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Abstract: Reliability-based design optimization (RBDO) is applied to handle the unavoidable 

uncertainties in engineering applications. To alleviate the huge computational burden in reliability 

analysis and design optimization, surrogate models are introduced to replace the implicit objective and 

performance functions. In this paper, the commonly used surrogate modeling methods and surrogate-

assisted RBDO methods are reviewed and discussed. First, the existing reliability analysis methods, 

RBDO methods, commonly used surrogate models in RBDO, sample selection methods and accuracy 

evaluation methods of surrogate models are summarized and compared. Then the surrogate-assisted 

RBDO methods are classified into global modeling methods and local modeling methods. A classic 

two-dimensional RBDO numerical example are used to demonstrate the performance of representative 

global modeling method (Constraint Boundary Sampling, CBS) and local modeling method (Local 

Adaptive Sampling, LAS). The advantages and disadvantages of these two kinds of modeling methods 

are summarized and compared. Finally, summary and prospect of the surrogate–assisted RBDO 

methods are drown. 
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𝛽 : Target reliability;  𝑋 : Random variable; 𝜇𝑋 : The mean of𝑋 ; 𝑑 : Deterministic design variable; 

GMSE: Generalized mean square cross-validation error; SORA: Sequential optimization and 
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reliability assessment; SVM: Support vector machine; DDV: Deterministic design variable; SVR: 

Support vector regression; MCC: Multiple correlation coefficient; RBDO: Reliability-based design 

optimization; MCS: Monte Carlo simulation; DRM: Dimensionality reduction methods; RBF: Radial 

basis functions; RAAE: Relative average absolute error; LHD: Latin hypercube design; RMSE: Root 

mean squared error; FFD: Full factorial design; RRMSE: Relative root mean squared error; KKT: 

Karush Kuhn Tucker; RMAE: Relative maximum absolute error; VF: Variable fidelity FORM: First-

order reliability methods; LF: Low fidelity; CBS: Constraint boundary sampling; HF: High fidelity; 

EGRA: Efficient global reliability analysis; LAS: Local adaptive sampling; EGO: Efficient global 

optimization; MPP: Most possible point; PRS: Polynomial response surfaces; RIA: Reliability index 

approach; EFF: Expected feasibility function; PMA: Performance measure approach  

1. Reliability-based design optimization 

To improve the production efficiency and reduce manufacturing cost, design optimization of 

structure or system has become an inevitable trend in modern product. Due to the various uncertainty 

in engineering, the traditional deterministic design optimization method cannot ensure the practical 

application effect. On the other hand, in methods based on safety factor, the selection of safety factor 

depends on the manufacturing capacity and quality control means of the enterprise, which does not 

provide a quantitative measure of the safety margin and is not quantitatively linked to the influence of 

different design variables [1,2]. Furthermore, with emergence of new processes, new methods and new 

production conditions, the safety factor is difficult to determine, which also makes it difficult to cope 

with the complex environment of design, manufacture and use. RBDO is a natural extension of 

deterministic optimization method, where various uncertainty such as material properties, load 

conditions, manufactures, assembly and surrounding environment are considered. By considering the 

random distribution of various factors that affect the output response (stress, strain, vibration, fatigue, 

etc.) in the design optimization stage, RBDO can adapt to the complex environment in practical 

engineering, so that the production efficiency and manufacturing cost can be balanced. 

1.1. RBDO model 

In RBDO, the optimal solution that meets the minimum reliability level is searched. The RBDO 

model is defined as follows [3,4]: 

find: d, 𝜇𝑋 

𝑚𝑖𝑛: 𝑓 (𝑑, 𝜇𝑋) 

s.t.: 𝑃(𝑔𝑖(𝑑, 𝑋) ≤ 0) − 𝛷(−𝛽𝑖
𝑡) ≤ 0,  𝑖 = 1,2, ⋯ , 𝑁 

                    𝑑𝐿 ≤ 𝑑 ≤ 𝑑𝑈 , 𝜇𝑋
𝐿 ≤ 𝜇𝑋 ≤ 𝜇𝑋

𝑈                                (1) 

In Eq. (1), 𝑑 is the deterministic design variable with the upper bound 𝑑𝑈 and lower bound 𝑑𝐿; 

𝑋  is the random variable, whose mean is 𝜇𝑋  with the upper bound 𝜇𝑋
𝑈  and lower bound 𝜇𝑋

𝐿  ; 

𝑓(𝑑, 𝜇𝑋) is the objective function; 𝑔𝑖(𝑑, 𝑋) is the performance function, whose value less than 0 is 

regarded as a failure event; 𝛽𝑖
𝑡  is the target reliability; 𝛷(−𝛽𝑖

𝑡)  is the maximum allowable 

failure probability. 

Because of the uncertainty of random variable 𝑋 , the output response of the performance 



6388 

Mathematical Biosciences and Engineering  Volume 18, Issue 5, 6386–6409. 

function at any point is also uncertain, so the failure probability 𝑃(𝑔𝑖(𝑑, 𝑋) ≤ 0) can be defined 

as follows: 

                   𝐹𝐺(𝑔) = 𝑃(𝑔𝑖(𝑑, 𝑋) ≤ 0) = ∫ ⋯ ∫ 𝑓𝑋(𝑋)𝑑𝑋
𝑔𝑖(𝑋)≤0

                           (2) 

In Eq. (2), 𝑓𝑋(𝑋) is the joint probability density function of random variable 𝑋. As can be seen, 

Eq. (2) is a multi-dimensional integral problem, which is difficult to solve in engineering. Therefore, 

a variety of reliability analysis methods are developed to avoid solving the multi-dimensional integral 

problem directly [5–7]. 

