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Abstract: The purpose of this study was to explore whether the Nomogram, which was constructed 
by combining the Deep learning and Radiomic features of T2-weighted MR images with Clinical 
factors (NDRC), could accurately predict placenta invasion. This retrospective study included 72 
pregnant women with pathologically confirmed placenta invasion and 40 pregnant women with 
normal placenta. After 24 gestational weeks, all participants underwent magnetic resonance imaging. 
The uterus and placenta regions were segmented in magnetic resonance images on sagittal T2WI. 
Ninety-three radiomics features were extracted from the placenta region, and 128 deep features were 
extracted from the uterus region using a deep neural network. The least absolute shrinkage and 
selection operator (LASSO) algorithm was used to filter these 221 features and to form the combined 
signature. Then the combined signature (CS) and clinical factors were combined to construct a 
nomogram. The accuracy, sensitivity, specificity and AUC of the nomogram were compared with 
four machine learning methods. The model NDRC was trained on the dataset of 78 pregnant women 
in the training cohort. Finally, the model NDRC was compared with four machine learning methods 
on the independent validation cohort of 34 pregnant women. The results showed that the prediction 
accuracy, sensitivity, specificity and AUC of the NDRC model were 0.941, 0.952, 0.923 and 0.985 
respectively, which outperforms the traditional machine learning methods which rely on radiomics 
features and deep learning features alone. 
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1. Introduction  

Placental invasion is defined as the abnormal invasion of trophoblast cells into the myometrium 
at different depths of infiltration [1]. It occurs mostly in patients with placenta previa or prior 
cesarean section, with common complications including catastrophic perinatal hemorrhage and 
bladder, bowel, and urethral injuries [2]. Early diagnosis of placental invasion before delivery is 
critical for appropriate treatment planning [3]. Ultrasound is the mainstay in the imaging of placental 
invasion [4]. However, due to the influence of the shape of pregnant women, gas in the intestines and 
bones, ultrasonic penetration power would decrease and reflected waves increase, which results in 
the unclear observation of lesions, especially the lesions of the posterior wall of the uterus and 
placenta. While MRI is less affected by intestinal gas and bones, has high tissue resolution and can 
be imaged at any angle in multiple directions, so it is especially recommended for cases of posterior 
placenta and cases whose ultrasound results are equivocal and/or clinical suspicion is high [5,6]. 

In the clinical practice of detecting placenta invasion, a recent study showed that the 
performance of experienced radiologists was significantly better than that of junior radiologists [7]. 
In order to reduce the dependence on doctors' clinical experience and improve the diagnosis of 
placental invasion, some scoring systems for diagnosing placental invasion have been proposed in 
recent years, but they have not been extensively tested [8]. Obvious placental heterogeneity and 
irregular thick dark intraplacental band in the placenta on T2WI are recognized signs of placental 
infiltration in MR images [9]. However, the visual representation of placental heterogeneity and the 
identification of abnormal dark intraplacental bands on T2WI may be difficult and highly subjective. 
Therefore, quantitative image analysis has become an attractive research field that overcomes the 
subjectivity of visual interpretation and improves diagnostic accuracy [10]. 

With the rapid development of medical imaging technology, a comprehensive analysis method 
of medical images called radiomics has received extensive attention in recent years [11]. Radiomics 
usually refers to extracting high-throughput quantitative features from medical images and realizing 
auxiliary diagnosis of diseases through machine learning. Researchers can use complex machine 
learning tools to develop a variety of radiomics models, thereby potentially improving the accuracy 
of disease diagnosis, prognosis and prediction because radiomics transforms medical images into 
obtainable data [12,13]. At the same time, deep learning has achieved great success in image analysis 
in recent years as an important means of realizing artificial intelligence (AI), and has also greatly 
promoted the development of medical image processing technology [14,15]. Different from the 
low-level image features extracted by radiomics methods, deep learning can mine various high-level 
semantic information of images. Therefore, we hope to combine deep learning with traditional 
radiomics to establish a more effective placenta invasion detection model. At present, the 
conventional idea of combining radiomics and deep learning is to extract radiomics features and deep 
features of medical images, and then build better auxiliary diagnostic models through feature-level 
fusion. This idea is easy to implement, but radiomics features and the deep features are at different 



6200 

Mathematical Biosciences and Engineering  Volume 18, Issue 5, 6198–6215. 

semantic levels, which restricts the fusion effect. Therefore, the idea of using the radiomics features 
and the deep features to independently train two models, and then the decision-making fusion of the 
model output has also attracted scholars' attention. 

