2 𝒯∗ 𝓍, , 𝜃 , 𝒯∗ 𝓍, , 𝜃 𝒯∗ 𝓍, 𝜏𝑢 1 𝜏 𝜈 , 𝜃 , 𝒯∗ 𝓍, 𝜏𝑢

1 𝜏 𝜈 , 𝜃 𝒯∗ 𝓍, 1 𝜏 𝑢 𝜏𝜈 , 𝜃 , 𝒯∗ 𝓍, 1 𝜏 𝑢 𝜏𝜈 , 𝜃   

and  

2 𝒯∗ , 𝜔 , 𝜃 , 𝒯∗ , 𝜔 , 𝜃 𝒯∗ 𝜏𝑎 1 𝜏 𝑏, 𝜔 , 𝜃 , 𝒯∗ 𝜏𝑎 1 𝜏 𝑏, 𝜔 , 𝜃

 𝒯∗ 𝜏𝑎 1 𝜏 𝑏, 𝜔 , 𝜃 , 𝒯∗ 𝜏𝑎 1 𝜏 𝑏, 𝜔 , 𝜃  

It follows that 

𝒯 𝓍, 𝒯 𝓍, 𝜏𝑢 1 𝜏 𝜈 𝒯 𝓍, 1 𝜏 𝑢 𝜏𝜈            (40) 
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and 

𝒯 , 𝜔 𝒯 𝜏𝑎 1 𝜏 𝑏, 𝜔 𝒯 𝜏𝑎 1 𝜏 𝑏, 𝜔           (41) 

Since 𝒯 𝓍, .  and 𝒯 . , 𝜔 , both are coordinated convex-IVFs, then from inequality (Eq 5), for 
every 𝜃 ∈ 0, 1 , inequality (Eqs 40 and 41) we have 

𝒯 𝓍,  𝒯 𝓍, 𝜔 𝑑𝜔  
 

𝒯 𝓍,  𝒯 𝓍,               (42) 

and 

𝒯 , 𝜔 𝒯 𝓍, 𝜔 𝑑𝓍  𝒯 ,  𝒯 ,
              (43) 

Dividing double inequality (Eq 42) by 𝑏 𝑎 , and integrating with respect to 𝓍 over 𝑎, 𝑏 , we 
have  

𝒯 𝓍, 𝑑𝓍  𝒯 𝓍, 𝜔 𝑑𝜔𝑑𝓍  

 
 

𝒯 𝓍, 𝑢 𝑑𝓍 𝒯 𝓍, 𝜈 𝑑𝓍         (44) 

Similarly, dividing double inequality (Eq 43) by 𝜈 𝑢 , and integrating with respect to 𝓍 over 
𝑢, 𝜈 , we have  

𝒯 , 𝜔 𝑑𝜔  𝒯 𝓍, 𝜔 𝑑𝜔𝑑𝓍  

 
 

𝒯 𝑎, 𝜔 𝑑𝜔  𝒯 𝑏, 𝜔 𝑑𝜔      (45) 

By adding Eqs (44) and (45), we have 
 

𝒯 𝓍, 𝑑𝓍 𝒯 , 𝜔 𝑑𝜔   

 𝒯 𝓍, 𝜔 𝑑𝜔𝑑𝓍  

 

𝒯 𝓍, 𝑢 𝑑𝓍  𝒯 𝓍, 𝜈 𝑑𝓍
 

𝒯 𝑎, 𝜔 𝑑𝜔  𝒯 𝑏, 𝜔 𝑑𝜔  (46) 

Since 𝒯 is FIVF, then inequality (Eq 46), we have 
 

𝒯 𝓍, 𝑑𝓍 𝒯 , 𝜔 𝑑𝜔 ≼  𝒯 𝓍, 𝜔 𝑑𝜔𝑑𝓍  

≼
 

𝒯 𝓍, 𝑢 𝑑𝓍  𝒯 𝓍, 𝜈 𝑑𝓍
 

𝒯 𝑎, 𝜔 𝑑𝜔  𝒯 𝑏, 𝜔 𝑑𝜔       (47) 

From the left side of inequality (Eq 5), for each 𝜃 ∈ 0, 1 , we have 

𝒯 ,  𝒯 𝓍, 𝑑𝓍                     (48) 

𝒯 ,  𝒯 , 𝜔 𝑑𝜔                    (49) 
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Taking addition of inequality (Eq 48) with inequality (Eq 49), we have 

𝒯 ,
 

𝒯 𝓍, 𝑑𝓍 𝒯 , 𝜔 𝑑𝜔 . 

Since 𝒯 is a FIVF, then it follows that  

𝒯 , ≼
 

𝒯 𝓍, 𝑑𝓍 𝒯 , 𝜔 𝑑𝜔            (50) 

Now from right side of inequality (Eq 5), for every 𝜃 ∈ 0, 1 , we have 

𝒯 𝓍, 𝑢 𝑑𝓍 𝒯 , 𝒯 ,
                         (51) 

𝒯 𝓍, 𝜈 𝑑𝓍 𝒯 , 𝒯 ,
                         (52) 

𝒯 𝑎, 𝜔 𝑑𝜔 𝒯 , 𝒯 ,
                         (53) 

𝒯 𝑏, 𝜔 𝑑𝜔 𝒯 , 𝒯 ,
                         (54) 

By adding inequalities (Eqs 51–54), we have 
 

𝒯 𝓍, 𝑢 𝑑𝓍  𝒯 𝓍, 𝜈 𝑑𝓍
 

𝒯 𝑎, 𝜔 𝑑𝜔  𝒯 𝑏, 𝜔 𝑑𝜔   

𝒯 , 𝒯 , 𝒯 , 𝒯 ,
  

Since 𝒯 is a FIVF, then it follows that  

 

𝒯 𝓍, 𝑢 𝑑𝓍  𝒯 𝓍, 𝜈 𝑑𝓍
 

𝒯 𝑎, 𝜔 𝑑𝜔  𝒯 𝑏, 𝜔 𝑑𝜔   

≼ 𝒯 , 𝒯 , 𝒯 , 𝒯 ,
                                            (55) 