1.2. Reliability analysis 

Reliability analysis is an important part of RBDO, which is used to evaluate the reliability level 

of current design. Commonly used reliability analysis methods can be divided into traditional 

analytical methods [8,9] and numerical simulation methods [10,11]. The traditional analytic method 

calculates the failure probability by expanding the performance function at a specific point in a Taylor 

series or approximating the probability density function in Eq. (2). 

Traditional analytical methods include methods based on probability density function 

approximation [12] and methods based on most probable (failure) point, MPP [13]. The former 

evaluates the probability density of performance function by assuming the output distribution type. 

The latter calculates the failure probability by expanding the performance function at a specific point 

in a Taylor series. MPP based methods include first-order reliability methods (FORM) [14,15], second-

order reliability methods (SORM) [16–18] and MPP point-based dimensionality reduction methods 

(DRM) [19]. The traditional analytical methods are efficient, but for complex performance function, 

the calculation accuracy is poor. 

Different from traditional analytical methods, the numerical simulation methods evaluate the 

responses of a large number of samples, then the failure probability is calculated by the ratio of failure 

sample number to total sample number [20]. With the characteristics of easy realization and high 

accuracy [21], Monte Carlo Simulation (MCS) is the most commonly used numerical simulation 

method, which is not affected by distribution of random variables and types of performance functions. 

But accurate reliability analysis often requires a lot of samples, and the response values at these 

samples usually need computer simulation or real experiments to obtain. Hence, the computational 

cost of MCS is usually very high [22]. To improve the computational efficiency of MCS, the important 

sampling (IS) strategy can be adopted. By relocating the random sampling center to increase the 

probability of the sample point falling into the failure region, the IS strategy reduces the number of 

sample points needed to calculate the failure probability, thus the computational costs can be reduced 

heavily [23,24]. Besides the IS strategy, other methods to improve the efficiency of MCS include Line 

Sampling [25,26], Directional Simulation [27,28] and Subset Simulation [29,30] et al. 

In surrogate-assisted RBDO, MCS is most commonly used to calculate the failure probability and 

corresponding gradient. In MCS, a group of random samples are generated according to the probability 

distribution of random variables, and then their responses are evaluated to judge whether the failure 

event occurs. The ratio of the failure number to the total number is regarded as the failure probability. 

Using MCS to calculate the failure probability is as follows: 

         𝑃(𝑔(𝑋) ≤ 0) = ∫ 𝑓𝑋𝑔≤0
(𝑥)𝑑𝑥 = ∫ 𝐼[𝑔𝑋(𝑥)]𝑓𝑋(𝑥)𝑑𝑥

+∞

−∞
=

1

𝑁
∑ 𝐼[𝑔𝑋(𝑥𝑗)]𝑁

𝑗=1         (3) 
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In Eq. (3)，𝑁  is the size of the Monte Carlo population;𝐼(𝑥)  is the indicator function of𝑥 ; 

if 𝑔𝑋(𝑥) ≤ 0,𝐼[𝑔𝑋(𝑥)] = 1, if not, 𝐼[𝑔𝑋(𝑥)] = 0. 

For random variable𝑥 which obeys the normal distribution, the failure probability gradient
𝜕𝑃(𝜇)

𝜕𝜇𝑖
at 

its mean point 𝜇 is calculated as follows: 

𝜕𝑃(𝜇𝑋)

𝜕𝜇𝑖
=

1

𝑁
∑

𝐼[𝑔𝑋(𝑥𝑗)]

𝑓𝑋(𝑥𝑗)

𝜕𝑓𝑋(𝑥𝑗)

𝜕𝜇𝑖

𝑁
𝑗=1 =

1

𝑁
∑

𝐼[𝑔𝑋(𝑥𝑗)](𝑥𝑖
𝑗
−𝜇𝑖)

𝜎𝑖
2

𝑁
𝑗=1            (4) 

The test points𝑥𝑗 , 𝑖 = 1,⋅⋅⋅, 𝑁  in Eq. (4) are the same as that used for estimating the failure 

probability 𝑃(𝑔(𝑋) ≤ 0) . In other words, the calculation of 
𝜕𝑃𝑗(𝜇𝑋

𝑘 )

𝜕𝜇𝑋

  does not require additional 

performance function evaluation. Details about the Eq. (4) are in references [31]. It’s worth noting that, 

if the random variable obeys other distribution type, Rosenblatt transformation [32] or Nataf 

transformation [33] can be used to transform them to the normal distribution. 

