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Abstract: Cyclins and related cyclin-dependent kinases play vital roles in regulating the progression 

in the cell cycle. Understanding the intrinsic mechanisms of cyclins promises knowledge about cell 

uncontrolled proliferation and prevention of cancer cells. Therefore, accurate recognition of cyclins is 

important for the investigation of tumor cells and biomedical engineering. This study proposes a novel 

sequence-based predictor named TYLER (predicT cYcLin-dEpendent pRoteins) for addressing the 

long challenge problem of predicting cyclin-dependent proteins (CDPs). We use information theory to 

compute selectively enriched CDP-related motifs and build the motif-based model. For those proteins 

without sharing enriched motifs, we compute sequence-derived features and construct machine 

learning-based models. We optimize the weights of two different models to build a more accurate 

predictor. We estimate these two types of models by using 5-fold cross-validations on the TRAINING 

dataset. We prove that the combination of two models and optimization of the corresponding weights 

promises decent and robust results on both TRAINING and independent TEST dataset. The empirical 

test demonstrates that TYLER is robust predictor and statistically significantly better than current 

methods. The runtime assessment reveals TYLER is a high-throughput effective method. We use 

TYLER to make predictions on the human proteome, and use the results to hypothesize CDPs. The 

latest experimental verified CDPs and GO analysis proves that some of our novel predictions shall be 

potential CDPs. TYLER is implemented as a public user-friendly web server at 

http://www.inforstation.com/webservers/TYLER/. We share all data and source code that used in this 

research at https://github.com/biocomputinglab/TYLER.git. 
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1. Introduction 

Cyclins control the progression in the cell cycle. They usually interact with cyclin-dependent 

kinases (Cdks) to express function and affect cell period activity [1]. According to the differences in 

the function and period of activity, cyclins can be categorized into G1, S, G2, and M cyclins [2]. The 

growth and division of cells are controlled by the above-mentioned different cyclins. Cyclins, together 

with associated Cdks, allow passage from Gap 1 phase to DNA synthesis phase, Gap 2 phase, and 

mitosis phase [3–5]. Each of these phases is regulated by corresponding CDPs. Besides meiosis, 

cyclins and Cdk also active target proteins to regulate the cell cycle. Figure 1 indicates the complete 

phosphorylation of a target protein by the mediator cyclin-Cdk complex. In the beginning, the cyclins 

and Cdks are dissociated. An individual Cdk is inactive and cannot work properly [6]. The binding of 

the corresponding cyclin activates Cdk. It acts like a switch and allows the complex to modify target 

proteins [7]. The majority of the Cdks bind specific one or several cyclins, which corresponds to the 

functional specialization during evolution [8]. Then, the target protein attaches to the complex with 

both been phosphorylated, which results in changing the activity of the target protein [9]. In the end, 

the target protein no longer needs to attach cyclin-Cdk complex and the cyclin will be destroyed [10]. 

Cyclins and Cdks widely exist in various types of species. However, the number of Cdks that are used 

in the cell cycle is different: yeast has only one Cdk [10], while mammals usually have multiple Cdks [11]. 

 

Figure 1. Control of cell cycles by cyclin and specifically related Cdk. 

Cyclins play an indispensable role in the cell cycle [12]. If cyclins express their function in a 

deranged way, the inappropriate cell proliferation leads to tumors or cancers [13,14]. The majority of 

human tumors is proved to be associated with the alteration of the pRb pathway, which is usually 

caused by the overexpression of cyclin D1 [15]. E-type cyclins are thought to be pivotal for excessively 

activating Cdk2 and leading to the excessive proliferation of normal cells [16]. Understanding the 
intrinsic mechanisms of uncontrolled cell proliferation promises the knowledge of manipulation or 
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prevention of cancer cells [17–19]. For instance, Cyclin D1 and E2 are proved to be capable of 

detecting cancers as the diagnostic biomarkers [20,21]. 

Recent years have witnessed several computational methods for predicting CDPs. CyclinPred 

was the first predictor that predicted CDPs by using sequence-based features and a support vector 

machine [22]. Hassan Mohabatkar adopted the concept of Chou’s pseudo amino acid composition [23]. 

The features used in their research included amino acid composition, weight factor, correlation and 

physicochemical properties. Saxena et al developed a hybrid module by using computed amino acid 

composition, dipeptide composition, and pseudo amino acid composition [24]. CDKIPred is designed 

to identify Cdk inhibitors. It used various compositional features and evolutionary information in the 

form of position-specific scoring matrix profiles [25]. 

The size of peptides/proteins in the cyclin family varies from ~30 to ~70 kDa [26]. Although most 

cyclins are sequence heterogeneity, they still share some common peptide patterns [27]. Besides that, 

the interaction with cyclins and corresponding Cdks needs their substrates to harbor a specific 

recognition motif [28,29]. Therefore, the conserved regions or motifs help to recognize cyclins. For 

instance, Gelais et al proved that the cyclin-binding R-L motif plays important role in modulating 

human SAMHD1 activity [30]. The glycine-rich (conserved ‘G-G-G’) motif help to form activation 

loops [31]. The ‘L-C-E’ motif is a cyclin-encoded pattern that assists in substrate recruitment [32]. The 

‘PEST’ motif is related to protein degradation [33], and the ‘L-LL’ motif is involved in D-type cyclin 

transcriptional function [34]. Figure 2 illustrates three groups of CDPs that share common motifs. For 

instance, Q9YVL3, P21127, and Q07002 have three enriched motifs, i.e. ‘LHRD-K’, ‘DFGLA’, and 

‘V-TLWYR-P’. P21117 and O76039 share ‘V-T-WYR-P’ and ‘DMWS’ motifs. 