By combining inequalities Eqs (47), (50) and (55), we get the desired result. 
Example 3.2. We consider the FIVFs 𝒯: 0, 1 0, 1 → 𝔽  defined by,  

𝒯 𝓍 𝜎

⎩
⎨

⎧ 𝓍 ,                                 𝜎 ∈ 0, 2 6 𝑒𝓍 6 𝑒   
𝓍

𝓍 , 𝜎 ∈ 2 6 𝑒𝓍 6 𝑒 , 4 6 𝑒𝓍 6 𝑒

0,                                 otherwise

  

Then, for each 𝜃 ∈ 0, 1 , we have 𝒯 𝓍 2𝜃 6 𝑒𝓍 6 𝑒 , 4 2𝜃 6 𝑒𝓍 6 𝑒  . 

Since end point functions 𝒯∗ 𝓍, 𝜔 , 𝜃 , 𝒯∗ 𝓍, 𝜔 , 𝜃  are coordinate concave functions for each 

𝜃 ∈ 0, 1 . Hence 𝒯 𝓍, 𝜔  is coordinate concave FIVF. 

𝒯
𝑎 𝑏

2
,
𝑢 𝜈

2
2𝜃 5 𝑒 , 2 2 𝜃 6 𝑒
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𝒯 𝓍, 𝑑𝓍 𝒯 , 𝜔 𝑑𝜔 4𝜃 6 𝑒 5 𝑒 , 4 2 𝜃 6 𝑒 5 𝑒    

 𝒯 𝓍, 𝜔 𝑑𝜔𝑑𝓍 2𝜃 5 𝑒 , 2 2 𝜃 5 𝑒    

 

𝒯 𝓍, 𝑢 𝑑𝓍  𝒯 𝓍, 𝜈 𝑑𝓍
 

𝒯 𝑎, 𝜔 𝑑𝜔  𝒯 𝑏, 𝜔 𝑑𝜔   

𝜃 5 𝑒 13 𝑒 , 2 𝜃 5 𝑒 13 𝑒   

𝒯 , 𝒯 , 𝒯 , 𝒯 , 𝜃 , 2 2 𝜃   

That is 

2𝜃 5 𝑒

 

, 2 2 𝜃 6 𝑒  4𝜃 6 𝑒 5 𝑒 , 4 2 𝜃 6 𝑒 5 𝑒    

 2𝜃 5 𝑒 , 2 2 𝜃 5 𝑒  𝜃 5 𝑒 13 𝑒 , 2 𝜃 5 𝑒 13 𝑒  

𝜃 , 2 2 𝜃 . 

Hence, Theorem 3.1 has been verified.  
We now give 𝐻𝐻-Fejér inequality for coordinated convex FIVFs by means of FOR in the following 
result.  
Theorem 3.3. Let 𝒯: ∆ 𝑎, 𝑏 𝑢, 𝜈 → 𝔽  be a coordinated convex FIVF with 𝑎  𝑏 and 
𝑢  𝜈. Then, from 𝜃-levels, we get the collection of IVFs 𝒯 : ∆→ ℝ  are given by 𝒯 𝓍, 𝜔

𝒯∗ 𝓍, 𝜔 , 𝜃 , 𝒯∗ 𝓍, 𝜔 , 𝜃  for all 𝓍, 𝜔 ∈ ∆ and for all 𝜃 ∈ 0, 1 . Let 𝛺: 𝑎, 𝑏 → ℝ with 

𝛺 𝓍 0,  𝛺 𝓍 𝑑𝓍 0  and 𝒲: 𝑢, 𝜈 → ℝ with 𝒲 𝜔 0,  𝒲 𝜔 𝑑𝜔 0,  be two 

symmetric functions with respect to  and  respectively. Then, following inequality holds:  

𝒯 , ≼
𝓍 𝓍

 𝒯 𝓍, 𝛺 𝓍 𝑑𝓍
𝒲

 𝒯 , 𝜔 𝒲 𝜔 𝑑𝜔   

        ≼
𝓍 𝓍 𝒲

𝒯 𝓍, 𝜔 𝛺 𝓍 𝒲 𝜔 𝑑𝜔𝑑𝓍       

      ≼
 

𝓍 𝓍
𝒯 𝓍, 𝑢 𝑑𝓍 𝒯 𝓍, 𝜈 𝑑𝓍         

      
 

𝒲
𝒯 𝑎, 𝜔 𝑑𝜔 𝒯 𝑏, 𝜔 𝑑𝜔        

 ≼ 𝒯 , 𝒯 , 𝒯 , 𝒯 ,
.                              (56) 

Proof. Since 𝒯 both is a coordinated convex FIVF on ∆, it follows that functions, then by Lemma 
2.1.14, there exist 

𝒯𝓍: 𝑢, 𝜈 → 𝔽 , 𝒯𝓍 𝜔 𝒯 𝓍, 𝜔 ,  𝒯 : 𝑎, 𝑏 → 𝔽 , 𝒯 𝓍 𝒯 𝓍, 𝜔 . 
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Thus from inequality (Eq 27), for each 𝜃 ∈ 0, 1 , we have  

𝒯 𝓍

 

𝒲
𝒯 𝓍 𝜔 𝒲 𝜔 𝑑𝜔

𝒯 𝓍 𝒯 𝓍   

and 

𝒯
 

𝓍 𝓍
𝒯 𝓍 𝛺 𝓍 𝑑𝓍

𝒯 𝒯
  

The above inequalities can be written as 

𝒯 𝓍,
 

𝒲
𝒯 𝓍, 𝜔 𝒲 𝜔 𝑑𝜔 𝒯 𝓍, 𝒯 𝓍,

            (57) 

and 

𝒯 , 𝜔
 

𝓍 𝓍
𝒯 𝓍, 𝜔 𝛺 𝓍 𝑑𝓍 𝒯 , 𝒯 ,

    (58) 

