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Abstract: The purpose of this study was to explore whether the Nomogram, which was constructed
by combining the Deep learning and Radiomic features of T2-weighted MR images with Clinical
factors (NDRC), could accurately predict placenta invasion. This retrospective study included 72
pregnant women with pathologically confirmed placenta invasion and 40 pregnant women with
normal placenta. After 24 gestational weeks, all participants underwent magnetic resonance imaging.
The uterus and placenta regions were segmented in magnetic resonance images on sagittal T2WI.
Ninety-three radiomics features were extracted from the placenta region, and 128 deep features were
extracted from the uterus region using a deep neural network. The least absolute shrinkage and
selection operator (LASSO) algorithm was used to filter these 221 features and to form the combined
signature. Then the combined signature (CS) and clinical factors were combined to construct a
nomogram. The accuracy, sensitivity, specificity and AUC of the nomogram were compared with
four machine learning methods. The model NDRC was trained on the dataset of 78 pregnant women
in the training cohort. Finally, the model NDRC was compared with four machine learning methods
on the independent validation cohort of 34 pregnant women. The results showed that the prediction
accuracy, sensitivity, specificity and AUC of the NDRC model were 0.941, 0.952, 0.923 and 0.985
respectively, which outperforms the traditional machine learning methods which rely on radiomics
features and deep learning features alone.



6199

Keywords: radiomics; deep learning; nomogram; magnetic resonance imaging; placenta invasion

Abbreviations: MRI: Magnetic resonance imaging; LASSO: Least absolute shrinkage and selection
operator; PI: Placenta invasion; PP: Placenta previa

1. Introduction

Placental invasion is defined as the abnormal invasion of trophoblast cells into the myometrium
at different depths of infiltration [1]. It occurs mostly in patients with placenta previa or prior
cesarean section, with common complications including catastrophic perinatal hemorrhage and
bladder, bowel, and urethral injuries [2]. Early diagnosis of placental invasion before delivery is
critical for appropriate treatment planning [3]. Ultrasound is the mainstay in the imaging of placental
invasion [4]. However, due to the influence of the shape of pregnant women, gas in the intestines and
bones, ultrasonic penetration power would decrease and reflected waves increase, which results in
the unclear observation of lesions, especially the lesions of the posterior wall of the uterus and
placenta. While MRI is less affected by intestinal gas and bones, has high tissue resolution and can
be imaged at any angle in multiple directions, so it is especially recommended for cases of posterior
placenta and cases whose ultrasound results are equivocal and/or clinical suspicion is high [5,6].

In the clinical practice of detecting placenta invasion, a recent study showed that the
performance of experienced radiologists was significantly better than that of junior radiologists [7].
In order to reduce the dependence on doctors' clinical experience and improve the diagnosis of
placental invasion, some scoring systems for diagnosing placental invasion have been proposed in
recent years, but they have not been extensively tested [8]. Obvious placental heterogeneity and
irregular thick dark intraplacental band in the placenta on T2WI are recognized signs of placental
infiltration in MR images [9]. However, the visual representation of placental heterogeneity and the
identification of abnormal dark intraplacental bands on T2WI may be difficult and highly subjective.
Therefore, quantitative image analysis has become an attractive research field that overcomes the
subjectivity of visual interpretation and improves diagnostic accuracy [10].

With the rapid development of medical imaging technology, a comprehensive analysis method
of medical images called radiomics has received extensive attention in recent years [11]. Radiomics
usually refers to extracting high-throughput quantitative features from medical images and realizing
auxiliary diagnosis of diseases through machine learning. Researchers can use complex machine
learning tools to develop a variety of radiomics models, thereby potentially improving the accuracy
of disease diagnosis, prognosis and prediction because radiomics transforms medical images into
obtainable data [12,13]. At the same time, deep learning has achieved great success in image analysis
in recent years as an important means of realizing artificial intelligence (Al), and has also greatly
promoted the development of medical image processing technology [14,15]. Different from the
low-level image features extracted by radiomics methods, deep learning can mine various high-level
semantic information of images. Therefore, we hope to combine deep learning with traditional
radiomics to establish a more effective placenta invasion detection model. At present, the
conventional idea of combining radiomics and deep learning is to extract radiomics features and deep
features of medical images, and then build better auxiliary diagnostic models through feature-level
fusion. This idea is easy to implement, but radiomics features and the deep features are at different
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semantic levels, which restricts the fusion effect. Therefore, the idea of using the radiomics features
and the deep features to independently train two models, and then the decision-making fusion of the
model output has also attracted scholars' attention.