 

Figure 2. Three groups of CDPs that share common motifs. 

These methods contributed to the knowledge of the cyclins and Cdks. However, our survey 

demonstrates several drawbacks of the current method. First, these methods used different types of features 

to decode CDPs without proving the effectiveness of the considered features. Second, cyclin-related motifs 

have been proved to widely exist and associated with the specific Cdk, helping to recognize related CDPs, 

which needs further investigation. Third, our survey reveals that the current methods are slow and not 
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suitable for large-scale predictions, which limits the application of these methods. 

We introduce a novel method, TYLER (predicT cYcLin dEpendent pRoteins), that adopts motif- 

and machine learning-based models to accurately predict CDPs. The motif-based model computes the 

information gain rate to determine whether the query protein share enriched motifs that are related to 

CDPs. The machine learning model builds a general predictor. We optimize the weights between the 

motif- and the machine learning-based models. Blind test on the TEST dataset proves the efficiency 

of the proposed method. We also use TYLER to make predictions on the human proteome to explore 

potential CDPs. We implement the proposed method as a public user-friendly web server at 

http://www.information.com/webservers/TYLER/. We share all data and source code that used in this 

research at https://github.com/biocomputinglab/TYLER.git. 

2. Materials and methods 

2.1. Benchmark datasets 

The CDPs and non-CDPs used in this study are sourced from Uniprot database [35] in October 

of 2020. We collect 2572 proteins with molecular function annotated as ‘cyclin’, ‘cyclin-dependent’ or 

biological process that includes ‘cell cycle’ from Swissprot. To avoid data bias from the homology 

proteins, we use blastclust [36] to perform clustering for these proteins with a cutoff of 30%. We 

randomly pick one presentative from each cluster and obtain 1043 proteins. Next, we collect 1043 

non-CDPs, which share less than 30% similarities with the above-mentioned CDPs. We randomly 

pick 700 CDPs and 700 non-CDPs to construct the TRAINING dataset, the remaining 343 CDPs 

and 343 non-CDPs are used as the TEST dataset. The data used in this study is publicly available 

at the TYLER web server. 

2.2. Selective of enriched CDP-related sequence motifs 

Protein motifs are short conserved regions of sequence which are shared among different proteins 

in the same family [37]. Motifs are usually associated with a distinct spatial structure, determinating a 

particular chemical or biological function [38]. Motifs promise insights for those newly found proteins 

with unknown functions. This study introduces information theory to compute motifs that are enriched 

in CDPs versus non-CDPs. First, we compute the original information entropy of CDPs and non-CDPs. 

Then, we iteratively generate a 𝑙-length peptide pattern. This research we define the length of the 

peptide pattern is between four and ten. The number of gaps in each considered pattern is less than 

four and the gap length is less than one. For the target pattern, we compute its appearance frequencies 

in CDPs and non-CDPs, respectively. We set a minimal frequency to avoid introducing too much 

computation. Next, we update the information entropy for each eligible pattern and compute the 

corresponding information gain. We use the information gain ratio to quantify the difference of the 

information gain between CDPs and non-CDPs. Particularly, to avoid data bias, we randomly select 

ten different negative samples (non-CDPs). Algorithm 1 details the strategy of the selection of enriched 

CDP-related sequence motifs. The final selected motifs are obtained by averaging the ranking of the 

IGR obtained in ten repeats. 
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Algorithm 1. The computation of the peptide/protein sequence motif. 

Input: 𝐷𝐶 = {𝑆+|𝑆𝑖
+ ∈ {𝐶𝐷𝑃𝑠}}, 𝑖 ∈ {1,2,3, … , 𝑚}; 𝐷𝑛𝐶

𝜏 = {𝑆−|𝑆𝑖
− ∈ {𝑛𝑜𝑛 − 𝐶𝐷𝑃𝑠}}, 𝑖 ∈ {1,2,3, … , 𝑚}, 𝜏 ∈ {1,2,3, … ,10}. 

Initalization: 𝐿𝑚𝑖𝑛 = 4 (minimal length of motif), 𝐿𝑚𝑎𝑥 = 10 (maximal length of motif), 𝑇 = 5 (minimal frequency). 

𝐻(𝐷𝐶) = − ∑ 𝑃(𝑆𝑖
+) ∙ 𝑙𝑜𝑔𝑃(𝑆𝑖

+)𝑖 , 𝐻(𝐷𝑛𝐶
𝜏 ) = − ∑ 𝑃(𝑆𝑖

−) ∙ 𝑙𝑜𝑔𝑃(𝑆𝑖
−)𝑖 . 

Iteration: 

Generate a sequence pattern 𝑝𝑡 with the length of 𝑙, 𝐿𝑚𝑖𝑛 ≤ 𝑙 ≤ 𝐿𝑚𝑎𝑥, number of gaps ≤ 4, gap length ≤ 1. 