1.3. Coupling treatment of reliability analysis and design optimization 

From the mathematical model of RBDO in Eq. (1), it can be seen that the solution process of 

RBDO is divided into two stages: reliability analysis stage to calculate whether the failure probability 

of the current design point meets the reliability requirement and design optimization stage to find the 

optimal solution that meets the probability constraint. To handle the coupling relationship between the 

two stages, three types of methods are formed: double loop methods, single loop methods and 

decoupling methods. The characteristics of these three methods are compared in Table 1. Generally, 

the double loop methods are easy to implement, but due to the multiplication of the number of iterations 

in both design optimization and reliability analysis loops, the computational cost of double loop 

methods is very high. In single loop methods, the reliability analysis loop is approximated by its 

Karush–Kuhn–Tucker (KKT) optimality conditions. Therefore, the efficiency of single-loop methods 

is very high for linear and moderate nonlinear performance functions. But due to the large error caused 

by approximation, the single loop methods have bad performance for highly nonlinear problem. In 

decoupling methods, reliability analysis and design optimization are performed sequentially, therefore 

these methods can achieve the balance of accuracy and efficiency. 

Reliability index approach (RIA) [34,35] and performance measure approach (PMA) [36–38] are 

the most commonly used double loop methods. Because reliability analysis is needed at each iteration 

point of design optimization, the calculation efficiency of the double loop methods is very low [39]. 

Using the Karush Kuhn Tucker (KKT) condition instead of the probabilistic constraint to directly solve 

the RBDO problem is the most commonly used single loop methods [40–42]. Although the single loop 

method has high efficiency, Aoues shows that the stability of the single loop strategy is insufficient 

through standard examples [43].  

Different from the double loop methods and single loop methods, the decoupling methods use the 

deterministic constraints to approximate the probability constraint sequentially. Li proposed one of the 

earliest decoupling strategies to solve RBDO problem by linear approximation of reliability index [47]. 

Then some scholars introduced MPP [48] and developed approximate decoupling strategies such 

as adaptive sequential linear programming algorithms [49,50] to balance accuracy, efficiency 
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and convergence. In addition, Wu put forward the equivalent probabilistic constraint based on safety 

factor, which simplifies the solving process of performance function value and improves the solving 

efficiency [51]. Du proposed the well-known sequential optimization and reliability assessment 

(SORA) method, which decouples the RBDO process into a sequential single loop process to improve 

the efficiency of probabilistic design [52]. Other decoupling methods in RBDO include the convex 

linear method [55], saddle point approximation method [56], optimal shifting vector [4] etc. 

Table 1. Comparison of double loop methods, single loop methods and decoupling methods. 

Methods Double loop methods Single loop methods Decoupling methods 

Advantages Easy to implement High Efficiency 
Achieve the balance of 

accuracy and efficiency 

Disadvantages Low efficiency 
Poor performance for 

highly nonlinear problem 

Performance is affected by 

optimization algorithm 

Examples [34–38,45,46] [40–42,44] [4,47–56] 

 

In addition, to alleviate the computational time caused by solution in both physical space and 

normalized space, hybrid method (HM) [57,58], improved hybrid method (IHM) [59,60], optimum 

safety factor (OSF) method [61,62], robust hybrid method (RHM) [61–65] and hybrid modified 

method [66] are developed. These methods solved the optimization problem and the reliability problem 

simultaneously in the hybrid design space (HDS) [63]. Therefore, the huge calculation time can 

be reduced. 

1.4. Optimization algorithms in RBDO 

In reliability analysis or design optimization, various optimization algorithms are used to calculate 

the MPP and design point. Commonly used optimization algorithms include sequential approximate 

programming (SAP), active set method, trust region algorithm, penalty function method and so on. 

In addition, evolutionary methods and swarm intelligence algorithms are also used in RBDO. 

Garakani [67] used adaptive Metropolis algorithm to obtain data and combined multi-gene genetic 

programming (MGGP) model with MCS to calculate the failure probability. Yadav established the 

robust design optimization (RDO) and RBDO model of trusses, and then solved them by particle 

swarm optimization (PSO) algorithm [68]. Tong [69] proposed a new hybrid reliability analysis 

algorithm based on PSO-optimized Kriging model. By comparing the calculation results of PSO-

optimized Kriging model with the original model, it is verified that this method can greatly reduce the 

number of sample points and improve the solution efficiency. Aiming at minimizing maintenance cost 

under reliability constraints, Chen proposed a collaborative PSO-Dynamic Programming (co PSO-DP) 

method for multi-stage and multi scheme maintenance [70]. In order to reduce the weight and cost of 

crane metal structure (CMS), Fan established a discrete double loop RBDO model [71]. In the inner 

loop, Latin hypercube sampling (LHS) and MCS are used to analyze the reliability, and ant colony 

optimization (ACO) algorithm is used in the outer loop to solve the optimization results satisfying the 

deterministic and probabilistic constraints. Antos [72] combined ant colony algorithm with first-order 

reliability method to form nested optimization cycle, and applied it to the RBDO of geosynthetics 

reinforced earth retaining wall. Okasha used the improved firefly algorithm to solve the RBDO 

problem of truss structures with discrete design variables, which can obtain a reasonable solution with 
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a reasonable amount of computations [73]. 

In evolutionary methods and swarm intelligence algorithms, there are no special requirements on 

the mathematical properties (such as convexity, continuity or explicit definition) of objective function 

and constraints in the optimization process. Therefore, evolutionary methods and swarm intelligence 

algorithms may be the research hotspot of RBDO in the future. 

2. Research on surrogate models 

The evaluation of implicit performance function is an important part of reliability analysis and 

RBDO. If the real response value of implicit performance function is called directly during reliability 

analysis and design optimization, the computational cost is unacceptable. Therefore, the introduction 

of surrogate models in reliability analysis and RBDO has become a research hotspot. 