Inspired by the above research, we combined the radiomics and deep features, used the LASSO
algorithm for feature screening, formed an effective feature combination and combined with clinical
factors, and established a placenta invasion detection model by constructing a nomogram. This
method not only takes full advantage of the ability to represent different levels of placental
heterogeneity of radiomics features, deep features and clinical factors, but also takes into account the
respective advantages of feature-level fusion and decision-level fusion, thereby contributing to the
development of auxiliary diagnosis of placenta invasion.

2. Materials
2.1. Participants

This retrospective study was approved by the Ethics Committee of the Affiliated Hospital of
Medical School of Ningbo University, and identity information of all patients had been de-identified
to protect patient privacy. One hundred forty-one pregnant women were initially selected. In all,
twenty-nine patients were excluded for various reasons including multiple pregnancies (n = 2), MRI
performed before 24th gestational weeks (n = 18), presence of significant fetal/maternal anomalies (n
= 7), and severe motion or other type of artifact on either imaging sequence (n = 2). The final cohort
included 112 patients. Based on these cases, we conducted a multi-center study. We took 78 cases
from Ningbo Women & Children's Hospital as the training cohort, and 34 cases from the Affiliated
Hospital of Medical School of Ningbo University as the independent validation cohort, as shown in
Table 1.

Table 1. Data partition table.

Ningbo Women & Affiliated Hospital of Medical School of
Children's Hospital Ningbo University

Invasive placenta 51 21

Normal placenta 27 13

2.2. MR imaging parameters

All patients underwent placental MRI using one of the two 1.5T MRI systems. The scanning
sequence and parameters were as follows: (1) Sagittal TIWI single-shot fast spin echo
(SSh-T1WI-TFE) sequence, TE 6.8ms, TR 13.9, FOV 375 x 375 mm, layer thickness 8.5 mm, layer
spacing 1.5 mm, matrix 375 x 375; (2) T2WI fast self-selected echo (FSE T2WI) sequence of axial,
sagittal and coronal planes, TE 1200ms, TR 80ms, FOV 375 x 375, layer thickness 4.5 mm, layer
spacing 2 mm, matrix 256 x 256.

Documents showed that the main signs of placenta invasion in MR images included: uneven
placental signal, abnormally prominent placenta or (and) uterine limitations and low signal banding
in the placenta, etc. Therefore, we finally chose the supine sagittal image of the conventional T2WI
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sequence (side-lying imaging is prone to curling artifacts due to the bulge of the abdomen) as the
reference imaging sequence for this study. Typical T2WI sagittal images are shown in Figure 1.

T2W_TSE HFS

Figure 1. T2WI sagittal images.

In Figure 1, (a) The patient was 35 weeks gestational and had a placenta increta. The arrow in
the figure showed that the placenta and the anterior inferior wall of the uterus were unclear, and signs
of implantation were seen locally. (b) The patient was 35 weeks gestation and had a placenta percreta.
The arrow in the figure showed that the placenta penetrated the lower wall of the uterus and involved
the bladder.

Some researchers reported that the use of contrast media to observe the structure of the placenta
would help the detection of placental invasion [16—18]. These researchers believed that for the
placental tissue rich in blood vessels, the application of contrast media could show the placenta more
clearly. However, since the contrast media might pass through the placental barrier, the side effects
caused could not be ignored. Zhu [19] believed that although there are no reports on the adverse
effects of gadolinium contrast media on human fetuses, the half-life of the contrast media in the fetus
was still unclear, so the MR images used in this study were all obtained by non-enhanced scanning.

3. Methods
3.1.  Region of interest segmentation

The features we extracted mainly include two types: radiomics features and deep features. The
radiomics features mainly included the geometric shape features of the target area, the pixel
grayscale distribution features and the texture features. In order to better characterize the feature
information contained in the placental tissue, we segmented the placental region to extract the
radiomics features. Considering that most patients with placenta invasion have placenta previa, that
is to say, the relative position of the placenta in the uterus is also an important factor in predicting
placenta invasion. The deep features extracted by deep neural networks can indicate the relationship
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between the targets. Therefore, we segmented the entire uterine region from the MR image and use it
as the input of the deep neural network to extract deep features.