Compute the occurrence frequency of 𝑝𝑡 in 𝐷𝐶  and 𝐷𝑛𝐶
𝜏 , i.e., 𝑓(𝑝𝑡 , 𝐷𝐶) and 𝑓(𝑝𝑡 , 𝐷𝑛𝐶

𝜏 ). 

  if 𝑓(𝑝𝑡 , 𝐷𝐶) > 𝑇 > 𝑓(𝑝𝑡 , 𝐷𝑛𝐶
𝜏 ) 

    Update information entropy: 𝐻′(𝐷, 𝑝𝑡) = 𝑓(𝑝𝑡 , 𝐷) ∙ 𝐻(𝑝𝑖|𝑝𝑡)+(1 − 𝑓(𝑝𝑡 , 𝐷)) ∙ 𝐻(𝑝𝑖|𝑝𝑡̅) 

    Compute the information gain: 𝐼𝐺(𝐷, 𝑝𝑡) = 𝐻(𝐷) − 𝐻′(𝐷, 𝑝𝑡) 

    Compute the information gain ratio: 𝐼𝐺𝑅(𝑝𝑡) = 𝐼𝐺(𝐷𝐶 , 𝑝𝑡)/𝐼𝐺(𝐷𝑛𝐶 , 𝑝𝑡) 

End if 

End Iteration 

Output: 𝑚𝑜𝑡𝑖𝑓𝑠 = {𝑝1, 𝑝2, … 𝑝𝑞} 

2.3. Feature construction 

Studies [39–43] have shown that proteins that share same functions tend to have common conserved 

protein regions. These evolutionary conserved regions can be quantified by using the position-specific 

scoring matrix (PSSM), which has been widely used in bioinformatics research [44–46]. This study we 

run MMseqs [47] against the swissprot database to obtain multi sequence alignments and compute 

PSSMs. Secondary structure is proved to be associated with the 3D structure and function of 

proteins [48]. Specifically, the spatial composition of the majority Cdks is a two-lobed structure [49]. 

It has two different sizes of lobes: the small amino-terminal lobe locates at the top and is composed 

of β-sheets, the large carboxy-terminal lobe locates at the bottom and is consists of α-helices. The 

active sites are located deeply in-between [49]. Some cyclins also show preference on certain 

secondary structure segments. For instance, the helix-loop-helix segment is essential for the 

expression of the secretin gene and related protein such as MyoD [50]. Cyclin D1 is proved to 

repress the expression of muscle-specific genes [51]. Amino acids are the basic building blocks of 

proteins. Different amino acids show various propensity in the microscopic environment. 

Considering this, this study introduces eleven physicochemical properties. These properties are 

used individually for encoding CDPs as well as incorporating with PSSMs to quantify the 

evolutionary substitutions among various groups of properties. We detail the computation of three 

types of features in the Table S1. 

2.4. Evaluation criteria 

The proposed method is evaluated by using six common used metrics, including sensitivity (SN), 

specificity (SP), precision (PRE), accuracy (ACC), F1-measure (F1), and Mathew’s Correlation 

Coefficient (MCC). SN indicates the correctly predicted CDPs among all putative CDPs; SP means 

the correctly predicted non-CDPs among all putative non-CDPs; PRE quantifies the correctly predicted 

proteins among all putative samples; ACC stands for the correctly predicted proteins from all samples; 

F1 measures the harmonic mean of both precision and sensitivity; MCC balances the assessment in 

both the positive and negative samples. 

𝑆𝑁 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (1) 
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𝑆𝑃 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (2) 

𝑃𝑅𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
  (4) 

𝐹1 = 2 ×
𝑆𝑁 × 𝑃𝑅𝐸

𝑆𝑁 + 𝑃𝑅𝐸
 (5) 

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑁 × 𝐹𝑃

√(𝑇𝑃 + 𝐹𝑁) × (𝑇𝑃 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁)
 (6) 

Besides above binary prediction criteria, this research also illustrates two curves to demonstrate 

the overall predictive quantity, namely receiver operating characteristic curve (ROC curve) and 

precision-recall curve (PR curve). ROC curve plots the TPR (true positive rate) against the FPR (false 

positive rate) at various thresholds. PR curve measures the PRE against TPR at various thresholds. 

Moreover, we also calculate the area under ROC curve (AUC), area under PR curve (AUPRC). 

We train the model on the TRAINING dataset using 5-fold cross-validation. In detail, the 

TRAINING dataset is equally divided into 5 subsets. In each iteration, we use 4 out of 5 subsets to 

train the model and make predictions on the remaining one subset. The iteration repeats five times until 

each of the 5 subsets has been predicted. We estimate the results by computing the average of these five 

repeats. Besides that, we use the undersampling schema on the TEST dataset. We randomly select 50% 

samples from the TEST dataset ten times. The average performance of the ten times is treated as its 

final result to avoid potential data bias. Moreover, we also evaluate the significance of the differences 

in predictively quantify among various methods. For two lists of prediction results, we first use the 

Anderson-Darling test [52] to determine whether the data is normal distribution or not. We run the t-

test for the data with < 0.05 significance under the Anderson-Darling test, otherwise we adopt the 

Wilcoxon rank sum test [53]. We set the cut-offs at 0.05 to judge the statistical significance. 

2.5. Architecture of the TYLER predictor 

Figure 3 illustrates the architecture of the proposed method. TYLER is designed with motif -

based and machine learning-based models using the newly compiled benchmark dataset. For the 

motif-based model, we first compute the IG after introducing a new candidate pattern that has a 

frequency higher than the preset minimal. We compute IGR to quantify the relative value of the 

motifs and build the model by accumulating the IGRs. Although the motif-based model achieves 

decent results on some CDPs, it only covers parts of proteins. Considering this, we also introduce 

machine learning models. Specifically, we construct the feature space using sequence-derived 

features, including PSSM-based, physicochemical properties, and secondary structure-based 

features. Next, four different popular machine learning algorithms are adopted to construct models 
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and perform evaluations. We choose the logistic regression algorithm since it produces good results 

and is capable of building a high-throughput model. We optimize the weights between motif-based 

and machine learning-based models for aiming of constructing a more robust model. The proposed 

method is tested on the independent TEST dataset and is implemented as a web server.  

 

Figure 3. Overall framework of the proposed TYLER. 