2.1. Commonly used Surrogate Models 

Constructed by interpolation or fitting of representative sample points, surrogate models have the 

characteristics of simple structure and high computational efficiency. Therefore, surrogate models have 

been widely used to approximate the implicit performance function in engineering. Most commonly 

used surrogate models include polynomial response surfaces (PRS) [36], Kriging approximation 

models [74–76], radial basis functions (RBF) [77], and support vector machine (SVM) or support 

vector regression (SVR). 

Polynomial response surface model is also called polynomial regression model or polynomial 

approximation model, which is simple and easy to implement. Thus, any implicit function can be 

expressed by polynomial approximation. Commonly used second order polynomial response surface 

model is formulated as follows [36,78]: 

𝑔̂(𝑥) = 𝑎0 + ∑ 𝑎𝑖
𝑛
𝑖=1 𝑥𝑖 + ∑ ∑ 𝑎𝑖𝑗𝑥𝑖𝑥𝑗

𝑛
𝑗≥1

𝑛
𝑖=1                            (5)                                                                                                

In Eq. (5), 𝑥𝑖is the ith component of the n dimension design variable; 𝑎0 is the constant term; 

𝑎𝑖is the coefficient of first term; 𝑎𝑖𝑗 is the coefficient of quadratic term (also known as cross term). 

Kriging model consists of a polynomial response function model and a Gaussian random process, 

which is formulated as follows: 

𝑦̂(𝑥) = 𝐹(𝛽, 𝑥) + 𝑍(𝑥)
                                   

(6) 

In Eq. (6), 𝐹(𝛽, 𝑥) is the global polynomial response surface model with weight coefficient𝛽; 

𝑍(𝑥) is a nonparametric random process model with 0 as mean value and 𝜎2 as variance [79,80]. In 

Kriging model, an indicator of a priori uncertainty prediction can be provided, thus it is widely used 

in engineering problems [81]. 

Taking the Euclidean distance between the predicted points and the sample point as the design 

variable, RBF model is constructed by linear combination of radial symmetric kernel functions. The 

RBF model is expressed as follows [77,82]: 

𝑦(𝑥)
∧

= ∑ 𝜔𝑘𝜓𝑘(‖𝑥 − 𝑥𝑘‖)𝑛
𝑘=1                        (7) 

In Eq. (7), n is the number of sample points; 𝜔𝑘 is the weight coefficient; 𝜓(‖𝑥 − 𝑥𝑘‖) is the 

basis function centered on sample 𝑥𝑘 ; ‖𝑥 − 𝑥𝑘‖  is the Euclidean distance between the predicted 
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points and the sample points. For highly nonlinear problems, good fitting performance can usually be 

observed using RBF model [77]. 

Support vector machine (SVM) is a supervised learning model based on structural risk 

minimization criteria. SVR model is a specific form of support vector machine in the prediction field. 

SVR realizes the approximate of the low-dimensional spatial problem by mapping the parameter 

combination vector to the high-dimensional space and constructing the regression function in the high-

dimensional space [83]. SVR model is expressed as follows: 

                          𝑝(𝑥)
∧

= ⟨𝑤 ⋅ 𝛷(𝑥, 𝑥𝑘)⟩ + 𝑏                               (8) 

In Eq. (8), ⟨𝑤 ⋅ 𝛷(𝑥, 𝑥𝑘)⟩ is the inner product of hyperparameter𝑤and support vector regression 

kernel function𝛷(𝑥, 𝑥𝑘);𝑏is the undetermined coefficient. 

In addition to the above models, some achievements are also made in variable fidelity (VF) 

approximation models and ensemble approximation models. Variable fidelity model (also termed as 

multi-fidelity model) is an approximate model constructed by fusion of high and low fidelity samples. 

In VF model, the global approximation trend of implicit function is reflected by low fidelity model, 

and the accuracy is guaranteed by introducing a small number of high-fidelity samples [84–87]. As 

shown in Figure 1, the variable fidelity model 𝑓𝑣(𝑥) shows good fitting performance to the high-

fidelity model 𝑓ℎ(𝑥) by fusing the low fidelity model 𝑓𝑙(𝑥) and four high fidelity samples. 

The VF model is expected to fuse the advantages of LF and HF models and thus become a new 

choice in engineering. Nevertheless, how to determine the variable fidelity modeling framework and 

how to quantitatively compare the computational cost of HF model, LF model and VF model still need 

to be researched [88]. 

 

Figure 1. Description of variable fidelity model. 

Ensemble model is another choice which expects to combines the advantage of multiple single 

surrogate models [89–92]. The modeling strategies of ensemble model can be divided into two 

categories: weighting and voting [90]. The former is based on the prediction accuracy of single models, 

and a larger weight coefficient is assigned to the model with higher accuracy. The weight coefficients 

of each single model in the ensemble model is added up to 1 to ensure the accuracy of the prediction 

value of the ensemble model [89,92]. Voting strategy can be regarded as a special weighting strategy, 

which is usually used in the case of multiple iterations in modeling or optimization. The core is to set 

the weight of the model with the highest precision to 1, and the weights of other models to 0. In single 
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surrogate models, the modeling performance usually relies on the selection of samples. But the 

ensemble model can avoid these shortcomings, thus it is able to achieve a robust modeling effect [90]. 