Segmentation of the uterine region: Background information occupies a large proportion of MR
images and it is not helpful for extracting radiomic features and deep features. Radiologists usually
focus on the uterus area and automatically filter the background information. Therefore, we cut out
the black background area as much as possible while preserving the complete uterine area. Finally,
the size of each slice after cropping was determined to be 256 x 256. Each sequence of the original
data contained 24 slices. The size of the MRI was 256 x 256 x 24 after the above processing. We
normalized the images after the above processing by z-score and used them as the input of the neural
network to extract deep features.

Segmentation of the placenta area: In the uterus area, the placenta was further segmented by an
MRI radiologist with 15 years of work experience and a radiologist with 10 years of work experience
using the open source software ITK-SNAP version 3.8.0. Both radiologists were blind to the
pathological results. The segmentation results were also evaluated by three independent reviewers to
make sure they agree. We normalized the segmented placental region images by z-score and used
them to extract radiomics features.

3.2.  Radiomic feature extraction

In this paper, radiomics features were extracted from the region of placenta. The extracted
radiomics features were divided into three categories: (I) geometry, (II) intensity, (III) texture.
Geometric features described the three-dimensional shape of the placenta. The intensity features
described the first-order statistical distribution of voxel intensity in the placenta. Texture features
described the second- and higher-order spatial distribution of patterns or intensity. A total of 93
radiomics features were extracted. The specific features can be viewed in Appendix A. All the
features were extracted through the pyradiomics package version 3.0 [20].

3.3.  Deep feature extraction

Radiomics features are clearly designed or hand-made. Although the number of features can
reach tens of thousands, these features are shallow and low-level image features, which may not be
able to fully characterize the heterogeneity of the placenta, and therefore may limit the potential of
survival prediction models. In this case, it is necessary to extract deeper and higher-order features.

Given a target task (for example, in our case, diagnosing invasive placentation by MRI), the
training data for this target task is limited. Transfer learning aimed to use large-scale data from other
sources of tasks and artificially provided labels to learn expressive and universal feature
representations to help achieve the target task. A commonly used method [21] is to pretrain a deep
neural network for feature extraction on a large data set in the source task (such as ImageNet) by
inserting human annotation labels in it, and then finetune the pre-trained network in the target task.
When applying this strategy, we should pay attention to the following points. First of all, there is a
big difference between the image data in the source task and the MR image of placenta invasion. For
example, ImageNet images usually belong to general domain categories, such as cats, dogs, chairs,
etc., while the images in our task are MR images, which casts doubt that the portability of MRI from
other image sources to placenta invasion. In order to solve this problem, we conducted neural
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network pretraining on 23 medical data sets (including brain MR images and lung CT images, etc.).
Compared with ImageNet, the difference between the pretrained image data and the image data of
the target task is smaller.

In this research, we chose 3D-ResNet50 as the pretrained CNN model [22]. The
hyperparameters of 3D-ResNet50 are as follows: weight attenuation was 0.001, momentum was 0.9
and the initial learning rate was 0.001. Deep feature extraction includes 3 steps: pre-training of
3D-ResNet50, fine-tuning and feature extraction.

1) Pre-training: The 3D-ResNet50 model was pre-trained on 23 magnetic data sets. The model
had the ability to recognize the basic contours and details in the magnetic resonance image after
pre-training which could accelerate the gradient descent in the subsequent fine-tuning process.

2) Fine-tuning: The placenta training data was used to fine-tune the model. The specific method
is as follows, set the output dimension of the softmax layer to 2, that is to predict the invasive
placentation (the prediction result is 2 classes: normal or invasion), then calculate the loss between
prediction result and the labels and fine-tune the entire network according to the back propagation
error. The fine-tuned network has the ability to identify invasive placentation.

3) Feature extraction: First, linear transformation was used to normalize the image gray values
to the range of [0, 255]. Then, the entire placenta area was used as the input of 3D-ResNet50. Finally,
deep features that can only be calculated by forward propagation are extracted from the fully
connected layer before the softmax layer. In total, 128 deep features can be extracted for each patient.
This procedure was accomplished by using the deep learning toolkit Pytorch. The process of transfer
learning to extract deep features is shown in Figure 2. The details of 3D-ResNet50 can be found in
Appendix B.