Multiplying Eq (57) by 𝛺 𝓍  and then integrating the resultant with respect to 𝓍 over 𝑎, 𝑏 , we have 

𝒯 𝓍, 𝛺 𝓍 𝑑𝓍
 

𝒲
𝒯 𝓍, 𝜔 𝛺 𝓍 𝒲 𝜔 𝑑𝜔𝑑𝓍

𝒯 𝓍, 𝒯 𝓍,
𝛺 𝓍 𝑑𝓍. (59) 

Now, multiplying Eq (58) by 𝒲 𝜔  and then integrating the resultant with respect to 𝜔 over 
𝑢, 𝜈 , we have 

𝒯 , 𝜔 𝒲 𝜔 𝑑𝜔
 

𝓍 𝓍
𝒯 𝓍, 𝜔 𝛺 𝓍 𝒲 𝜔 𝑑𝓍𝑑𝜔

𝒯 , 𝒯 ,
𝒲 𝜔 𝑑𝜔 (60) 

Since 𝛺 𝓍 𝑑𝓍 0 and 𝒲 𝜔 𝑑𝜔 0, then dividing Eqs (59) and (60) by 𝛺 𝓍 𝑑𝓍 0 

and 𝒲 𝜔 𝑑𝜔 0, respectively, we get 

𝓍 𝓍
 𝒯 𝓍, 𝛺 𝓍 𝑑𝓍

𝒲
 𝒯 , 𝜔 𝒲 𝜔 𝑑𝜔          

   
𝓍 𝓍 𝒲

𝒯 𝓍, 𝜔 𝛺 𝓍 𝒲 𝜔 𝑑𝜔𝑑𝓍.        

   
𝓍 𝓍

𝒯 𝓍, 𝒯 𝓍, 𝛺 𝓍 𝑑𝓍
 

𝒲

𝒯 , 𝒯 , 𝒲 𝜔 𝑑𝜔  (61) 

Now, from the left part of double inequalities (Eqs 57 and 58), we obtain 

𝒯 ,
 

𝒲
𝒯 , 𝜔 𝒲 𝜔 𝑑𝜔      (62) 

and 

𝒯 ,
 

𝓍 𝓍
𝒯 𝓍, 𝛺 𝓍 𝑑𝓍      (63) 
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Summing the inequalities (Eqs 62 and 63), we get 

𝒯 ,
 

𝓍 𝓍
𝒯 𝓍, 𝛺 𝓍 𝑑𝓍

 

𝒲
𝒯 , 𝜔 𝒲 𝜔 𝑑𝜔   (64) 

Similarly, from the right part of Eqs (57) and (58), we can obtain 
 

𝒲
𝒯 𝑎, 𝜔 𝒲 𝜔 𝑑𝜔 𝒯 , 𝒯 ,

        (65) 

 

𝒲
𝒯 𝑏, 𝜔 𝒲 𝜔 𝑑𝜔 𝒯 , 𝒯 ,

         (66) 

and 
 

𝓍 𝓍
𝒯 𝓍, 𝑢 𝛺 𝓍 𝑑𝓍 𝒯 , 𝒯 ,

       (67) 

 

𝓍 𝓍
𝒯 𝓍, 𝜈 𝛺 𝓍 𝑑𝓍 𝒯 , 𝒯 ,

       (68) 

Adding Eqs (65)–(68) and dividing by 4, we get 
 

𝒲
𝒯 𝑎, 𝜔 𝒲 𝜔 𝑑𝜔 𝒯 𝑏, 𝜔 𝒲 𝜔 𝑑𝜔

 

𝓍 𝓍
𝒯 𝓍, 𝑢 𝛺 𝓍 𝑑𝓍

𝒯 𝓍, 𝜈 𝛺 𝓍 𝑑𝓍 𝒯 , 𝒯 , 𝒯 , 𝒯 ,
          (69) 

Combing inequalities Eqs (61), (64) and (69), we obtain 

𝒯 ,
 

𝓍 𝓍
𝒯 𝓍, 𝛺 𝓍 𝑑𝓍

 

𝒲
𝒯 , 𝜔 𝒲 𝜔 𝑑𝜔       

     
𝓍 𝓍 𝒲

𝒯 𝓍, 𝜔 𝛺 𝓍 𝒲 𝜔 𝑑𝜔𝑑𝓍.       

     
 

𝟒 𝒲
𝒯 𝑎, 𝜔 𝒲 𝜔 𝑑𝜔 𝒯 𝑏, 𝜔 𝒲 𝜔 𝑑𝜔     

       
 

𝟒 𝓍 𝓍
𝒯 𝓍, 𝑢 𝛺 𝓍 𝑑𝓍 𝒯 𝓍, 𝜈 𝛺 𝓍 𝑑𝓍       

     
𝒯 , 𝒯 , 𝒯 , 𝒯 , 𝒯 , 𝒯 , 𝒯 , 𝒯 ,

  

That is 

𝒯 , ≼
𝓍 𝓍

 𝒯 𝓍, 𝛺 𝓍 𝑑𝓍
𝒲

 𝒯 , 𝜔 𝒲 𝜔 𝑑𝜔      

        ≼
𝓍 𝓍 𝒲

𝒯 𝓍, 𝜔 𝛺 𝓍 𝒲 𝜔 𝑑𝜔𝑑𝓍            

             ≼
 

𝓍 𝓍
𝒯 𝓍, 𝑢 𝑑𝓍 𝒯 𝓍, 𝜈 𝑑𝓍        
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𝒲
𝒯 𝑎, 𝜔 𝑑𝜔 𝒯 𝑏, 𝜔 𝑑𝜔      