Inspired by the above research, we combined the radiomics and deep features, used the LASSO 
algorithm for feature screening, formed an effective feature combination and combined with clinical 
factors, and established a placenta invasion detection model by constructing a nomogram. This 
method not only takes full advantage of the ability to represent different levels of placental 
heterogeneity of radiomics features, deep features and clinical factors, but also takes into account the 
respective advantages of feature-level fusion and decision-level fusion, thereby contributing to the 
development of auxiliary diagnosis of placenta invasion. 

2. Materials 

2.1. Participants 

This retrospective study was approved by the Ethics Committee of the Affiliated Hospital of 
Medical School of Ningbo University, and identity information of all patients had been de-identified 
to protect patient privacy. One hundred forty-one pregnant women were initially selected. In all, 
twenty-nine patients were excluded for various reasons including multiple pregnancies (n = 2), MRI 
performed before 24th gestational weeks (n = 18), presence of significant fetal/maternal anomalies (n 
= 7), and severe motion or other type of artifact on either imaging sequence (n = 2). The final cohort 
included 112 patients. Based on these cases, we conducted a multi-center study. We took 78 cases 
from Ningbo Women & Children's Hospital as the training cohort, and 34 cases from the Affiliated 
Hospital of Medical School of Ningbo University as the independent validation cohort, as shown in 
Table 1. 

Table 1. Data partition table. 

 Ningbo Women & 

Children's Hospital 

Affiliated Hospital of Medical School of 

Ningbo University 

Invasive placenta 51 21 

Normal placenta 27 13 

2.2. MR imaging parameters 

All patients underwent placental MRI using one of the two 1.5T MRI systems. The scanning 
sequence and parameters were as follows: (1) Sagittal T1WI single-shot fast spin echo 
(SSh-T1WI-TFE) sequence, TE 6.8ms, TR 13.9, FOV 375 × 375 mm, layer thickness 8.5 mm, layer 
spacing 1.5 mm, matrix 375 × 375; (2) T2WI fast self-selected echo (FSE T2WI) sequence of axial, 
sagittal and coronal planes, TE 1200ms, TR 80ms, FOV 375 × 375, layer thickness 4.5 mm, layer 
spacing 2 mm, matrix 256 × 256. 

Documents showed that the main signs of placenta invasion in MR images included: uneven 
placental signal, abnormally prominent placenta or (and) uterine limitations and low signal banding 
in the placenta, etc. Therefore, we finally chose the supine sagittal image of the conventional T2WI 
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sequence (side-lying imaging is prone to curling artifacts due to the bulge of the abdomen) as the 
reference imaging sequence for this study. Typical T2WI sagittal images are shown in Figure 1. 

   
(a)                                  (b) 

Figure 1. T2WI sagittal images. 

In Figure 1, (a) The patient was 35 weeks gestational and had a placenta increta. The arrow in 
the figure showed that the placenta and the anterior inferior wall of the uterus were unclear, and signs 
of implantation were seen locally. (b) The patient was 35 weeks gestation and had a placenta percreta. 
The arrow in the figure showed that the placenta penetrated the lower wall of the uterus and involved 
the bladder. 

Some researchers reported that the use of contrast media to observe the structure of the placenta 
would help the detection of placental invasion [16–18]. These researchers believed that for the 
placental tissue rich in blood vessels, the application of contrast media could show the placenta more 
clearly. However, since the contrast media might pass through the placental barrier, the side effects 
caused could not be ignored. Zhu [19] believed that although there are no reports on the adverse 
effects of gadolinium contrast media on human fetuses, the half-life of the contrast media in the fetus 
was still unclear, so the MR images used in this study were all obtained by non-enhanced scanning. 