3. Results and discussion 

3.1. Selective computational motifs and quantity assessment 

This study uses information gain ratio to quantify the relative enrichments of peptide patterns 

(motifs). Shown in Table S2 is the complete list of the considered motifs. The motif with a higher IGR 

value indicates that it is more favored in the CDPs compared with that in the non-CDPs. For an 

unknown protein, we explore whether it shares the target CDP-related motifs. We quantify the 

enrichment by accumulating the IGR values. That is, the protein with more target motifs tends to have 

higher probabilities to be native CDPs. For comparison, we also generate a random predictor. Figure 4 

evaluates the quantity of the selectively enriched motifs on the TRAINING and TEST datasets 

respectively. The motif-based method achieves the AUC of 0.742 and 0.736, and the AUPRC of 0.736 

and 0.729 on the TRAINING and TEST datasets, respectively. 

We observe a sharp rise in the starting (left bottom) region of the ROC curves of the predictions on 

both TRANING and TEST datasets. When setting the threshold where FPR = 10% (specificity = 90%), 

the motif-based model achieves the SN of 33 and 58% on the TRANING and TEST dataset, 

respectively. We further find that these motifs cover 391 (or 27.9%), and 194 (or 28.2%) CDPs on the 

TRAINING and TEST dataset. Moreover, about 12% proteins in the TEST dataset have more than 

four selectively motifs, while the fraction is only 5% for that in the TRAINING dataset. This explains 

why predictions on the TEST datasets show better performance on the low part of the ROC curve. This 
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experiment demonstrates that the selective computational motifs contribute to the recognition of CDPs. 

However, not all native CDPs share these selective motifs since we set the threshold of minimal 

appearance frequency to filter selection. This is the reason that the tails of blue and green curves are 

close to black curves in both sub plots. 

 
 

Figure 4. Quantity assessment of the selectively enriched motifs of CDPs. 

3.2. Empirical analysis of the effectiveness of the considered features 

Although the motif-based model produces decent results when compared with the random 

predictor, it has limitations when being used to identify proteins that have no selectively enriched 

cyclin-related motifs. This results in a general machine learning-based model, which provides further 

predictions for target unknown proteins. Here, we choose to utilize logistic regression to build the 

predictive model since it is effective and unlikely to trap overfitting [54,55]. Particularly, logistic 

regression is suitable for building high-throughput predictors for large-scale computations[54]. We use 

three types of features, including evolutionary profile, secondary structure, and physicochemical 

properties to encode the CDPs. 

Table 1 lists the prediction results of different individual and combined features on the 

TRAINING dataset. Three types of individual features, namely EP, SS, and PC, produce the 

average AUC of 0.68~0.73, and MCC of 0.18~0.25 on the TRAINING dataset. Compared with 

individual features, the combination of two types of features obtains higher performance than individual 

features. Particularly, the combination of three types of features achieves the highest predictive results with 

the average AUC of 0.81, MCC of 0.40, SN of 0.45, PRE of 0.82 and F1 of 0.58, which is about 4.7~73.9% 

higher than the second-best EP + PC. The corresponding p-values prove the improvement are 

statistical significant (p-value < 0.026). Therefore, this study uses the combination of three types 

of features to construct the predictive model. 
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Table 1. Comparison of the predictive performance of different individual and combined 

features on the TRAINING dataset. The threshold is set where FPR equals 10% (SP = 0.90). 

The results are computed over the 5-fold cross-validation on the TRAINING dataset. We 

report the corresponding averages and standard deviations over the 5 subsets. The best 

performance for each measure is given in bold font. We also evaluate the statistical 

significance of these results, the differences with p-value < 0.05 are shown with italics font. 

Features SN SP PRE ACC F1 MCC AUC 

EP1 
0.30± 0.02 0.90±0.00 0.75±0.01 0.60±0.01 0.43±0.02 0.25±0.02 0.73±0.01 

2.44E-06 1.00 3.63E-06 2.46E-06 2.29E-06 2.49E-06 7.19E-09 

SS2 
0.30±0.02 0.90±0.00 0.75±0.01 0.60±0.01 0.43±0.02 0.25±0.02 0.73±0.01 

2.91E-08 1.00 2.27E-08 2.94E-08 1.62E-08 2.26E-08 4.57E-11 

PC3 
0.23±0.01 0.90±0.00 0.70±0.00 0.57±0.01 0.35±0.01 0.18±0.01 0.68±0.00 

2.07E-08 1.00 7.71E-10 2.13E-08 6.52E-09 1.09E-08 5.37E-11 

EP+SS 
0.34±0.03 0.90±0.00 0.77±0.01 0.62±0.01 0.47±0.03 0.29±0.02 0.74±0.01 

3.30E-06 1.00 3.25E-06 3.40E-06 2.78E-06 3.18E-06 1.07E-08 

EP+PC 
0.43±0.02 0.90±0.00 0.81±0.01 0.66±0.01 0.56±0.02 0.37±0.02 0.80±0.00 

0.11 1.00 0.11 0.11 0.11 0.11 8.28E-04 

SS+PC 
0.28±0.01 0.90±0.00 0.74±0.01 0.59±0.01 0.41±0.01 0.23±0.01 0.70±0.00 

2.00E-07 1.00 5.18E-08 2.06E-07 1.07E-07 1.49E-07 1.03E-10 

EP+SS+PC 0.45±0.03 0.90±0.00 0.82±0.01 0.68±0.01 0.58±0.02 0.40±0.01 0.81±0.00 

1indicates evolutionary profile based features, 2stands for secondary structure based features, and 3means physicochemical properties based features. 