              ≼ 𝒯 , 𝒯 , 𝒯 , 𝒯 ,
 

Hence, this concludes the proof. 
We now obtain some 𝐻𝐻-inequalities for the product of coordinated convex FIVFs. These 
inequalities are refinements of some known inequalities, see [11,13]. 
Theorem 3.4. Let 𝒯, 𝒥 ∶ ∆ 𝑎, 𝑏 𝑢, 𝜈 ⊂ ℝ → 𝔽  be two coordinated convex FIVFs on ∆, 
whose 𝜃-levels 𝒯 , 𝒥 : 𝑎, 𝑏 𝑢, 𝜈 → ℝ are defined by 𝒯 𝓍, 𝜔 𝒯∗ 𝓍, 𝜔 , 𝜃 , 𝒯∗ 𝓍, 𝜔 , 𝜃  
and 𝒥 𝓍, 𝜔 𝒥∗ 𝓍, 𝜔 , 𝜃 , 𝒥∗ 𝓍, 𝜔 , 𝜃  for all 𝓍, 𝜔 ∈ ∆  and for all 𝜃 ∈ 0, 1 . Then, 
following inequality holds:  

 𝒯 𝓍, 𝜔 𝒥 𝓍, 𝜔 𝑑𝜔𝑑𝓍 ≼ 𝑃 𝑎, 𝑏, 𝑢, 𝜈 ℳ 𝑎, 𝑏, 𝑢, 𝜈 𝒩 𝑎, 𝑏, 𝑢, 𝜈   

where 

 𝑃 𝑎, 𝑏, 𝑢, 𝜈 𝒯 𝑎, 𝑢 𝒥 𝑎, 𝑢   𝒯 𝑎, 𝜈 𝒥 𝑎, 𝜈 𝒯 𝑏, 𝑢 𝒥 𝑏, 𝑢   𝒯 𝑏, 𝜈 𝒥 𝑏, 𝜈  

 ℳ 𝑎, 𝑏, 𝑢, 𝜈 𝒯 𝑎, 𝑢 𝒥 𝑎, 𝜈   𝒯 𝑎, 𝜈 𝒥 𝑎, 𝑢 𝒯 𝑏, 𝑢 𝒥 𝑏, 𝜈   𝒯 𝑏, 𝜈 𝒥 𝑏, 𝑢  
𝒯 𝑎, 𝑢 𝒥 𝑏, 𝑢   𝒯 𝑏, 𝜈 𝒥 𝑎, 𝜈 𝒯 𝑏, 𝑢 𝒥 𝑎, 𝑢   𝒯 𝑎, 𝜈 𝒥 𝑏, 𝜈  

 𝒩 𝑎, 𝑏, 𝑢, 𝜈 𝒯 𝑎, 𝑢 𝒥 𝑏, 𝜈   𝒯 𝑏, 𝑢 𝒥 𝑎, 𝜈  𝒯 𝑏, 𝜈 𝒥 𝑎, 𝑢 𝒯 𝑏, 𝑢 𝒥 𝑎, 𝜈  

and for each 𝜃 ∈ 0, 1 , 𝑃 𝑎, 𝑏, 𝑢, 𝜈 , ℳ 𝑎, 𝑏, 𝑢, 𝜈  and 𝒩 𝑎, 𝑏, 𝑢, 𝜈  are defined as follows: 

𝑃 𝑎, 𝑏, 𝑢, 𝜈 𝑃∗ 𝑎, 𝑏, 𝑢, 𝜈 , 𝜃 , 𝑃∗ 𝑎, 𝑏, 𝑢, 𝜈 , 𝜃 ,  

ℳ 𝑎, 𝑏, 𝑢, 𝜈 ℳ∗ 𝑎, 𝑏, 𝑢, 𝜈 , 𝜃 , ℳ∗ 𝑎, 𝑏, 𝑢, 𝜈 , 𝜃 ,  

𝒩 𝑎, 𝑏, 𝑢, 𝜈 𝒩∗ 𝑎, 𝑏, 𝑢, 𝜈 , 𝜃 , 𝒩∗ 𝑎, 𝑏, 𝑢, 𝜈 , 𝜃 . 

Proof. Let 𝒯 and 𝒥 both are coordinated convex FIVFs on 𝑎, 𝑏 𝑢, 𝜈 . Then  

𝒯 𝜏𝑎 1 𝜏 𝑏, 𝑠𝑢 1 𝑠 𝜈
≼ 𝜏𝑠𝒯 𝑎, 𝑢 𝜏 1 𝑠 𝒯 𝑎, 𝜈 1 𝜏 𝑠𝒯 𝑏, 𝑢 1 𝜏 1 𝑠 𝒯 𝑏, 𝜈  

and 

𝒥 𝜏𝑎 1 𝜏 𝑏, 𝑠𝑢 1 𝑠 𝜈
≼ 𝜏𝑠𝒥 𝑎, 𝑢 𝜏 1 𝑠 𝒥 𝑎, 𝜈 1 𝜏 𝑠𝒥 𝑏, 𝑢 1 𝜏 1 𝑠 𝒥 𝑏, 𝜈 . 

Since 𝒯 and 𝒥 both are coordinated convex FIVFs, then by Lemma 2.1.14, there exist 

𝒯𝓍: 𝑢, 𝜈 → 𝔽 , 𝒯𝓍 𝜔 𝒯 𝓍, 𝜔 , 𝒥𝓍: 𝑢, 𝜈 → 𝔽 , 𝒥𝓍 𝜔 𝒥 𝓍, 𝜔 , 

and  

𝒯 : 𝑎, 𝑏 → 𝔽 , 𝒯 𝓍 𝒯 𝓍, 𝜔 , 𝒥 : 𝑎, 𝑏 → 𝔽 , 𝒥 𝓍 𝒥 𝓍, 𝜔 . 
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Since 𝒯𝓍, 𝒥𝓍, 𝒯  and 𝒥  are FIVFs, then by inequality (Eq 25), we have  