3. Methods 

3.1. Region of interest segmentation 

The features we extracted mainly include two types: radiomics features and deep features. The 
radiomics features mainly included the geometric shape features of the target area, the pixel 
grayscale distribution features and the texture features. In order to better characterize the feature 
information contained in the placental tissue, we segmented the placental region to extract the 
radiomics features. Considering that most patients with placenta invasion have placenta previa, that 
is to say, the relative position of the placenta in the uterus is also an important factor in predicting 
placenta invasion. The deep features extracted by deep neural networks can indicate the relationship 
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between the targets. Therefore, we segmented the entire uterine region from the MR image and use it 
as the input of the deep neural network to extract deep features. 

Segmentation of the uterine region: Background information occupies a large proportion of MR 
images and it is not helpful for extracting radiomic features and deep features. Radiologists usually 
focus on the uterus area and automatically filter the background information. Therefore, we cut out 
the black background area as much as possible while preserving the complete uterine area. Finally, 
the size of each slice after cropping was determined to be 256 × 256. Each sequence of the original 
data contained 24 slices. The size of the MRI was 256 × 256 × 24 after the above processing. We 
normalized the images after the above processing by z-score and used them as the input of the neural 
network to extract deep features. 

Segmentation of the placenta area: In the uterus area, the placenta was further segmented by an 
MRI radiologist with 15 years of work experience and a radiologist with 10 years of work experience 
using the open source software ITK-SNAP version 3.8.0. Both radiologists were blind to the 
pathological results. The segmentation results were also evaluated by three independent reviewers to 
make sure they agree. We normalized the segmented placental region images by z-score and used 
them to extract radiomics features. 

3.2. Radiomic feature extraction 

In this paper, radiomics features were extracted from the region of placenta. The extracted 
radiomics features were divided into three categories: (I) geometry, (II) intensity, (III) texture. 
Geometric features described the three-dimensional shape of the placenta. The intensity features 
described the first-order statistical distribution of voxel intensity in the placenta. Texture features 
described the second- and higher-order spatial distribution of patterns or intensity. A total of 93 
radiomics features were extracted. The specific features can be viewed in Appendix A. All the 
features were extracted through the pyradiomics package version 3.0 [20]. 

3.3. Deep feature extraction 

Radiomics features are clearly designed or hand-made. Although the number of features can 
reach tens of thousands, these features are shallow and low-level image features, which may not be 
able to fully characterize the heterogeneity of the placenta, and therefore may limit the potential of 
survival prediction models. In this case, it is necessary to extract deeper and higher-order features. 

Given a target task (for example, in our case, diagnosing invasive placentation by MRI), the 
training data for this target task is limited. Transfer learning aimed to use large-scale data from other 
sources of tasks and artificially provided labels to learn expressive and universal feature 
representations to help achieve the target task. A commonly used method [21] is to pretrain a deep 
neural network for feature extraction on a large data set in the source task (such as ImageNet) by 
inserting human annotation labels in it, and then finetune the pre-trained network in the target task. 
When applying this strategy, we should pay attention to the following points. First of all, there is a 
big difference between the image data in the source task and the MR image of placenta invasion. For 
example, ImageNet images usually belong to general domain categories, such as cats, dogs, chairs, 
etc., while the images in our task are MR images, which casts doubt that the portability of MRI from 
other image sources to placenta invasion. In order to solve this problem, we conducted neural 
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network pretraining on 23 medical data sets (including brain MR images and lung CT images, etc.). 
Compared with ImageNet, the difference between the pretrained image data and the image data of 
the target task is smaller. 

In this research, we chose 3D-ResNet50 as the pretrained CNN model [22]. The 
hyperparameters of 3D-ResNet50 are as follows: weight attenuation was 0.001, momentum was 0.9 
and the initial learning rate was 0.001. Deep feature extraction includes 3 steps: pre-training of 
3D-ResNet50, fine-tuning and feature extraction. 

1) Pre-training: The 3D-ResNet50 model was pre-trained on 23 magnetic data sets. The model 
had the ability to recognize the basic contours and details in the magnetic resonance image after 
pre-training which could accelerate the gradient descent in the subsequent fine-tuning process. 