3.3. Optimization of the weights between motif- and machine learning-based model 

TYLER uses two different models to specifically recognizing CDPs. The motif-based model 

uses selected enriched cyclin-related motifs to quantify the propensities of an unknown protein 

being a CDP, while the machine learning-based model adopts a pre-constructed model to make 

predictions. Here, we set different groups of weights to balance the predictive power between these 

two models. 

As shown in Table 2, when only use the motif-based model (w1 = 100%, and w2 = 0%), TYLER 

achieves the average SN of 0.33 and AUC of 0.74 on the TRAINING dataset. The introduction of a 

machine-learning model helps increase the recognition of those CDPs without selectively enriched 

motifs. Thus, we observe a rise of SN with the increase of w2. When the weight of the machine-

learning model continues to increase and is higher than 50%, the average MCC and AUC values reveal 

a trend of gradual decline. When w1 and w2 are set as 0.4 and 0.6 respectively, TYLER achieves the 

highest results with the average SN of 0.65, PRE of 0.87, ACC of 0.78, F1 of 0.74, MCC of 0.57, and 

AUC of 0.87. 

3.4. Comparison between TYLER and other methods 

Besides the logistic regression that is used in this study, many other popular algorithms have 

been applied in bioinformatics. These algorithms include K nearest neighbors (KNN), support 

vector machine (SVM), naïve Bayes (NB), random forest (RF), and gradient boosted trees (GBT). 

KNN predicts an unknown sample by measuring the distance between the query example and the 
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current examples from the data [56]. SVM aims to explore a hyperplane that has the maximum 

margin to separate data. It uses kernel functions on non-linearity and high-dimension data [57]. 

NB is a probabilistic algorithm that assumes conditional independence between a feature and any 

other features [58]. It is suitable for large highly sophisticated data. RF is an ensemble learning 

method consisting of a number of decision trees [59]. GBT is another ensemble approach. However, 

GBT build trees one by one. The newly introduced tree helps to correct errors made by previous 

ones [60]. For a strict comparison, we first optimize the parameters for each algorithm on the 

TRAINING dataset by using 5-fold cross-validation. We use the algorithm and corresponding 

optimized parameters to train the model on the TRAINING dataset. Then, we perform predictions 

on the TEST dataset. 

Table 2. Comparison of the predictive performance of different sets of weights on the 

motif- and machine learning-based layers on the TRAINING dataset using 5-fold cross-

validation. Same as Table 1, we report the averages and standard deviations for each 

measure. The best performance is given in bold font, and the differences with statistical 

significance (p-value < 0.05) are shown with italics font. w1 indicates the weight of the 

motif-based model, while w2 means that of the machine-learning model. 

Weights SN SP PRE ACC F1 MCC AUC 

w1=1.0 w2=0.0 
0.33±0.02 0.90±0.00 0.74±0.01 0.67±0.01 0.47±0.02 0.28±0.03 0.74±0.01 

2.10E-09 1.00 4.48E-08 2.12E-09 5.06E-09 3.15E-09 2.69E-09 

w1=0.9 w2=0.1 
0.59±0.03 0.90±0.00 0.85±0.01 0.74±0.01 0.69±0.02 0.51±0.02 0.84±0.01 

3.65E-03 1.00 4.41E-03 3.62E-03 3.96E-03 3.62E-03 9.65E-06 

w1=0.8 w2=0.2 
0.58±0.02 0.90±0.00 0.85±0.00 0.74±0.01 0.69±0.01 0.51±0.01 0.85±0.01 

3.74E-05 1.00 3.44E-05 3.60E-05 3.52E-05 3.71E-05 2.43E-04 

w1=0.7 w2=0.3 
0.58±0.01 0.90±0.00 0.85±0.00 0.74±0.01 0.69±0.01 0.51±0.01 0.85±0.00 

1.09E-04 1.00 1.41E-04 1.08E-04 1.18E-04 1.08E-04 1.32E-04 

w1=0.6 w2=0.4 
0.59±0.02 0.90±0.00 0.85±0.01 0.75±0.01 0.70±0.02 0.52±0.02 0.86±0.00 

1.15e-03 1.00 1.60E-03 1.14E-03 1.32E-03 1.14E-03 8.42E-03 

w1=0.5 w2=0.5 
0.58±0.02 0.90±0.00 0.85±0.00 0.74±0.01 0.69±0.02 0.50±0.02 0.86±0.01 

1.28E-04 1.00 1.92E-04 1.28E-04 1.49E-04 1.28E-04 4.58E-03 

w1=0.4 w2=0.6 0.65±0.02 0.90±0.00 0.87±0.00 0.78±0.01 0.74±0.01 0.57±0.02 0.87±0.01 

w1=0.3 w2=0.7 
0.60±0.02 0.90±0.00 0.86±0.00 0.75±0.01 0.71±0.01 0.53±0.02 0.87±0.01 

0.02 1.00 0.02 0.02 0.02 0.02 0.85 

w1=0.2 w2=0.8 
0.61±0.03 0.90±0.00 0.86±0.01 0.76±0.01 0.72±0.02 0.54±0.03 0.87±0.01 

0.20 1.00 0.17 0.20 0.19 0.20 0.62 

w1=0.1 w2=0.9 
0.61±0.01 0.90±0.00 0.86±0.00 0.76±0.00 0.71±0.01 0.53±0.01 0.87±0.00 

2.90E-03 1.00 2.75E-03 2.78E-03 2.88E-03 2.88E-03 0.34 

w1=0.0 w2=1.0 
0.45±0.03 0.90±0.00 0.82±0.01 0.68±0.01 0.58±0.02 0.40±0.01 0.81±0.00 

4.13E-08 1.00 1.45E-07 4.12E-08 6.11E-08 4.55E-08 1.12E-08 
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Table 3. Comparison of the predictive performance of different methods on the TEST 

dataset. The best performance for each measure (average ± standard deviation) is shown 

in bold font. We compute the differences between each method and the best one. The 

differences with statistical significance (p-value < 0.05) are shown with italics font. 