 𝒯 𝓍 𝒥 𝓍 𝑑𝓍 ≼ 𝒯 𝑎 𝒥 𝑎  𝒯 𝑏 𝒥 𝑏 𝒯 𝑎

𝒥 𝑏  𝒯 𝑏 𝒥 𝑎   

and 

 𝒯𝓍 𝜔 𝒥𝓍 𝜔 𝑑𝜔 ≼ 𝒯𝓍 𝑢 𝒥𝓍 𝑢  𝒯𝓍 𝜈 𝒥𝓍 𝜈 𝒯𝓍 𝑢

𝒥𝓍 𝜈  𝒯𝓍 𝑢 𝒥𝓍 𝜈   

For each 𝜃 ∈ 0, 1 , we have 

 𝒯 𝓍 𝒥 𝓍 𝑑𝓍 𝒯 𝑎 𝒥 𝑎  𝒯 𝑏 𝒥 𝑏

𝒯 𝑎 𝒥 𝑏  𝒯 𝑏 𝒥 𝑎   

and 

 𝒯 𝓍 𝜔 𝒥 𝓍 𝜔 𝑑𝜔 𝒯 𝓍 𝑢 𝒥 𝓍 𝑢  𝒯 𝓍 𝜈 𝒥 𝓍 𝜈

𝒯 𝓍 𝑢 𝒥 𝓍 𝜈  𝒯 𝓍 𝑢 𝒥 𝓍 𝜈   

The above inequalities can be written as 

 𝒯 𝓍, 𝜔 𝒥 𝓍, 𝜔 𝑑𝓍 𝒯 𝑎, 𝜔 𝒥 𝑎, 𝜔  𝒯 𝑏, 𝜔 𝒥 𝑏, 𝜔      

        𝒯 𝑎, 𝜔 𝒥 𝑏, 𝜔  𝒯 𝑏, 𝜔 𝒥 𝑎, 𝜔     (70) 

and 

 𝒯 𝓍, 𝜔 𝒥 𝓍, 𝜔 𝑑𝜔 𝒯 𝓍, 𝑢 𝒥 𝓍, 𝑢  𝒯 𝓍, 𝜈 𝒥 𝓍, 𝜈     

   𝒯 𝓍, 𝑢 𝒥 𝓍, 𝑢  𝒯 𝓍, 𝜈 𝒥 𝓍, 𝜈            (71) 

Firstly we solve inequality (Eq 70), taking integration on the both sides of inequality with respect to 
𝜔 over interval 𝑢, 𝜈  and dividing both sides by 𝜈 𝑢, we have 

 𝒯 𝓍, 𝜔 𝒥 𝓍, 𝜔 𝑑𝜔𝑑𝓍 𝒯 𝑎, 𝜔 𝒥 𝑎, 𝜔  𝒯 𝑏, 𝜔

𝒥 𝑏, 𝜔 𝑑𝜔 𝒯 𝑎, 𝜔 𝒥 𝑏, 𝜔  𝒯 𝑏, 𝜔 𝒥 𝑎, 𝜔 𝑑𝜔     (72) 

Now again by inequality (Eq 25), for each 𝜃 ∈ 0, 1 , we have 

 𝒯 𝑎, 𝜔 𝒥 𝑎, 𝜔 𝑑𝜔 𝒯 𝑎, 𝑢 𝒥 𝑎, 𝑢  𝒯 𝑎, 𝜈 𝒥 𝑎, 𝜈 𝑑𝜔   



6572 

Mathematical Biosciences and Engineering  Volume 18, Issue 5, 6552-6580. 

        𝒯 𝑎, 𝑢 𝒥 𝑎, 𝜈  𝒯 𝑎, 𝑢 𝒥 𝑎, 𝜈 𝑑𝜔  (73)  

 𝒯 𝑏, 𝜔 𝒥 𝑏, 𝜔 𝑑𝜔 𝒯 𝑏, 𝑢 𝒥 𝑏, 𝑢  𝒯 𝑏, 𝜈 𝒥 𝑏, 𝜈 𝑑𝜔   

        𝒯 𝑏, 𝑢 𝒥 𝑏, 𝜈  𝒯 𝑏, 𝑢 𝒥 𝑎, 𝜈 𝑑𝜔  (74) 

 𝒯 𝑎, 𝜔 𝒥 𝑏, 𝜔 𝑑𝜔 𝒯 𝑎, 𝑢 𝒥 𝑏, 𝑢  𝒯 𝑎, 𝜈 𝒥 𝑏, 𝜈 𝑑𝜔  

    𝒯 𝑎, 𝑢 𝒥 𝑏, 𝜈  𝒯 𝑎, 𝜈 𝒥 𝑏, 𝑢 𝑑𝜔     (75) 

 𝒯 𝑏, 𝜔 𝒥 𝑎, 𝜔 𝑑𝜔 𝒯 𝑏, 𝑢 𝒥 𝑎, 𝑢  𝒯 𝑏, 𝜈 𝒥 𝑎, 𝜈 𝑑𝜔   

       𝒯 𝑏, 𝑢 𝒥 𝑎, 𝜈  𝒯 𝑏, 𝜈 𝒥 𝑎, 𝑢 𝑑𝜔    (76) 

From Eqs (73)–(76), inequality (Eq 72) we have 

 𝒯 𝓍, 𝜔 𝒥 𝓍, 𝜔 𝑑𝜔𝑑𝓍 𝑃 𝑎, 𝑏, 𝑢, 𝜈 ℳ 𝑎, 𝑏, 𝑢, 𝜈

𝒩 𝑎, 𝑏, 𝑢, 𝜈   

That is 

 𝒯 𝓍, 𝜔 𝒥 𝓍, 𝜔 𝑑𝜔𝑑𝓍 ≼ 𝑃 𝑎, 𝑏, 𝑢, 𝜈 ℳ 𝑎, 𝑏, 𝑢, 𝜈 𝒩 𝑎, 𝑏, 𝑢, 𝜈   

Hence, this concludes the proof of theorem. 