2) Fine-tuning: The placenta training data was used to fine-tune the model. The specific method 
is as follows, set the output dimension of the softmax layer to 2, that is to predict the invasive 
placentation (the prediction result is 2 classes: normal or invasion), then calculate the loss between 
prediction result and the labels and fine-tune the entire network according to the back propagation 
error. The fine-tuned network has the ability to identify invasive placentation. 

3) Feature extraction: First, linear transformation was used to normalize the image gray values 
to the range of [0, 255]. Then, the entire placenta area was used as the input of 3D-ResNet50. Finally, 
deep features that can only be calculated by forward propagation are extracted from the fully 
connected layer before the softmax layer. In total, 128 deep features can be extracted for each patient. 
This procedure was accomplished by using the deep learning toolkit Pytorch. The process of transfer 
learning to extract deep features is shown in Figure 2. The details of 3D-ResNet50 can be found in 
Appendix B. 

 

Figure 2. Transfer learning to extract deep features. 

3.4. Selection of clinical factors 
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One hundred twelve pregnant women who meet inclusion criteria were enrolled in the current 
study. Among them, seventy-eight are training cohort and thirty-four are independent validation 
cohort. In the training cohort, fifty-one had histologically confirmed placenta invasion (PI) (16 
accreta, 32 increta, and 3 percreta) and 27 were with normal placenta. We collected clinical data of 
all patients from the hospital’s HIS system, including age, weight, history of cesarean section or 
curettage (0 means no history of cesarean section or curettage, 1 means the patient had a history of 
cesarean section or curettage) and placenta previa (0 means no placenta previa, 1 means placenta 
previa), the relationship between each clinical data and placenta invasion was analyzed using paired 
sample t test. IBM SPSS 25.0 for Windows was used to perform the t-test. The results are shown in 
Table 2. 

Table 2. Relationship between clinical factors and placenta invasion. 

  Placenta 

Invasion(n = 51) 

Normal 

Placenta(n = 27) 

P-value 

Age < 30 8 (15.39%) 7 (25.93%) < 0.001 

30–35 10 (19.61%) 8 (29.63%)  

35–40 24 (47.06%) 9 (33.33%)  

≥ 40 9 (17.65%) 3 (11.11%)  

Weight < 55 2 (3.92%) 1 (3.70%) 0.137 

55–60 2 (3.92%) 4 (14.81%)  

60–65 27 (52.94%) 15 (55.56%)  

≥ 65 20 (39.22%) 7 (25.93%)  

History of cesarean 

section or curettage 

0 3 (5.88%) 25 (92.59%) < 0.001 

1 48 (94.12%) 2 (7.41%)  

Placenta previa 0 5 (9.80%) 26 (96.30%) < 0.001 

1 46 (90.20%) 1 (3.70%)  

Table 2 shows that the mean age for the PI group (35.02 ± 4.94 years, range from 22 to 44) was 
significantly higher than the normal group (33.26 ± 5.02 years, range from 25 to 44) (p < 0.001, 
two-sample t test). The mean weight for the PI group was 62.65±5.27 kg (range from 50 to 75), 
while for the normal group it was 61.15 ± 5.11 kg (range from 50 to 70). No significant difference 
was observed in weight (p = 0.137, two-sample t test) between the two groups. The number of 
women who had a history of cesarean section or curettage in the PI group was significantly more 
than that in the normal group. And the number of women who had PP in the PI group was 
significantly more than that in the normal group. Therefore, we combined three clinical factors 
(excluding weight) with combined signatures to construct the nomogram. 

3.5. Model building and comparison 

The flowchart of the study is shown in Figure 3, radiomics and deep features were combined to 
build the NDRC model. 
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Figure 3. The flowchart of the study. 

In Figure 3, a variety of machine learning methods were performed to classify placental 
invasion (invasion or normal) based on the extracted radiomics features, including decision tree, 
Random Forest, Naive Bayes and Support Vector Machine in order to compare the prediction 
accuracy of the proposed NDRC model. Random Forest was performed to classify placental invasion 
based on the deep features. Their implementation details can be viewed in Appendix C. In addition to 
comparing the prediction accuracy with the NDRC model, we explored whether it was possible to 
predict placental invasion accurately by using radiomic features or deep features alone, and which 
features have higher prediction accuracy. Finally, the prediction accuracy of traditional machine 
learning methods and proposed NDRC was compared by the four indicators of accuracy, sensitivity, 
specificity and area under the ROC. 