2.2. Selection of samples 

Construction of surrogate model depends on the selection of samples, which can be divided into 

one-shot sampling methods and sequential sampling methods [94]. Commonly used one-shot sampling 

methods include full factorial design (FFD) [94,95], orthogonal design [96,97], uniform design [98,99], 

Latin hypercube design (LHD) [100,101], etc. Sequential sampling method is to establish the initial 

surrogate model by one-shot sampling first, and then update the surrogate model by adding samples 

until the required accuracy is achieved. 

In full factorial design, all levels of each factor are combined to carry out the design of 

experiments. However, with the increase of design variables and levels, the number of samples 

required will increase exponentially, which cannot be acceptable in engineering. Therefore, this 

method is only suitable for the case of fewer design factors and levels. In order to reduce the 

computational cost of full factorial design, some representative samples instead of all FFD samples 

can be selected in orthogonal design or uniform design. Furthermore, Latin hypercube design can also 

be adopted to ensure the representativeness of samples and reduce the repeatability of samples through 

the layered treatment in the whole design space. Figure 2 shows the sample distribution of 2-factor-3-

level full factor experiment design (9 samples), 3-factor-3-level orthogonal experiment design (9 

samples) and 9-point Latin hypercube design. 

 

          

(a) Full Factor Design     (b) Orthogonal design   (c) Latin hypercube design 

Figure 2. Sample distribution of one-shot sampling methods. 

2.3. Sequential sampling 

  One-shot sampling methods is easy to implement, but the accuracy of the surrogate model cannot 

be guaranteed. Increasing the number of samples will increase the computational cost and even may 

cause overfitting. On the contrary, fewer samples will affect the accuracy of surrogate model. Therefore, 

it is necessary to add sequential samples to update the surrogate model in reliability analysis and RBDO. 

Sequential sampling methods is a strategy which improves the model accuracy by dividing the 

modeling process into several stages. The flowchart of sequential sampling methods is shown in Figure 

3. First, the initial surrogate model is built by one-shot sampling, and then the surrogate model is 
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updated by adding samples according to some criteria until the required accuracy is achieved. 

 

Figure 3. Flowchart of sequential sampling. 

Figure 4 further describes the process of sequential sampling. 𝑓(𝑥)  is the true performance 

function which needs to be approximated. 𝑓0(̂𝑥) is the initial surrogate model constructed by initial 

samples (black circles) generated from one-shot sampling method. Using the sequential samples (black 

boxes) to update the surrogate model, the final surrogate mode 𝑓𝑠(̂𝑥)  with high approximating 

accuracy is acquired. 

 

Figure 4. Process of sequential sampling. 
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The selection of sequential samples can be divided into following methods: error-based methods, 

methods based on distance to existing samples and methods of sampling near constrained boundaries 

(Seen in Table 2). The error-based methods can guarantee the accuracy of the surrogate model, but it 

is difficult to accurately evaluate the modeling error with limit samples. The method based on the 

distance to the existing samples can evenly distribute the sample points in the design domain. But for 

highly nonlinear or discontinuous problems, these methods may have poor performance. Sampling 

near the constraint boundary can improve the fitting accuracy of the constraint boundary, but if the 

constraint boundary is approximated inaccurately, many samples will be wasted. In engineering, these 

three sampling methods are often combined to obtain the comprehensive advantages [102–105]. 

Table 2. Sequential sampling methods. 

Methods 
Error-based 

methods 

Methods based on distance 

to existing samples  

Methods of sampling near 

constrained boundaries 

Advantages 

Guarantee the 

modeling 

precision  

Ensure the uniformity of 

sample distribution 

Ensure the fitting accuracy 

of the constrained boundary 

Disadvantages 
Accurate error is 

difficult to assess 

Poor effect for highly 

nonlinear or discontinuous 

problem 

Sampling at inaccurate 

constraint boundary may 

cause waste of samples 

Examples [106–110] [93,111,112] [113–115] 

2.4. Accuracy evaluation of surrogate model 

  The accuracy of the surrogate model reflects the fitting degree between the predicted response 

function and the real response function. The following error indexes can be used in accuracy evaluation 

of surrogate model [116]: 

(1) Multiple correlation coefficient 𝑅2 

𝑅2 is used to evaluate the relative error of the surrogate model in the whole design space [117]. 

The larger the value of 𝑅2, the higher the accuracy of the surrogate model is. 

                      𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑚

𝑖=1

∑ (𝑦𝑖−𝑦̄𝑖)2𝑚
𝑖=1

= 1 −
𝑀𝑆𝐸

𝑉𝑎𝑟
                               (9) 

(2) Relative Average Absolute Error (RAAE) 

𝑅𝐴𝐴𝐸is used to evaluate the global relative error of the surrogate model. The smaller the value 

of 𝑅𝐴𝐴𝐸, the smaller the global relative error is. 

𝑅𝐴𝐴𝐸 =
∑ |𝑦𝑖−𝑦̂𝑖|𝑚

𝑖=1

𝑚×𝑆𝑇𝐷
                                         (10) 

(3) Root Mean Squared Error (RMSE)  

RMSE is used to evaluate the closeness between the predicted value and the true value [118]. The 

smaller the value of RMSE, the higher the accuracy of the surrogate model is. 