Deep feature extraction
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Figure 2. Transfer learning to extract deep features.

3.4.  Selection of clinical factors
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One hundred twelve pregnant women who meet inclusion criteria were enrolled in the current
study. Among them, seventy-eight are training cohort and thirty-four are independent validation
cohort. In the training cohort, fifty-one had histologically confirmed placenta invasion (PI) (16
accreta, 32 increta, and 3 percreta) and 27 were with normal placenta. We collected clinical data of
all patients from the hospital’s HIS system, including age, weight, history of cesarean section or
curettage (0 means no history of cesarean section or curettage, 1 means the patient had a history of
cesarean section or curettage) and placenta previa (0 means no placenta previa, 1 means placenta
previa), the relationship between each clinical data and placenta invasion was analyzed using paired
sample t test. IBM SPSS 25.0 for Windows was used to perform the t-test. The results are shown in
Table 2.

Table 2. Relationship between clinical factors and placenta invasion.

Placenta Normal P-value

Invasion(n =51)  Placenta(n = 27)

Age <30 8 (15.39%) 7 (25.93%) <0.001
30-35 10 (19.61%) 8 (29.63%)
35-40 24 (47.06%) 9 (33.33%)
>40 9 (17.65%) 3 (11.11%)
Weight <55 2 (3.92%) 1 (3.70%) 0.137
55-60 2 (3.92%) 4 (14.81%)
60-65 27 (52.94%) 15 (55.56%)
> 65 20 (39.22%) 7 (25.93%)
History of cesarean 0 3 (5.88%) 25 (92.59%) <0.001
section or curettage 1 48 (94.12%) 2 (7.41%)
Placenta previa 0 5(9.80%) 26 (96.30%) <0.001
1 46 (90.20%) 1 (3.70%)

Table 2 shows that the mean age for the PI group (35.02 £4.94 years, range from 22 to 44) was
significantly higher than the normal group (33.26 +5.02 years, range from 25 to 44) (p < 0.001,
two-sample t test). The mean weight for the PI group was 62.65+5.27 kg (range from 50 to 75),
while for the normal group it was 61.15+5.11 kg (range from 50 to 70). No significant difference
was observed in weight (p = 0.137, two-sample t test) between the two groups. The number of
women who had a history of cesarean section or curettage in the PI group was significantly more
than that in the normal group. And the number of women who had PP in the PI group was
significantly more than that in the normal group. Therefore, we combined three clinical factors
(excluding weight) with combined signatures to construct the nomogram.

3.5.  Model building and comparison

The flowchart of the study is shown in Figure 3, radiomics and deep features were combined to
build the NDRC model.
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Figure 3. The flowchart of the study.

In Figure 3, a variety of machine learning methods were performed to classify placental
invasion (invasion or normal) based on the extracted radiomics features, including decision tree,
Random Forest, Naive Bayes and Support Vector Machine in order to compare the prediction
accuracy of the proposed NDRC model. Random Forest was performed to classify placental invasion
based on the deep features. Their implementation details can be viewed in Appendix C. In addition to
comparing the prediction accuracy with the NDRC model, we explored whether it was possible to
predict placental invasion accurately by using radiomic features or deep features alone, and which
features have higher prediction accuracy. Finally, the prediction accuracy of traditional machine
learning methods and proposed NDRC was compared by the four indicators of accuracy, sensitivity,
specificity and area under the ROC.

For each patient, we combined 93 radiomics features and 128 deep features, used the LASSO
[23] algorithm to filter the merged 221 features, then used the result of the linear combination of the
12 features and their corresponding weights as the combined signatures. The paired sample t-test was
used to analyze the relationship between various clinical factors and placental invasion, and the
factors that were significantly related to placental invasion were retained (p-value < 0.05). In order to
make the model more robust and explanatory, clinical factors remained after the t-test analysis and
combined signatures were used to construct the nomogram. The method of construction is
multi-factor logistic regression.