For each patient, we combined 93 radiomics features and 128 deep features, used the LASSO 
[23] algorithm to filter the merged 221 features, then used the result of the linear combination of the 
12 features and their corresponding weights as the combined signatures. The paired sample t-test was 
used to analyze the relationship between various clinical factors and placental invasion, and the 
factors that were significantly related to placental invasion were retained (p-value < 0.05). In order to 
make the model more robust and explanatory, clinical factors remained after the t-test analysis and 
combined signatures were used to construct the nomogram. The method of construction is 
multi-factor logistic regression. 

4. Results 

4.1. Combination and selection of features 

A total of 221 features were extracted from the MRI images of the training cohort, and these 
features were filtered by using the LASSO model. As shown in Figure 4, (a) represents the 
coefficient distribution of each feature, and a coefficient distribution map is generated for log(λ) 
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(penalty intensity). It can be seen that as log(λ) increases, the coefficients corresponding to less and 
less important features become 0; (b) is to use 10-fold cross-validation to adjust the parameters in the 
LASSO model to obtain the minimum standard. The mean square error was plotted versus log(λ). 
The dotted vertical lines were drawn with the best value by using the minimum criterion, that is, the 
dotted line indicates the number of selected features. As shown in the figure, twelve features with 
non-zero coefficients were selected, including 7 radiomics features and 5 deep features. 

  

(a)                                     (b) 

Figure 4. Feature selection using the LASSO cox regression model. 

In Figure 4, each dotted vertical line represents a feature selection result for a feature group. The 
base of log(λ) is e. (a) LASSO coefficients produced by the regression analysis (in b). Twelve 
resulting predictors with nonzero coefficients were indicated in the plot. (b) Selection of tuning 
parameter (λ) in the LASSO model via 10-fold cross-validation. Mean square errors from the 
LASSO regression's cross-validation procedure were plotted as a function of log(λ). λ is the tuning 
parameter. Numbers along the upper x-axis represent the average number of predictors. Red dots 
indicate average error values for each model with given λ, and vertical bars through the red dots 
show the upper and lower values of the errors. The vertical black lines define the optimal values of λ, 
where the model provides its best fits to the data. The optimal λ value of 1.0299 with log (λ) = 
0.0295 was chosen via 10-fold cross-validation based on the minimum criteria. 

4.2. The nomogram and its performance 

In the training cohort, we integrated the combined signature with clinical information to 
generate a nomogram (Figure 5). For the independent validation cohort, the nomogram was used to 
predict of placenta invasion with the accuracy, sensitivity, specificity and AUC of 0.941, 0.952, 0.923 
and 0.985 respectively. 

In the nomogram, CS, CSC and PP stand for combined signature, history of cesarean section or 
curettage and placenta previa respectively. 
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Figure 5. The nomogram combining radiomics, deep learning and clinic information. 

4.3. Compared with traditional machine learning methods 

Various techniques and methods were used for prediction of placenta invasion, each technique 
has its own respective accuracy level. Here, NDRC was compared with Decision Tree, Random 
Forest (RF), Naive Bayes and Support Vector Machine methods based on radiomic features in terms 
of accuracy, sensitivity, specificity and AUC. Then, NDRC was also compared with RF method 
based on deep features. Table 3 summarizes the results of all different methods on the independent 
validation cohort with a classification cutoff of 0.5. 

Table 3. Evaluation of different methods on the independent validation cohort. 

Methods Accuracy Sensitivity Specificity AUC 

Base on radiomics features     

Decision Tree 0.706 0.762 0.615 0.802 

Random Forest (RF) 0.824 0.857 0.769 0.923 

Naive Bayes 0.676 0.714 0.615 0.729 

Support Vector Machine (SVM) 0.794 0.857 0.692 0.846 

Base on deep features     

RF 0.853 0.905 0.769 0.923 

Base on combined features and clinic 

data 

    

NDRC 0.941 0.952 0.923 0.985 
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It can be seen in Table 3 that the prediction accuracy of the machine learning method based on 
deep features is slightly higher than that of the machine learning method based on radiomics features, 
and the accuracy of the NDRC method is higher than the above two methods. In addition to the 
accuracy, sensitivity, and specificity, we have evaluated different methods using receiver operating 
characteristic (ROC) curves (Figure 6). 