Theorem 3.5. Let 𝒯, 𝒥 ∶ ∆ 𝑎, 𝑏 𝑢, 𝜈 ⊂ ℝ → 𝔽  be two convex FIVFs. Then, from 𝜃-levels, 

we get the collection of IVFs 𝒯 , 𝒥 : ∆⊂ ℝ → ℝ  are given by 𝒯 𝓍

𝒯∗ 𝓍, 𝜔 , 𝜃 , 𝒯∗ 𝓍, 𝜔 , 𝜃  and 𝒥 𝓍 𝒥∗ 𝓍, 𝜔 , 𝜃 , 𝒥∗ 𝓍, 𝜔 , 𝜃  for all 𝓍, 𝜔 ∈ ∆  and 

for all 𝜃 ∈ 0, 1 . Then, following inequality holds:  

4 𝒯 , 𝒥 ,   ≼

 𝒯 𝓍, 𝜔 𝒥 𝓍, 𝜔 𝑑𝜔𝑑𝓍  𝑃 𝑎, 𝑏, 𝑢, 𝜈 ℳ 𝑎, 𝑏, 𝑢, 𝜈 𝒩 𝑎, 𝑏, 𝑢, 𝜈   

where 𝑃 𝑎, 𝑏, 𝑢, 𝜈 , ℳ 𝑎, 𝑏, 𝑢, 𝜈  and 𝒩 𝑎, 𝑏, 𝑢, 𝜈  are given in Theorem 3.4. 
Proof. Since 𝒯, 𝒥 ∶ ∆→ 𝔽  be two convex FIVFs, then from inequality (Eq 26) and for each 𝜃 ∈
0, 1 , we have 

2𝒯 , 𝒥 ,  𝒯 𝓍, 𝒥 𝓍, 𝑑𝓍   

𝒯 𝑎, 𝒥 𝑎,  𝒯 𝑏, 𝒥 𝑏,   
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𝒯 𝑎, 𝒥 𝑏,  𝒯 𝑏, 𝒥 𝑎,              (77) 

and  

2𝒯 , 𝒥 ,  𝒯 , 𝜔 𝒥 , 𝜔 𝑑𝜔   

𝒯 , 𝑢 𝒥 , 𝑢  𝒯 , 𝜈 𝒥 , 𝜈     

     𝒯 , 𝑢 𝒥 , 𝜈  𝒯 , 𝜈 𝒥 , 𝑢     (78) 

Summing the inequalities (Eqs 77 and 78), then taking the multiplication of the resultant one by 2, 
we obtain 

8𝒯 , 𝒥 ,  𝒯 𝓍, 𝒥 𝓍, 𝑑𝓍  𝒯 , 𝜔

𝒥 , 𝜔 𝑑𝓍 2𝒯 𝑎, 𝒥 𝑎, 2𝒯 𝑏, 𝒥 𝑏, 2𝒯 , 𝑢

𝒥 , 𝑢 2𝒯 , 𝜈 𝒥 , 𝜈 2𝒯 𝑎, 𝒥 𝑏, 2𝒯 𝑏,

𝒥 𝑎, 2𝒯 , 𝑢 𝒥 , 𝜈 2𝒯 , 𝜈 𝒥 , 𝑢         (79) 

Now, with the help of integral inequality (Eq 26) for each integral on the right-hand side of Eq (79), 
we have  

2𝒯 𝑎, 𝒥 𝑎,                  

    𝒯 𝑎, 𝜔 𝒥 𝑎, 𝜔 𝑑𝜔 𝒯 𝑎, 𝑢 𝒥 𝑎, 𝑢  𝒯 𝑎, 𝜈 𝒥 𝑎, 𝜈   

      𝒯 𝑎, 𝑢 𝒥 𝑎, 𝜈  𝒯 𝑎, 𝜈 𝒥 𝑎, 𝑢        (80) 

2𝒯 𝑏, 𝒥 𝑏,                  

     𝒯 𝑏, 𝜔 𝒥 𝑏, 𝜔 𝑑𝜔 𝒯 𝑏, 𝑢 𝒥 𝑏, 𝑢  𝒯 𝑏, 𝜈 𝒥 𝑏, 𝜈  

       𝒯 𝑏, 𝑢 𝒥 𝑏, 𝜈  𝒯 𝑏, 𝜈 𝒥 𝑏, 𝑢       (81) 

2𝒯 𝑎, 𝒥 𝑏,                  

     𝒯 𝑎, 𝜔 𝒥 𝑏, 𝜔 𝑑𝜔 𝒯 𝑎, 𝑢 𝒥 𝑏, 𝑢  𝒯 𝑎, 𝜈 𝒥 𝑏, 𝜈  

       𝒯 𝑎, 𝑢 𝒥 𝑏, 𝜈  𝒯 𝑎, 𝜈 𝒥 𝑏, 𝑢       (82) 
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2𝒯 𝑏, 𝒥 𝑎,                  

     𝒯 𝑏, 𝜔 𝒥 𝑎, 𝜔 𝑑𝜔 𝒯 𝑏, 𝑢 𝒥 𝑎, 𝑢  𝒯 𝑏, 𝜈 𝒥 𝑎, 𝜈  

       𝒯 𝑏, 𝑢 𝒥 𝑎, 𝜈  𝒯 𝑏, 𝜈 𝒥 𝑎, 𝑢       (83) 

2𝒯 , 𝑢 𝒥 , 𝑢                  

    𝒯 𝓍, 𝑢 𝒥 𝓍, 𝑢 𝑑𝓍 𝒯 𝑎, 𝑢 𝒥 𝑎, 𝑢  𝒯 𝑏, 𝑢 𝒥 𝑏, 𝑢  

    𝒯 , 𝑢 𝒥 , 𝑢  𝒯 , 𝑢 𝒥 , 𝑢     (84) 

2𝒯 , 𝜈 𝒥 , 𝜈                  

    𝒯 𝓍, 𝜈 𝒥 𝓍, 𝜈 𝑑𝓍 𝒯 𝑎, 𝜈 𝒥 𝑎, 𝜈  𝒯 𝑏, 𝜈 𝒥 𝑏, 𝜈  

    𝒯 , 𝜈 𝒥 , 𝜈  𝒯 , 𝜈 𝒥 , 𝜈     (85) 