                        𝑅𝑀𝑆𝐸 = √{∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑚

𝑖=1 }/𝑚                                 (11) 

(4) Relative Root Mean Squared Error (RRMSE) 
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RRMSE is used to indicate the degree of accuracy improvement of the surrogate model. The 

smaller the value of 𝑅𝑅𝑀𝑆𝐸, the higher the degree of accuracy improvement of the surrogate 

model is. 

𝑅𝑅𝑀𝑆𝐸 =
1

𝑆𝑇𝐷
√

∑ (𝑦𝑖−𝑦̂𝑖)2𝑚
𝑖=1

𝑚
                                (12) 

(5) Relative Maximum Absolute Error (RMAE) 

RMAE is used to evaluate the local prediction error of the surrogate model. The smaller the 

RMAE value, the smaller the local prediction error of the surrogate model is. 

𝑅𝑀𝐴𝐸 =
𝑚𝑎𝑥

𝑖=1,⋯,𝑚
|𝑦𝑖−𝑦̂𝑖|

𝑆𝑇𝐷
                                      (13) 

(6) Generalized Mean Square Cross-validation Error (𝐺𝑀𝑆𝐸) 

GMSE is used to evaluate the prediction error of the surrogate model with limited samples. The 

smaller the value of 𝐺𝑀𝑆𝐸, the smaller the prediction error of the surrogate model is. 

𝐺𝑀𝑆𝐸 =
1

𝑚
∑ (𝑓𝑗 − 𝑓𝑗

(−𝑗)
)𝑚

𝑗=1

2

                             (14) 

In equations (9)-(14), 𝑚 is the number of samples used for model accuracy evaluation; 𝑦𝑖 is 

the actual response value of performance function, and 𝑦̂  is the predicted value obtained by the 

surrogate model; 
1

i

m

i

y

y y
m

=   ; 𝑓𝑗

(−𝑗)
  is the predicted value at point 𝑥(𝑗)  by the surrogate model 

constructed using the remaining𝑚 − 1sample points except point (𝑥(𝑗), 𝑓𝑗). 𝑀𝑆𝐸 is the mean square 

error of the experimental data, 𝑉𝑎𝑟 is the variance of the experimental data, and 𝑆𝑇𝐷 is the standard 

deviation of the experimental data. 𝑀𝑆𝐸, 𝑉𝑎𝑟 and 𝑆𝑇𝐷 are calculated as follows: 

      𝑀𝑆𝐸 =
∑ (𝑦𝑖−𝑦̂𝑖)2𝑚

𝑖=1

𝑚
，𝑉𝑎𝑟 =

∑ (𝑦𝑖−𝑦̄)2𝑚
𝑖=1

𝑚
，𝑆𝑇𝐷 = √𝑉𝑎𝑟                          (15) 

3. Surrogate-assisted RBDO methods 

In recent decades, many researches have been performed in surrogate-assisted RBDO methods, 

especially in sequential sampling based RBDO methods. The sequential sampling methods for 

surrogate model are reviewed in previous section. Different from the sequential sampling methods in 

surrogate model, some characteristics of RBDO solution process are considered. For example, 

sequential sampling methods on improving the accuracy of failure probability calculation [103,119], 

using MPP for sequential sampling [120], using the samples in the key area of reliability analysis or 

RBDO [122] and using MCS samples to build surrogate model [22] are also considered in surrogate-

assisted RBDO.  

The sequential sampling methods in surrogate-assisted RBDO can be divided into global 

modeling methods and local modeling methods. It’s worth noting that, the global modeling methods 

can be used in RBDO or other optimization problems, but the local modeling methods can only be 

used in RBDO. In global modeling methods, accurate performance function boundaries are first 

approximated in the whole design space (Figure 5(a)), and then RBDO is conducted to find the optimal 
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design. Instead, accurate fitting is only needed in the key area of RBDO (usually near the iterative 

design point) in local modeling methods (Figure 5(b)). The core of local modeling methods is to update 

the surrogate model and carry out the design optimization sequentially, as shown in Figure 5 (b) [102].  

The sample distribution of global modeling methods and local modeling methods are compared 

in Figure 5. The dotted line is the real performance function curve 𝑓(𝑥1, 𝑥2); the solid line is the 

prediction curve of the surrogate model 𝑓(𝑥1, 𝑥2) ; the red "*" is the sample used to construct the 

surrogate model, and the blue "+" is the optimization iterative design point of RBDO; the green ellipse 

in Figure 5 (b) is the local sampling region. It can be seen that the global modeling methods fit the 

boundary of the whole performance function accurately, while the local modeling methods only fit the 

key area of the optimization iteration.  

 

 

(a) Global modeling method        (b) Local modeling method  

Figure 5. Sample distribution of global modeling method and local modeling method [102]. 

3.1. RBDO methods based on global modeling 

  The global modeling methods in RBDO can be divided into the global modeling methods based 

on one-shot sampling and the global modeling methods based on sequential sampling. Using one-shot 

sampling, it is difficult to balance the solution precision and computational cost, so current global 

modeling methods are mostly based on sequential sampling. The basic flowchart of global modeling 

method in RBDO is shown in Figure 6. After the initial sample set and design point are determined, 

the initial surrogate model is constructed. And then the surrogate model is updated by global sequential 

sampling until the accuracy satisfies the requirement. After that, the accurate global surrogate model 

is used to replace the implicit objective function and performance function in RBDO. Finally, the 

RBDO problem is solved by double loop methods, single loop methods or decoupling methods.  