Methods SN SP PRE ACC F1 MCC AUC 

Motif 
0.58±0.02 0.90±0.00 0.85±0.01 0.74±0.01 0.69±0.02 0.51±0.02 0.72±0.01 

8.14E-03 1.00 0.097 0.033 0.031 0.035 1.19E-16 

SVM 
0.24±0.09 0.90±0.00 0.69±0.09 0.57±0.04 0.36±0.11 0.19±0.10 0.71±0.08 

3.45E-10 1.00 2.23E-05 4.19E-10 1.22E-08 6.37E-09 1.29E-05 

KNN 
0.44±0.03 0.90±0.00 0.82±0.01 0.67±0.01 0.57±0.03 0.38±0.03 0.73±0.02 

8.57E-10 1.00 1.92E-09 2.30E-09 1.59E-09 2.48E-09 3.95E-15 

NB 
0.39±0.04 0.90±0.00 0.79±0.02 0.64±0.02 0.52±0.04 0.33±0.03 0.75±0.01 

9.75E-11 1.00 1.62E-10 1.47E-10 1.90E-10 1.51E-10 2.44E-16 

RF 
0.19±0.05 0.90±0.00 0.66±0.06 0.55±0.03 0.30±0.07 0.13±0.06 0.70±0.02 

8.98E-14 1.00 3.31E-09 1.12E-13 1.41E-12 1.04E-12 1.33E-16 

GBT 
0.29±0.04 0.90±0.00 0.74±0.02 0.60±0.02 0.42±0.04 0.24±0.04 0.71±0.02 

1.37E-13 1.00 8.39E-12 2.81E-13 2.91E-13 4.40E-13 4.72E-14 

LR 
0.45±0.02 0.90±0.00 0.82±0.01 0.67±0.01 0.58±0.02 0.39±0.02 0.83±0.01 

7.00E-10 1.00 7.91E-10 2.07E-09 1.10E-09 2.18E-09 5.49E-10 

TYLER 0.62±0.04 0.90±0.00 0.86±0.01 0.76±0.03 0.72±0.03 0.54±0.04 0.87±0.01 

Shown in Figure S2 are the ROC and PRC curves of different methods on the TRAINING dataset. 

When only using motif-based models, we obtain the AUC and AUPRC of 0.742 and 0.736, respectively. 

Six types of machine learning algorithms produce the AUC between 0.688 and 0.817, and the AUPRC 

between 0.669 and 0.789. RF and GBT are both ensemble learning algorithms and yield similar AUC 

values of 0.80. Among machine learning algorithms, LR secures the highest AUC of 0.817, and RF 

achieves the highest AUPRC of 0.800. Next, we use the optimized model to perform the independent test 

on the TEST dataset. As listed in Table 3, the motif-based model yields an SN of 0.58, which is even higher 

than the four machine learning models. Our previous observation demonstrates that about 28.2% of 

proteins on the TEST dataset have selectively enriched cyclin-related motifs. However, the AUC of 

the motif-based model is only about 0.72, which is similar or slightly lower than other machine learning 

algorithms. Six machine learning models produce the SN values between 0.19 and 0.45, and the AUC 

scores between 0.70 and 0.83. LR, RF and GBT obtain decent results with the AUC > 0.8 and AUPRC > 

0.78. We observe that RF and GBT models produce a much worse performance on the TEST dataset 

compared to that on the TRAINING dataset (AUC = 0.72 vs. 0.81 for RF, and AUC = 0.70 vs. 0.80 for 

GBT). Considering the small number of samples in the TRAINING dataset, we speculate that RF and GBT 

have strapped into the overfitting. While LR secures similar good performance both on the TRAINING 

and TEST dataset. Therefore, we use LR to construct the machine learning-based model. 

We empirically find that when combining motif-based and LR-based models, TYLER gives out the 

highest results both on the TRAINING and the TEST dataset. Specifically, TYLER secures the AUC 

of 0.879 and the AUPRC of 0.807 on the TRAINING dataset using 5-fold cross-validation (Figure S2). 

It also achieves the highest performance on the TEST dataset with the average SN = 0.62, PRE = 0.86, 

ACC = 0.76, MCC = 0.54, and AUC = 0.87. Figure 5 shows the ROC and PRC curves of various methods. 

TYLER achieves the highest TPR over the entire range of FPR (Figure 5A), and the highest PRE over the 
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entire range of SN (Figure 5B), both with wide margins ahead of the second-best method. 

  

Figure 5. ROC curves and PRC curves for different methods on the TEST dataset. 

3.5. Comparison between TYLER and state-of-the-art methods 

We focus on comparative assessment on the methods that identify CDPs. After a comprehensive 

survey, we choose CyclinPred and cdkipred, which are the only two current public available predictors, 

to perform the independent test. We note that CyclinPred and cdkipred only produce binary predictions. 

In other words, they predict whether an unknown protein is a CDP or not without giving the 

probabilities. Therefore, we mainly use binary assessment to evaluate the considered methods. 

Particularly, for a consistent comparison, we adjust the thresholds for TYLER to obtain similar SP 

values as CyclinPred and cdkipred, respectively. 