 

Figure 6. The ROC curves of different methods. 

5. Conclusions 

In this study, we developed a nomogram combining radiomics, deep learning and clinical data, 
which can predict placenta invasion prenatally after 24 weeks of pregnancy. Radiomics features are 
clearly designed or hand-made and these features reflect the shallow and low-level characteristics of 
the image which cannot fully characterize the heterogeneity inside the placenta when applied to the 
detection of placenta invasion. According to previous reports, excessive hypertrophy and fibrin 
deposition in the placenta can lead to intra-placenta heterogeneity [24]. Therefore, the use of imaging 
data to find intra-placenta heterogeneity can effectively predict placenta invasion. However, placental 
heterogeneity the imaging data reflects is difficult to quantify and usually develops with gestational 
age after the second trimester, which complicate the visual assessment of placenta invasion. 
Therefore, we further train the deep neural network to extract deep features inside the placenta to 
better characterize the placental heterogeneity. 

On the other hand, previous studies have found that as the number of cesarean delivery 
increases, the risk of PI also increases [25–27]. In order to further improve the accuracy of the 
prediction model, we take age, history of cesarean section or curettage and placenta previa as clinical 
factors of placental invasion and combine them with the extracted radiomics and deep features 
optimizing through feature screening, then construct a nomogram that can be used for prediction of 
placenta invasion. The results show that the nomogram model constructed in this research achieves 
higher detection accuracy and AUC than machine learning methods based on radiomics or deep 
features alone. At the same time, the nomogram model also confirmed that history of cesarean 
section or curettage and placenta previa are the factors that have the dominant ability to predict 
placenta invasion. 

We need to point out some limitations of current research. Because this study is retrospective, 
there will inevitably be some biases or may affect the analysis and the sample size (n = 112) is 
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relatively small. Despite these limitations, it has the advantage that not all data is collected in a single 
location using a single scanner. The training cohort and validation cohort data are from different 
hospitals, so the results obtained in this study have been externally verified by data from different 
vendors with different acquisition parameters. 

A number of studies have shown that delivery in a specialized center for PI patients can 
significantly reduce the incidence of maternal morbidity [28–30]. However, due to the uneven 
distribution of medical resources and the uneven development of urban and rural areas, medical 
institutions at and below the county level cannot detect and diagnose PI early and lack treatment 
experience, which lead to a poor prognosis for the parturient and perinatal period. The nomogram 
developed in this paper can help doctors make clinical decisions for pregnant women with suspected 
placental invasion. These results also provided support for the initiation of a new prospective study 
to systematically evaluate the diagnostic capabilities of the combination of radiomics features and 
clinical parameters and to improve diagnosis and patient care. 

Acknowledgments 

This study has received funding by the Natural Science Foundation of Zhejiang Province under 
Grant LY20H180003; the Natural Science Foundation of Ningbo under Grant 2019A610104; the 
Public Welfare Science and Technology Project of Ningbo under Grant 202002N3104 and the Project 
in Science and Technique Plans of Ningbo under Grant 2019C50081. 

Conflict of interest 

The authors declare there is no conflict of interest. 

References 

1. K. E. Fitzpatrick, S. Sellers, P. Spark, J. J. Kurinczuk, P. Brocklehurst, M. Knight, Incidence and 
risk factors for placenta accreta/increta/percreta in the UK: a national casecontrol study, PLoS 
One, 7 (2012), 1–6. 

2. Y. Oyelese, J. C. Smulian, Placenta previa, placenta accreta, and vasa previa, Obstet. Gynecol., 
107 (2006), 927–941. 

3. G. Garmi, R. Salim, Epidemiology, etiology, diagnosis, and management of placenta accrete, 
Obstet. Gynecol. Int., 2012 (2012), 1–7. 