4. Results
4.1.  Combination and selection of features
A total of 221 features were extracted from the MRI images of the training cohort, and these

features were filtered by using the LASSO model. As shown in Figure 4, (a) represents the
coefficient distribution of each feature, and a coefficient distribution map is generated for log(A)
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(penalty intensity). It can be seen that as log(A) increases, the coefficients corresponding to less and
less important features become 0; (b) is to use 10-fold cross-validation to adjust the parameters in the
LASSO model to obtain the minimum standard. The mean square error was plotted versus log(}).
The dotted vertical lines were drawn with the best value by using the minimum criterion, that is, the
dotted line indicates the number of selected features. As shown in the figure, twelve features with
non-zero coefficients were selected, including 7 radiomics features and 5 deep features.
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Figure 4. Feature selection using the LASSO cox regression model.

In Figure 4, each dotted vertical line represents a feature selection result for a feature group. The
base of log(A) is e. (a) LASSO coefficients produced by the regression analysis (in b). Twelve
resulting predictors with nonzero coefficients were indicated in the plot. (b) Selection of tuning
parameter (A) in the LASSO model via 10-fold cross-validation. Mean square errors from the
LASSO regression's cross-validation procedure were plotted as a function of log(L). A is the tuning
parameter. Numbers along the upper x-axis represent the average number of predictors. Red dots
indicate average error values for each model with given A, and vertical bars through the red dots
show the upper and lower values of the errors. The vertical black lines define the optimal values of A,
where the model provides its best fits to the data. The optimal A value of 1.0299 with log (A) =
0.0295 was chosen via 10-fold cross-validation based on the minimum criteria.

4.2.  The nomogram and its performance

In the training cohort, we integrated the combined signature with clinical information to
generate a nomogram (Figure 5). For the independent validation cohort, the nomogram was used to
predict of placenta invasion with the accuracy, sensitivity, specificity and AUC of 0.941, 0.952, 0.923
and 0.985 respectively.

In the nomogram, CS, CSC and PP stand for combined signature, history of cesarean section or
curettage and placenta previa respectively.
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Figure 5. The nomogram combining radiomics, deep learning and clinic information.
4.3.  Compared with traditional machine learning methods

Various techniques and methods were used for prediction of placenta invasion, each technique
has its own respective accuracy level. Here, NDRC was compared with Decision Tree, Random
Forest (RF), Naive Bayes and Support Vector Machine methods based on radiomic features in terms
of accuracy, sensitivity, specificity and AUC. Then, NDRC was also compared with RF method
based on deep features. Table 3 summarizes the results of all different methods on the independent
validation cohort with a classification cutoff of 0.5.

Table 3. Evaluation of different methods on the independent validation cohort.

Methods Accuracy Sensitivity Specificity AUC
Base on radiomics features

Decision Tree 0.706 0.762 0.615 0.802
Random Forest (RF) 0.824 0.857 0.769 0.923
Naive Bayes 0.676 0.714 0.615 0.729
Support Vector Machine (SVM) 0.794 0.857 0.692 0.846

Base on deep features
RF 0.853 0.905 0.769 0.923

Base on combined features and clinic
data

NDRC 0.941 0.952 0.923 0.985
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It can be seen in Table 3 that the prediction accuracy of the machine learning method based on
deep features is slightly higher than that of the machine learning method based on radiomics features,
and the accuracy of the NDRC method is higher than the above two methods. In addition to the
accuracy, sensitivity, and specificity, we have evaluated different methods using receiver operating
characteristic (ROC) curves (Figure 6).
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3 z z
04 [ — 04
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Figure 6. The ROC curves of different methods.
5. Conclusions

In this study, we developed a nomogram combining radiomics, deep learning and clinical data,
which can predict placenta invasion prenatally after 24 weeks of pregnancy. Radiomics features are
clearly designed or hand-made and these features reflect the shallow and low-level characteristics of
the image which cannot fully characterize the heterogeneity inside the placenta when applied to the
detection of placenta invasion. According to previous reports, excessive hypertrophy and fibrin
deposition in the placenta can lead to intra-placenta heterogeneity [24]. Therefore, the use of imaging
data to find intra-placenta heterogeneity can effectively predict placenta invasion. However, placental
heterogeneity the imaging data reflects is difficult to quantify and usually develops with gestational
age after the second trimester, which complicate the visual assessment of placenta invasion.
Therefore, we further train the deep neural network to extract deep features inside the placenta to
better characterize the placental heterogeneity.