Table 4 reveals that TYLER outperforms CyclinPred and cdkipred on the TEST dataset. Generally, 

CyclinPred shows better performance than cdkipred. It is because that CyclinPred was designed for 

predicting cyclin protein sequences, while cdkipred mainly predicted cyclin/cyclin-dependent kinase 

inhibitors. TYLER secures the average SN of 0.490 and 0.457 with specificity = 0.938 and 0.947, 

respectively. By contrast, CyclinPred and cdkipred recognize less than 28% CDPs. We note that TYLER 

achieves the better F1 scores (0.629 vs. 0.416 with p-value = 1.68E-04, and 0.601 vs. 0.228 with p-value 

= 4.63E-06) and MCC values (0.481 vs. 0.286 with p-value = 7.57E-05, and 0.466 vs. 0.137 with p-value 

= 1.77E-06) compared to CyclinPred and cdkipred. This empirical test demonstrates that TYLER is 

statistically significantly better than current predictors for the identification of CDPs. 

Table 4. Comparison of the predictive performance between TYLER and state-of-the-art 

methods on the TEST dataset. 

Methods SN SP PRE ACC F1 MCC 

CyclinPred 0.280±0.040 0.936±0.022 0.815±0.057 0.608±0.023 0.416±0.048 0.286±0.054 

TYLER 0.490±0.068 0.938±0.032 0.891±0.024 0.714±0.030 0.629±0.052 0.481±0.026 

cdkipred 0.136±0.022 0.944±0.022 0.713±0.079 0.540±0.014 0.228±0.032 0.137±0.048 

TYLER 0.457±0.088 0.947±0.027 0.902±0.031 0.702±0.030 0.601±0.070 0.466±0.035 
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3.6. Analysis of predictive performance on datasets with different distributions of CDPs vs. non-CDPs 

In living organisms, the number of CDPs is much smaller than that of the non-CDPs. The 

distribution of CDPs vs. non-CDPs might somehow influence the predictive performance of the 

proposed method. To test the robustness of TYLER on unknown numbers and distributions of CDPs, 

we further design several testing datasets with various ratios of CDPs vs. non-CDPs. First, we 

randomly pick 100 CDPs from our source CDPs (after removing the proteins in the TRAINING 

dataset). Second, we randomly pick 200, 400, 600, 800, and 1000 proteins from the Swissprot (after 

removing the proteins in the source CDPs). The under-sampling procedure repeats five times to avoid 

potential data bias. 

As listed in Table 5, with the ratio of negative samples to positive samples increases, we observe 

a gradual decline in PRE (from average 0.85 to 0.38), F1 (from average 0.68 to 0.46), and MCC (from 

average 0.50 to 0.39). However, we notice an interesting phenomenon, which is that the SN doesn’t 

show an obviously decreasing trend accordingly. TYLER secures good SN values in different ratios of 

CDPs vs. non-CDPs. We attribute this good generalization to the introduction of the motif-based model. 

Our empirical analysis demonstrates that the motif-based model still shows good capability in 

recognizing CDPs given high SP scores. More importantly, the AUC fluctuates in a small range (from 

the lowest 0.84 to the highest 0.86). Overall, we prove that TYLER reveals good generalization and 

can be used in practical applications. 

Table 5. Analysis of predictive performance on datasets with different distribution of CDPs 

vs. non-CDPs. 

Ratio (CDPs vs. non-CDPs) SN SP PRE ACC F1 MCC AUC 

1: 1 0.58±0.10 0.90±0.00 0.85±0.02 0.74±0.05 0.68±0.07 0.50±0.08 0.86±0.03 

1: 2 0.55±0.10 0.90±0.00 0.73±0.04 0.78±0.03 0.63±0.08 0.49±0.09 0.84±0.03 

1: 4 0.47±0.08 0.90±0.00 0.54±0.04 0.81±0.02 0.50±0.06 0.39±0.07 0.84±0.02 

1: 6 0.51±0.11 0.90±0.00 0.45±0.05 0.84±0.02 0.48±0.08 0.39±0.09 0.84±0.02 

1: 8 0.57±0.05 0.90±0.00 0.41±0.02 0.86±0.01 0.48±0.03 0.41±0.04 0.86±0.01 

1: 10 0.56±0.05 0.90±0.00 0.38±0.02 0.87±0.01 0.46±0.03 0.39±0.04 0.85±0.01 

3.7. Comparative evaluation of runtime 

Runtime is an important criterion for assessing a high-throughput method, particularly when 

considering proteome-level predictions. According to our investigations, the most time-consuming 

computation is related to evolutionary profiles, which are obtained by PSI-BLAST [36] for most 

current methods. In this study we use much faster MMseqs [47] to compute the same information. 

Here, we consider the complete computation time of TYLER (including motif-based and machine 

learning-based models) and use the runtime of PSI-BLAST alone to estimate the computation time for 

other methods. All computations are performed using the same hardware and operating system (PC 

with i5 CPU, 8GB RAM, and Ubuntu 18.04 64-bit OS) allowing a direct compare of the results. 

Figure 6 illustrates the comparison of runtime between TYLER and the lower bound of the other 

methods. We randomly picked 50 proteins for each chain length interval from less than 100 residues 

to 900 to 1000 residues. TYLER offers between 12.9 and 46.4 times faster runtime than other methods. 

Generally, both runtime measurements scale linearly with the protein length, with TYLER having the 
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smaller/better slope of the linear fit. We quantify the correlation between the linear fit and the scatters, 

and obtain the PCC of 0.59 and 0.68 for PSI-BLAST-based methods and our TYLER, respectively. 