2𝒯 , 𝑢 𝒥 , 𝜈                  

    𝒯 𝓍, 𝑢 𝒥 𝓍, 𝜈 𝑑𝓍 𝒯 𝑎, 𝑢 𝒥 𝑎, 𝜈  𝒯 𝑏, 𝑢 𝒥 𝑏, 𝜈  

    𝒯 , 𝑢 𝒥 , 𝜈  𝒯 , 𝑢 𝒥 , 𝜈     (86) 

2𝒯 , 𝜈 𝒥 , 𝑢                  

    𝒯 𝓍, 𝜈 𝒥 𝓍, 𝑢 𝑑𝓍 𝒯 𝑎, 𝜈 𝒥 𝑎, 𝑢  𝒯 𝑏, 𝜈 𝒥 𝑏, 𝑢  

    𝒯 , 𝜈 𝒥 , 𝑢  𝒯 , 𝜈 𝒥 , 𝑢     (87) 

From Eqs (80)–(87), we have 

8𝒯 , 𝒥 ,                

    𝒯 𝓍, 𝒥 𝓍, 𝑑𝓍  𝒯 , 𝜔 𝒥 , 𝜔 𝑑𝓍  

 𝒯 𝑎, 𝜔 𝒥 𝑎, 𝜔 𝑑𝜔  𝒯 𝑏, 𝜔 𝒥 𝑏, 𝜔 𝑑𝜔   

  𝒯 𝓍, 𝑢 𝒥 𝓍, 𝑢 𝑑𝓍  𝒯 𝓍, 𝜈 𝒥 𝓍, 𝜈 𝑑𝓍   
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𝒯 𝑎, 𝜔 𝒥 𝑏, 𝜔 𝑑𝜔 𝒯 𝑏, 𝜔 𝒥 𝑎, 𝜔 𝑑𝜔   

 𝒯 𝓍, 𝑢 𝒥 𝓍, 𝜈 𝑑𝓍  𝒯 𝓍, 𝜈 𝒥 𝓍, 𝑢 𝑑𝓍     

 𝑃 𝑎, 𝑏, 𝑢, 𝜈 ℳ 𝑎, 𝑏, 𝑢, 𝜈 𝒩 𝑎, 𝑏, 𝑢, 𝜈      (88) 

Now, again with the help of integral inequality (Eq 26) for first two integrals on the right-hand side 
of Eq (88), we have the following relation 

  𝒯 𝓍, 𝒥 𝓍, 𝑑𝓍               

      𝒯 𝓍, 𝜔 𝒥 𝓍, 𝜔 𝑑𝜔𝑑𝓍       

       𝒯 𝓍, 𝑢 𝒥 𝓍, 𝑢  𝒯 𝓍, 𝜈 𝒥 𝓍, 𝜈 𝑑𝓍    

       𝒯 𝑢, 𝓍 𝒥 𝓍, 𝜈  𝒯 𝓍, 𝜈 𝒥 𝓍, 𝑢 𝑑𝓍,  (89) 

 𝒯 , 𝜔 𝒥 , 𝜔 𝑑𝓍                

     𝒯 𝓍, 𝜔 𝒥 𝓍, 𝜔 𝑑𝜔𝑑𝓍         

     𝒯 𝑎, 𝜔 𝒥 𝑎, 𝜔  𝒯 𝑏, 𝜔 𝒥 𝑏, 𝜔 𝑑𝜔    

       𝒯 𝑎, 𝜔 𝒥 𝑏, 𝜔  𝒯 𝑏, 𝜔 𝒥 𝑎, 𝜔 𝑑𝜔  (90) 

From Eqs (89) and (90), we have 

8𝒯 , 𝒥 ,  𝒯 𝓍, 𝜔 𝒥 𝓍, 𝜔 𝑑𝜔𝑑𝓍

𝒯 𝓍, 𝑢 𝒥 𝓍, 𝑢  𝒯 𝓍, 𝜈 𝒥 𝓍, 𝜈 𝑑𝓍 𝒯 𝓍, 𝑢 𝒥 𝓍, 𝜈

 𝒯 𝓍, 𝜈 𝒥 𝓍, 𝑢 𝑑𝓍  𝒯 𝓍, 𝜔 𝒥 𝓍, 𝜔 𝑑𝜔𝑑𝓍 𝒯 𝑎, 𝜔

𝒥 𝑎, 𝜔  𝒯 𝑏, 𝜔 𝒥 𝑏, 𝜔 𝑑𝜔 𝒯 𝑎, 𝜔 𝒥 𝑏, 𝜔  𝒯 𝑏, 𝜔

𝒥 𝑎, 𝜔 𝑑𝜔  𝒯 𝑎, 𝜔 𝒥 𝑎, 𝜔 𝑑𝜔  𝒯 𝑏, 𝜔 𝒥 𝑏, 𝜔 𝑑𝜔 

 𝒯 𝓍, 𝑢 𝒥 𝓍, 𝑢 𝑑𝓍  𝒯 𝓍, 𝜈 𝒥 𝓍, 𝜈 𝑑𝓍  𝒯 𝑎, 𝜔

𝒥 𝑏, 𝜔 𝑑𝜔 𝒯 𝑏, 𝜔 𝒥 𝑎, 𝜔 𝑑𝜔  𝒯 𝓍, 𝑢 𝒥 𝓍, 𝜈 𝑑𝓍

 𝒯 𝓍, 𝜈 𝒥 𝓍, 𝑢 𝑑𝓍  𝑃 𝑎, 𝑏, 𝑢, 𝜈 ℳ 𝑎, 𝑏, 𝑢, 𝜈 𝒩 𝑎, 𝑏, 𝑢, 𝜈   
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It follows that   