On the other hand, previous studies have found that as the number of cesarean delivery
increases, the risk of PI also increases [25-27]. In order to further improve the accuracy of the
prediction model, we take age, history of cesarean section or curettage and placenta previa as clinical
factors of placental invasion and combine them with the extracted radiomics and deep features
optimizing through feature screening, then construct a nomogram that can be used for prediction of
placenta invasion. The results show that the nomogram model constructed in this research achieves
higher detection accuracy and AUC than machine learning methods based on radiomics or deep
features alone. At the same time, the nomogram model also confirmed that history of cesarean
section or curettage and placenta previa are the factors that have the dominant ability to predict
placenta invasion.

We need to point out some limitations of current research. Because this study is retrospective,
there will inevitably be some biases or may affect the analysis and the sample size (n = 112) is
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relatively small. Despite these limitations, it has the advantage that not all data is collected in a single
location using a single scanner. The training cohort and validation cohort data are from different
hospitals, so the results obtained in this study have been externally verified by data from different
vendors with different acquisition parameters.

A number of studies have shown that delivery in a specialized center for PI patients can
significantly reduce the incidence of maternal morbidity [28-30]. However, due to the uneven
distribution of medical resources and the uneven development of urban and rural areas, medical
institutions at and below the county level cannot detect and diagnose PI early and lack treatment
experience, which lead to a poor prognosis for the parturient and perinatal period. The nomogram
developed in this paper can help doctors make clinical decisions for pregnant women with suspected
placental invasion. These results also provided support for the initiation of a new prospective study
to systematically evaluate the diagnostic capabilities of the combination of radiomics features and
clinical parameters and to improve diagnosis and patient care.
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Appendix A

Table A.1. Extracted radiomics features.

First-Order Statistics

10 Percentile 90 Percentile Energy
Entropy Interquartile Range Kurtosis
Maximum Mean Absolute Deviation Mean
Median Minimum Range
Robust Mean Absolute Root Mean Squared Skewness
Deviation
Total Energy Uniformity Variance

Gray Level Co-Occurrence Matrix

Autocorrelation Cluster Prominence Cluster Shade
Cluster Tendency Contrast Correlation
Difference Average Difference Entropy Difference Variance
Inverse Difference (ID) ID Moment ID Moment Normalized
ID Normalized Informational Correlation 1 Informational Correlation 2
Inverse Variance Joint Average Joint Energy
Joint Entropy Max Correlation Coefficient Max Probability
Sum Average Sum Entropy Sum Squares
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Neighboring Gray Tone Difference Matrix

Busyness Coarseness Complexity
Contrast Strength
Gray Level Run Length Matrix
Non Uniformity (NU) NU Normalized Variance
High Run Emphasis Long Run Emphasis Long Run High Emphasis
Long Run Low Emphasis Low Run Emphasis Run Entropy
RL NU RL NU Normalized Run Percentage
Run Variance Short Run Emphasis Short Run High Emphasis
Short Run Low Emphasis
Gray Level Size Zone Matrix
Non Uniformity (NU) NU Normalized Variance
High Zone Emphasis Large Area Emphasis Large Area High Emphasis
Large Area Low Emphasis Low Zone Emphasis Size Zone NU
Size Zone NU Normalized Small Area Emphasis Small Area High Emphasis
Small Area Low Emphasis Zone Entropy Zone Percentage
Zone Variance
Gray Level Dependence Matrix
Entropy Non Uniformity (NU) NU Normalized
Dependence Variance Dependence NU Variance
High Emphasis Large Emphasis Large High Emphasis
Large Low Emphasis Low Emphasis Small Emphasis
Small High Emphasis Small Low Emphasis
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Appendix B

Table B.1. Kernel size of each layer of 3D-ResNet50.

layer name 3D-ResNet50

convl 7 x 7T x7,64,stride 2

3 x 3 x 3 max pool, stride 2

conv2 x (1Xx1x1, 647
- 3x3x3, 64]|x3
|1 x1x1, 256]
1 x1x1, 1287
conv3 x 3x3x3, 128|x4
|1 x1x1, 512]
[1x1x1, 2567
conv4 X 3x3x%x3, 256|%x6

1 x1x1, 1024]

[1x1x1, 5127
convS x 3x3x3, 512|x%x3
|1 x1x1, 2048]

max pooling max pool, 128-d fc

In Table B.1,1 x 1 x 1,3 x3 x3and 7 x 7 X 7 in the table are the size of the convolution kernel;
64, 128, 256, 1024 and 2048 are the number of channels output after each convolution; The network
structure contained in each square bracket is a “bottleneck” building block, take conv3 x for
example as shown in Figure B.1.