For an average of 300-residues-length protein, TYLER costs about 2 seconds, while PSI-BLAST uses 

more than 70 seconds. Considering the runtime of PSI-BLAST is just the lower bounds of current 

methods, these results indisputably show that TYLER offers substantially faster predictions. 

 

Figure 6. Scatter plot of the runtime of TYLER and PSI-BLAST (lower bound of the 

other methods). We run PSI-BLAST to compute PSSMs by using the SwissProt 

database with 3 iterations. TYLER runs MMseqs by using the same database and 

computes secondary structure by adopting fast PSI-PRED. Each point illustrates the 

runtime and protein length. The yellow and blue lines represent linear fit into the data 

for PSI-BLAST and TYLER, respectively. We also report the corresponding values of 

the Pearson correlation coefficient (PCC). 

3.8. Prediction and validation of putative CDPs on the human proteome 

The experiment in Section 3.5 proves the effectiveness of the proposed method. Here, we use 

TYLER to make predictions on human proteome. We define a putative CDP with two criteria, the 

query protein shares at least two cyclin-related motifs and the putative probability is higher than the 

threshold where the false positive rate equals 1% on the TRANING dataset. Finally, TYLER 

predicts 867 cyclins, which occupy about 4.3% of the human proteome. Next, we compare our 

predictions with current known CDPs. 

First, we search SwissProt to find 479 proteins that are annotated as CDPs in the human proteome. 

Second, we search for 60 CDPs from the Reactome [61], which stores signaling and metabolic 

molecules and their relations organized into biological pathways and processes. Third, we search the 

Pfam database [62] and collect 77 CDPs. After combining these CDPs and removing overlap, we 

establish a final set of 507 verified CDPs. 

Among these current known CDPs in the human proteome, TYLER successfully recognizes 109 

or 21.5% (109/507 = 21.5%) of them. We compare our predictions with a randomized baseline and 

find an overlap of random 867 proteins and the 507 verified CDPs. Sampling is repeated 1000 times 

to avoid data bias and establish confidence intervals. The corresponding average and standard 

deviation for the overlap of the baseline are 4.3% ± 0.9%. In contrast, the above-mentioned 21.5% 

overlap produced by TYLER is about 4.9 times larger (p-value < 0.001) than the average of the baseline. 
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We use PANTHER [63] to perform three types of GO analysis, including cellular components, 

molecular functions, and biological processes. 

 

Figure 7. Geno ontology analysis of the novel putative CDPs. Cellular components, 

molecular functions, and biological processes are shown in the top, middle, and bottom of 

the figure, respectively. The dark red, dark blue, and dark green represent the significantly 

enriched GO items are shared with the verified CDPs. The light red, light blue, and light 

green indicates the corresponding GO items exist only in putative CDPs. 

Figure 7 illustrates the subcellular locations and functions that are significantly enriched in the 

putative CDPs. The cellular components show that the putative CDPs are significantly involved in the 

cyclin-dependent protein kinase holoenzyme complex, protein kinase complex, and serine/threonine 

protein kinase complex, which are overlap with that of current known CDPs. Molecular functions 
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demonstrated that the novel putative CDPs participate in the activity related to various types of kinase 

regulators, cyclin-dependent protein kinase, and cyclin binding, which is consistent with that for the 

verified CDPs. When considering the biological processes, we notice that 16 out of 18 enriched cellular 

components of the novel putative CDPs are involved in the cell cycle. This is again evidence that some of 

the novel predictions shall be potential CDPs. Details of the computation and analysis are given in the 

Supplement. In comparison, we also use the same analysis for a random set that contains 867 randomly 

picked proteins. There are no significantly enriched cellular components, molecular functions, and 

biological processes. We share the complete set of the putative CDPs on the TYLER website. 

3.9. TYLER webserver 

We implement the proposed novel method TYLER as a free public available user-friendly web 

server at http://www.inforstation.com/webservers/TYLER/. Since TYLER is based on protein primary 

sequence, it requires only requires FASTA-formatted protein sequences as input. A single query can 

submit up to ten protein sequences. TYLER produces the predictions of motif-based and machine 

learning-based models, respectively. Besides that, the server will list all enriched motifs for the query 

proteins. After computation, the server sends emails to the users as well as shows results in the browser 

window. Moreover, we also provide large-scale proteome-level calculation services. 

4. Conclusions 

This study aims to propose a novel high-throughput computation-based predictor for the 

recognition of CDPs. Our investigation finds that CDPs share some common sequence patterns, which 

can be quantified by using information theory. Then, the selective CDP motifs are used to compute the 

propensity of an unknown protein being potential CDP. The motif-based model shows decent 

predictions on both TRAINING and TEST dataset. However, the motif-based predictor cannot cover 

all CDPs. Therefore, we also introduce a machine-learning model for further predicting CDPs by using 

sequence-derived features, including evolutionary conservation profile, secondary structure, and 

physicochemical properties. We prove that the combination of different types of features contributes a 

better predictor than individual features. Besides that, we also optimize the weights between the motif-

based and machine learning-based model to achieve decent performance. The empirical test on the 

TEST dataset proves that the prosed method, named TYLER, is statistically significantly better than 

current methods. We also prove that TYLER is featured by good generalization and can be widely used 

in practical applications. TYLER is a high-throughput predictor, which offers at least 12 times faster 

runtime than current methods. We use TYLER to make predictions on the human proteome, and use 

the results to hypothesize CDPs and compare them with current known CDPs. The GO analysis 

suggests that at least some of the novel predictions constitute promising leads to recognize previously 

unknown CDPs. We share all data used in this work and implement the method as a publicly available 

web server. 
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