8𝒯 , 𝒥 ,                 

  𝒯 𝓍, 𝜔 𝒥 𝓍, 𝜔 𝑑𝜔𝑑𝓍           

 𝒯 𝓍, 𝑢 𝒥 𝓍, 𝑢  𝒯 𝓍, 𝜈 𝒥 𝓍, 𝜈 𝑑𝓍       

  𝒯 𝓍, 𝑢 𝒥 𝓍, 𝜈  𝒯 𝓍, 𝜈 𝒥 𝓍, 𝑢 𝑑𝓍       

𝒯 𝑎, 𝜔 𝒥 𝑎, 𝜔  𝒯 𝑏, 𝜔 𝒥 𝑏, 𝜔 𝑑𝜔      

  𝒯 𝑎, 𝜔 𝒥 𝑏, 𝜔  𝒯 𝑏, 𝜔 𝒥 𝑎, 𝜔 𝑑𝜔      

  𝑃 𝑎, 𝑏, 𝑢, 𝜈 ℳ 𝑎, 𝑏, 𝑢, 𝜈 𝒩 𝑎, 𝑏, 𝑢, 𝜈               (91) 

Now, using integral inequality (Eq 25) for integrals on the right-hand side of Eq (91), we have the 
following relation 

 𝒯 𝓍, 𝑢 𝒥 𝓍, 𝑢 𝑑𝓍 𝒯 𝑎, 𝑢 𝒥 𝑎, 𝑢  𝒯 𝑏, 𝑢 𝒥 𝑏, 𝑢 𝒯 𝑎, 𝑢

𝒥 𝑏, 𝑢  𝒯 𝑏, 𝑢 𝒥 𝑎, 𝑢                        (92) 

 𝒯 𝓍, 𝜈 𝒥 𝓍, 𝜈 𝑑𝓍 𝒯 𝑎, 𝜈 𝒥 𝑎, 𝜈  𝒯 𝑏, 𝜈 𝒥 𝑏, 𝜈 𝒯 𝑎, 𝜈

𝒥 𝑏, 𝜈  𝒯 𝑏, 𝜈 𝒥 𝑎, 𝜈                        (93) 

 𝒯 𝓍, 𝑢 𝒥 𝓍, 𝜈 𝑑𝓍 𝒯 𝑎, 𝑢 𝒥 𝑎, 𝜈  𝒯 𝑏, 𝑢 𝒥 𝑏, 𝜈 𝒯 𝑎, 𝑢

𝒥 𝑏, 𝜈  𝒯 𝑏, 𝑢 𝒥 𝑎, 𝜈                      (94) 

 𝒯 𝓍, 𝜈 𝒥 𝓍, 𝑢 𝑑𝓍 𝒯 𝑎, 𝜈 𝒥 𝑎, 𝑢  𝒯 𝑏, 𝜈 𝒥 𝑏, 𝑢 𝒯 𝑎, 𝜈

𝒥 𝑏, 𝑢  𝒯 𝑏, 𝜈 𝒥 𝑎, 𝑢                      (95) 

 𝒯 𝑎, 𝜔 𝒥 𝑎, 𝜔 𝑑𝜔 𝒯 𝑎, 𝑢 𝒥 𝑎, 𝑢  𝒯 𝑎, 𝜈 𝒥 𝑎, 𝜈 𝒯 𝑎, 𝑢

𝒥 𝑎, 𝜈  𝒯 𝑎, 𝜈 𝒥 𝑎, 𝑢                      (96) 

 𝒯 𝑏, 𝜔 𝒥 𝑏, 𝜔 𝑑𝜔 𝒯 𝑏, 𝑢 𝒥 𝑏, 𝑢  𝒯 𝑏, 𝜈 𝒥 𝑏, 𝜈 𝒯 𝑏, 𝑢

𝒥 𝑏, 𝜈  𝒯 𝑏, 𝜈 𝒥 𝑏, 𝑢                      (97) 

 𝒯 𝑎, 𝜔 𝒥 𝑏, 𝜔 𝑑𝜔 𝒯 𝑎, 𝑢 𝒥 𝑏, 𝑢  𝒯 𝑎, 𝜈 𝒥 𝑏, 𝜈 𝒯 𝑎, 𝑢

𝒥 𝑏, 𝜈  𝒯 𝑎, 𝜈 𝒥 𝑏, 𝑢                      (98) 
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 𝒯 𝑏, 𝜔 𝒥 𝑎, 𝜔 𝑑𝜔 𝒯 𝑏, 𝑢 𝒥 𝑎, 𝑢  𝒯 𝑏, 𝜈 𝒥 𝑎, 𝜈 𝒯 𝑏, 𝑢

𝒥 𝑎, 𝜈  𝒯 𝑏, 𝜈 𝒥 𝑎, 𝑢                     (99) 

From Eqs (92)–(99), inequality (Eq 91) we have   

4 𝒯 , 𝒥 ,  𝒯 𝓍, 𝜔 𝒥 𝓍, 𝜔 𝑑𝜔𝑑𝓍

 𝑃 𝑎, 𝑏, 𝑢, 𝜈 ℳ 𝑎, 𝑏, 𝑢, 𝜈 𝒩 𝑎, 𝑏, 𝑢, 𝜈   

That is  

4 𝒯 , 𝒥 , ≼

 𝒯 𝓍, 𝜔 𝒥 𝓍, 𝜔 𝑑𝜔𝑑𝓍  𝑃 𝑎, 𝑏, 𝑢, 𝜈 ℳ 𝑎, 𝑏, 𝑢, 𝜈 𝒩 𝑎, 𝑏, 𝑢, 𝜈 .  

4. Conclusions and future plan 

In this study, firstly we introduced the notion of double integrals where the integrand is FIVFs. 
Secondly, we have presented the new class of convex FIVFs is known as coordinated convex FIVFs 
by means of FOR. Then, we established a strong relationship between 𝐻𝐻-inequalities and 
coordinated convex FIVFs through FOR and fuzzy double integral. In future, we shall try to explore 
this concept for generalized coordinated FIVF, and with the help of fuzzy fractional integral 
operators; we shall derive some new versions of fuzzy-interval 𝐻𝐻-type inequalities by means of 
FOR. We hope that this concept will be helpful for other authors to contribute their roles in different 
fields of sciences. 
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