Y

[ 1x1x1,128 |
lrelu

[ 3x3x3, 128 |
4 relu

[ 1x1x1,512

Figure B.1. A “bottleneck” building block for 3D-ResNet50.

Bottleneck is designed to reduce the number of parameters. Considering the cost of calculation,
the calculation of the residual block is optimized, that is, the convolutional layer is designed to be 1x
1 x1+3x3x3+1x1 x 1. First, the dimension is reduced by the convolution kernel of 1 x 1 x 1,
and the result is input to the intermediate layer, and then restored under the convolutional layer of 1 x
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1 x 1, which not only maintains the accuracy but also reduces the amount of calculation. The first 1 x
1 x 1 convolution reduces the 512-dimensional channel to 128 dimensions, and then recovers the 512
dimensions by 1 x 1 x 1 convolution at the end.

Appendix C (Implementation details of decision tree, random forest, naive Bayes, and support
vector machine)

C.1. Decision tree

Decision tree is a predictive analysis model expressed in the form of a tree structure. Each of its
unique tree-type classification graphs represents a feature from the root node to the leaf node. The
important theoretical basis of the decision tree algorithm is "Gini Index" and "Information Entropy"
which are analytical tools for quantifying information. Entropy represents the degree of randomness
of the element, and its calculation formula is shown in (1):

H= -Zp(x)log(x) (1)

where x represents the discrete random variable, p(x) represents the probability of the

variable x occurrence, the greater the probability, the smaller the entropy value. The definition of
Gini coefficient is similar to entropy value. The larger the Gini coefficient, the larger the entropy
value, indicating the higher the degree of randomization of the element.

C.2. Random forest

The steps of the random forest algorithm are as follows: 1) Generate a decision tree. 2) Combine
the decision trees into a random forest. 3) The classification results of all decision trees in the
random forest are voted, and the voting result is the classification result of the final model. The
classification voting process is shown in Eq (2):

H(x)=arg mgzxi[(hi(x): Y) 2)

i=1

where Y is the output variable; H(x) isthe Y that returns the most votes; k is the number
of decision trees; #,(x) is the classification model of a single decision tree; I is the indicative

function.
C.3. Naive Bayes

Naive Bayes is a method based on the classic Bayes principle, which can be used to build
models for classification, prediction and evaluation. The classic Bayes principle can be expressed as

Eq (3):

P(4/B)= P(B/ A)P(4) ]/3 (AB);D (4) 3)
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where P(A/ B) is the posterior probability which refers to the probability of the event A
occurring when the event B occurs; P(A4) and P(B) are the probability of occurrence of events
A and B respectively, and P(A) is also called prior probability; P(B/ A) is the probability of
event B when event A occurs which is the posterior probability of event A. Given there is a data
set D= {dl,dz,...,dm}, a total of m data, each data has n-dimensional features, the feature set is
C= {cl,c2 yeers G, }, and each influencing factor feature has several levels, denoted as C- According to

the feature set, the data set can be divided into k categories. Assuming that the features are
independent of each other and the influence weights are equal, according to the principle of naive
Bayes, the probability of being classified into y, under the horizontal condition ¢ ,c,,,...,c,; 1s

ni

shown in Eq (4):

P(yi)HP(Cji/yi)
P(yi/cli’CZi"”’cni): = 4)

ﬁp (Cji)

C.4. Support vector machine

The basic idea of support vector machine is to solve the separation hyperplane that can divide
the data set correctly and has the largest geometric interval. It has high application value in both
linear and non-linear data structures. When dealing with data sets with linear relationships, the
optimal linear partition equation is shown in Eq (5):

o' x+b=0 (5)

The formula for the distance from the point in the space to the best classification hyperplane is
shown in Eq (6):

(6)

As long as the distance is maximized, the best dividing line and the best classification
hyperplane can be found. For the nonlinear classification problem in the input space, it is
transformed into a linear classification problem in a certain dimensional feature space by nonlinear
transformation, and linear support vector machines are learned in the high-dimensional feature space.
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