1x 1x

2x2x

True Fuction Global Surrogate Model



Samples True Fuction Local Surrogate Model



Samples

+
Design Points Local Sampling Region

1 2
ˆ ( , )f x x

1 2( , )f x x
1 2( , )f x x

1 2
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Figure 6. The flowchart of global modeling methods in RBDO. 

Following describes the commonly used global modeling methods: Constraint boundary sampling 

(CBS). Constraint boundary sampling is developed to realize the accurate approximation of the 

constraint boundary in the whole design space [113]. New samples are mainly selected on the 

approximate constraint boundary. When the accuracy of the global surrogate model satisfies the 

requirement, RBDO is carried out. The sequential sampling criteria in CBS are as follows: 

          𝐶𝐵𝑆(𝑥) = {
∑ 𝜑 (

𝜇̂𝑔𝑐
(𝑥)

𝜎𝑔𝑐
(𝑥)

)𝑁
𝑐=1 ⋅ 𝐷 𝜇̂𝑔𝑐

(𝑥) ≥ 0, ∀𝑖

0 others
                        (16) 

In CBS, samples locating near the predicted constrained boundary will be preferred. 

3.2. RBDO method based on local modeling 

  The global modeling method can fit the constraint boundary in the whole design space well, but 

there are always some inactive samples in RBDO (Such as the samples located on the lower left quarter 

in Figure 5(a)), which will inevitably cause waste of computational resources. Therefore, the local 

modeling methods to fit the key region of design space is proposed. The flowchart of local modeling 

methods is shown in Figure 7. Different from global sampling methods, the sequential samples are 

mainly selected in a small local region around the current design which is calculated by double loop 

Initialize the sample set 

and design point

Response evaluations of the 

performance function  at the 

sample set, then construct the 

surrogate model

Global sequential sampling

Accuracy evaluation of surrogate modelk=k+1

End

Y

N

0k =

Perform RBDO using  the 

surrogate model                                         
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6399 

Mathematical Biosciences and Engineering  Volume 18, Issue 5, 6386–6409. 

methods, single loop methods or decoupling methods. Therefore, the RBDO process and sequential 

sampling are conducted sequentially. 

 

Figure 7. The flowchart of local modeling methods in RBDO. 

Following is a brief introduction of the representative local modeling method LAS (local adaptive 

sampling method). In LAS, the samples are preferentially selected near the constraint boundaries 

around the current design point [102]. The size of local sampling region is determined according to the 

target reliability and nonlinearity of the performance functions, which is shown as: 

                    𝑅 = 1.2𝛽𝑡 + 0.3𝑛𝑐𝛽𝑡 = (1.2 + 0.3𝑛𝑐)𝛽𝑡 

𝑛𝑐 =
2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛(𝑚𝑎𝑥(‖𝜎𝑖

2‖)) , 𝑖 = 1, ⋯ , 𝑁 

                        𝜎𝑖
2 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝛻𝑔̂𝑖(𝑥1), ⋯ , 𝛻𝑔̂𝑖(𝑥𝑀))                     (17) 

Where 𝑛𝑐  is used to quantify the nonlinearity of the performance functions; 𝛻𝑔̂𝑖(𝑥)  is the 

predicted gradient value at 𝑥 for the ith probabilistic constraint. (𝑥1, ⋯ , 𝑥𝑀) are the M testing points 

evenly located within the 𝛽𝑡-sphere region. 𝑁 is the number of probabilistic constraints. Seen from 

Eq. (17), a larger local sampling region is assigned to performance function with larger target reliability 

and higher nonlinearity. 

After the local sampling region is determined, MSE sampling criterion and CBS criterion are 
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introduced to select the sequential samples. The detailed sequential sampling criterion in LAS is 

as follows: 

    𝐿𝐴𝑆 = {
∑ 𝜎𝑖

𝑁
𝑖=1 ⋅ 𝐷,  No constraint boundary in local sampling region

𝐶𝐵𝑆,  otherwise
           (18) 

In Eq. (18), if no performance function boundary is contained in the local sampling region, the 

prediction error and distance to the existing samples are used to select new samples. Otherwise, CBS 

sampling criterion in Eq. (16) is adopted. 

3.3. Numerical example 

 To compare the performance of global modeling method and local modeling method, a two-

dimensional RBDO problem with three probabilistic constraints is introduced, which is formulated 

as follows:  

                 find   μ
𝑋

= [𝜇𝑋1
, 𝜇𝑋2

] 

min  μ
𝑋1

+ 𝜇𝑋2
 

s.t.     Prob(𝑔𝑖( 𝑋) ≤ 0) ≤ 𝛷(−𝛽𝑖
𝑡)   𝑖 = 1,2,3 

          0 ≤ μ
𝑋1

≤ 10,  0 ≤ μ
𝑋2

≤ 10, 

𝑔1(𝑋) = 1 − 𝑋1
2𝑋2/20 

𝑔2(𝑋) = (𝑋1 + 𝑋2 − 5)2/30 + (𝑋1 − 𝑋2 − 12)2/120 − 1 
𝑔3(𝑋) = 1 − 80/(𝑋1

2 + 8𝑋2 + 5) 

𝑋𝑖~𝑁(𝜇𝑋𝑖
, 0. 32)，𝑖 = 1,2 

                  𝜇𝑋
0 = [5,5]                                                  (19) 

Figure 8 shows the locations of sample points when using CBS and LAS to solve this problem. 