4. W. C. Baughman, J. E. Corteville, R. R. Shah, Placenta accreta: spectrum of US and MR 
imaging findings, Radiographics, 28 (2008), 1905–1916. 

5. M. R. Kocher, D. H. Sheafor, E. Bruner, C. Newman, J. F. M. Nino, Diagnosis of abnormally 
invasive posterior placentation: the role of MR imaging, Radiol. Case Rep., 12 (2017), 295–299. 

6. D. Pizzi, A. Tavoletta, R. Narciso, D. Mastrodicasa, S. Trebeschi, C. Celentano, et al., Prenatal 
planning of placenta previa: diagnostic accuracy of a novel MRI-based prediction model for 
placenta accreta spectrum (PAS) and clinical outcome, Abdom. Radiol., 44 (2019), 1873–1882. 

7. L. Alamo, A. Anaye, J. Rey, Denys A, Bongartz G, Terraz S et al., Detection of suspected 
placental invasion by MRI: do the results depend on observer’ experience?, Eur. J. Radiol., 82 
(2013), 51–57. 



6210 

Mathematical Biosciences and Engineering  Volume 18, Issue 5, 6198–6215. 

8. Y. Ueno, K. Kitajima, F. Kawakami, T. Maeda, Y. Suenaga, S. Takahashi, et al., Novel MRI 
finding for diagnosis of invasive placenta praevia: evaluation of findings for 65 patients using 
clinical and histopathological correlations, Eur. Radiol., 24 (2014), 881–888. 

9. A. Lax, M. R. Prince, K. W. Mennitt, J. R. Schwebach, N. E. Budorick, The value of specific 
MRI features in the evaluation of suspected placental invasion, Magn. Reson. Imaging, 25 
(2007), 87–93. 

10. H. Sun, H. Qu, L. Chen, W. Wang, Y. Liao, L. Zou, et al., Identification of suspicious invasive 
placentation based on clinical mri data using textural features and automated machine learning, 
Eur. Radiol., 29 (2019), 6152–6162. 

11. P. Lambin, E. Rios-Velazquez, R. Leijenaar, S. Carvalho, R. Stiphout, P. Granton, et al., 
Radiomics: extracting more information from medical images using advanced feature analysis, 
Eur. J. Cancer, 48 (2012), 441–446. 

12. R. J. Gillies, P. E. Kinahan, H. Hricak, Radiomics: images are more than pictures, they are data, 
Radiology, 278 (2016), 563–577. 

13. G. Langs, S. Röhrich, J. Hofmanninger, F. Prayer, J. Pan, C. Herold, et al., Machine learning: 
from radiomics to discovery and routine, Radiologe, 58 (2018), 1–6. 

14. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, IEEE 
Conference on Computer Vision and Pattern Recognition, (2016), 770–778. 

15. A. Krizhevsky, I. Sutskever, G. Hinton, Imagenet classification with deep convolutional neural 
networks, Adv. Neural Inf. Proc. Syst., 25 (2012), 1097–1105. 

16. H. B. Marcos, R. C. Semelka, S. Worawattanakul, Normal placenta: gadolinium-enhanced 
dynamic MR imaging, Radiology, 205 (1997), 493–496. 

17. Y. O. Tanaka, S. Sohda, S. Shigemitsu, M. Niitsu, Y. Itai, High temporal resolution dynamic 
contrast MRI in a high-risk group for placenta accrete, Magn. Reson. Imaging, 19 (2001), 
635–642. 

18. D. Levine, P. D. Barnes, R. R. Edelman, Obstetric MR imaging, Radiology, 211 (1999), 
609–617. 

19. M. Zhu, MR imaging: a new clinical application, Chin. J. Magn. Reson. Imaging, 2 (2011), 
7–12. 

20. J. J. M. Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, et al., 
Computational Radiomics System to Decode the Radiographic Phenotype, Cancer Res., 77 
(2017), 104–107. 

21. R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object 
detection and semantic segmentation, IEEE Conference on Computer Vision and Pattern 
Recognition, (2014), 580–587. 

22. S. Chen, K. Ma, Y. Zheng, Med3D: Transfer Learning for 3D Medical Image Analysis, 2019. 
Available from: https://arxiv.org/abs/1904.00625v1. 