Black “o” is the initial samples using LHS method and red “x” is the sequential samples; blue “+” is 

the design point. 𝑑0 is the initial design point and 𝑑𝑜𝑝𝑡 is the optimal design point. As can be seen, 

both the CBS method and LAS method can obtain the optimal design 𝑑𝑜𝑝𝑡. The surrogate model using 

CBS method has good fit performance in the whole design space and most sequential sample points 

are located near the constraint boundary (Seen in Figure 8(a)). Differently, most of the sequential 

sample points in LAS are concentrated in the small local region around current iterative design points 

(Blue ellipse in Figure 8(b)). Therefore, the fitting capability of surrogate model is weak in the upper 

right quarter of the design space. Because sequential sampling is avoided in the meaningless region of 

RBDO process, LAS has higher efficiency. It’s worth noting that, if the target reliability changes, the 

sequential sampling process of LAS method will be conducted again. Therefore, the surrogate model 

constructed by LAS cannot be reused (Seen in Figure 8(c)).    

Table 3 shows the comparison of global modeling methods and local modeling methods. In global 

modeling methods, an accurate global surrogate model is built in the whole design space, therefore 

this model can also be used when the target reliability changes. But when the target reliability is fixed, 

the efficiency is usually lower than local modeling methods (Seen in Figure 8). On the other hand, the 

local modeling method is more efficient for problem with fixed target reliability. But when the target 

reliability changes, the local sampling region and corresponding sequential sample points will change, 

which means different surrogate models must be built for problems with different target reliability. 
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(a) CBS             (b) LAS (𝛽 =2)           (c) LAS (𝛽 =3)           

Figure 8. The distribution of sample points for Numerical example.  

Table 3. Comparison between global modeling methods and local modeling methods. 

Method Global modeling methods Local modeling methods 

Advantages 

Ensure the modeling accuracy in the whole 

design domain; No need to remodel when 

the target reliability changes 

High utilization rate of samples and 

high fitting accuracy of key areas 

Disadvantages 
Modeling efficiency is usually lower than 

local modeling methods 

Remodeling is needed when the 

target reliability changes 

Example [22,103,113–115,122–127] [102,104,128–131] 

4. Summary and prospect 

  In this paper, the surrogate-assisted RBDO methods are reviewed. Commonly used reliability 

analysis methods, RBDO methods, surrogate models and corresponding sampling and accuracy 

evaluation methods are summarized and discussed. Then the surrogate-assisted RBDO methods are 

divided into the global modeling methods and local modeling methods. The advantages and dis 

advantages of these two methods are compared. 

(1) This paper introduces the mathematical model of RBDO, summarizes the existing reliability 

analysis methods and RBDO methods. Different RBDO methods are classified and compared. 

(2) This paper summarizes the commonly used surrogate model, sampling method and accuracy 

evaluation methods of surrogate models. Different sampling methods are classified and compared. 

(3) This paper divided the surrogate-assisted RBDO methods into the global modeling methods 

and local modeling methods. Using a representative numerical example, the advantages and 

disadvantages of these two modeling methods are compared. 

Although many surrogate-assisted RBDO methods have been developed, there are still some 

research space to further strengthen the application of these methods in engineering. Future researches 

can be focused on the following aspects: 

(1) Quantification of modeling error of surrogate model 

Generally, the number of samples used to build the surrogate model is finite, thus the prediction 

accuracy of the surrogate model cannot be well guaranteed. Meanwhile, in existing researches, the 

modeling error of surrogate model is mainly used in sequential sampling. This strategy can achieve 

0d
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2d
3d

0d

4 opt,d d

0d

2d

4 opt,d d
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the optimal RBDO solution for general functions, but it may have large error for multimodal functions, 

or even cannot meet the reliability requirements. Therefore, it is of great significance to quantify the 

modeling error and construct its conservative model as an alternative to the implicit performance 

function, which finally achieve the performance improvement on the premise of ensuring the reliability 

requirements. 

(2) Determination of high-fidelity samples and low fidelity samples in variable fidelity model 

Commonly used variable fidelity methods are based on the situation that the function form (often 

from empirical formula, etc.) of the low fidelity model is known. In view of the unknown function 

form of low fidelity model, it is very important to allocate the high and low fidelity samples reasonably 

in RBDO process. In addition, the study of the variable fidelity method based on the surrogate model 

will also be a useful supplement. 

(3) Construction of surrogate model for high dimensional RBDO problem with limited samples 

The existence of "dimension disaster" makes the computational cost of existing RBDO methods 

unacceptable, which not only exists in the construction of surrogate model, but also in the process of 

reliability analysis and design optimization. In order to acquire an accurate and efficient RBDO 

solution, the problem dimension must be limited. Effective variable selection methods, high 

dimensional model representation methods, high dimensional reliability analysis methods and high 

dimensional optimization methods will be future research hotspots. 

(4) Construction of classification model to balance the precision and cost in RBDO 

Besides using surrogate models to accurately approximate the implicit objective and performance 

functions, introduction of the classification method such as support vector machine is another viable 

option. However, the existing support vector machine method is commonly confronted with precision 

problem because of lack of real function response information. Therefore, it is necessary to develop a 

more effective classification model to balance the precision and cost in RBDO. 
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