23. N. Meinshausen, P. Bühlmann, High-dimensional graphs and variable selection with the Lasso, 
Ann. Stat., 34 (2006), 1436–1462. 

24. N. S. A. Rahaim, E. H. Whitby, The MRI features of placental adhesion disorder and their 
diagnostic significance: systematic review, Clin Radiol., 70 (2015), 917–925. 

25. T. Eshkoli, A. Y. Weintraub, R. Sergienko, E. Sheiner, Placenta accreta: risk factors, perinatal 
outcomes, and consequences for subsequent births, Am. J. Obstet. Gynecol., 208 (2013), 
219.e1–7. 



6211 

Mathematical Biosciences and Engineering  Volume 18, Issue 5, 6198–6215. 

26. Z. S. Bowman, A. G. Eller, T. R. Bardsley, T. Greene, M. W. Varner, R. M. Silver, Risk factors 
for placenta accreta: a large prospective cohort, Am. J. Perinatol., 31 (2014), 799–804. 

27. R. M. Silver, M. B. Landon, D. J. Rouse, K. J. Leveno, C. Y. Spong, E. A. Thom, et al., 
Maternal morbidity associated with multiple repeat cesarean deliveries, Obstet. Gynecol., 107 
(2006), 1226–1232. 

28. A. A. Shamshirsaz, K. A. Fox, B. Salmanian, C. R. Diaz-Arrastia, W. Lee, B. W. Baker, et al., 
Maternal morbidity in patients with morbidly adherent placenta treated with and without a 
standardized multidisciplinary approach, Am. J. Obstet. Gynecol., 212 (2015), 218.e1–9. 

29. A. A. Shamshirsaz, K. A. Fox, H. Erfani, S. L. Clark, B. Salmanian, B. W. Baker, et al., 
Multidisciplinary team learning in the management of the morbidly adherent placenta: outcome 
improvements over time, Am. J. Obstet. Gynecol., 216 (2017), 612.e1–5. 

30. R. M. Silver, K. A. Fox, J. R. Barton, A. Z. Abuhamad, H. Simhan, C. K. Huls, et al., Center of 
excellence for placenta accrete, Am. J. Obstet. Gynecol., 212 (2015), 561–568. 

Appendix A 

Table A.1. Extracted radiomics features. 

First-Order Statistics 

10 Percentile 90 Percentile Energy 

Entropy Interquartile Range Kurtosis 

Maximum Mean Absolute Deviation Mean 

Median Minimum Range 

Robust Mean Absolute 

Deviation 

Root Mean Squared Skewness 

Total Energy Uniformity Variance 

Gray Level Co-Occurrence Matrix 

Autocorrelation Cluster Prominence Cluster Shade 

Cluster Tendency Contrast Correlation 

Difference Average Difference Entropy Difference Variance 

Inverse Difference (ID) ID Moment ID Moment Normalized 

ID Normalized Informational Correlation 1 Informational Correlation 2 

Inverse Variance Joint Average Joint Energy 

Joint Entropy Max Correlation Coefficient Max Probability 

Sum Average Sum Entropy Sum Squares 
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Neighboring Gray Tone Difference Matrix 

Busyness Coarseness Complexity 

Contrast Strength  

Gray Level Run Length Matrix 

Non Uniformity (NU) NU Normalized Variance 

High Run Emphasis Long Run Emphasis Long Run High Emphasis 

Long Run Low Emphasis Low Run Emphasis Run Entropy 

RL NU RL NU Normalized Run Percentage 

Run Variance Short Run Emphasis Short Run High Emphasis 

Short Run Low Emphasis   

Gray Level Size Zone Matrix 

Non Uniformity (NU) NU Normalized Variance 

High Zone Emphasis Large Area Emphasis Large Area High Emphasis 

Large Area Low Emphasis Low Zone Emphasis Size Zone NU 

Size Zone NU Normalized Small Area Emphasis Small Area High Emphasis 

Small Area Low Emphasis Zone Entropy Zone Percentage 

Zone Variance   

Gray Level Dependence Matrix 

Entropy Non Uniformity (NU) NU Normalized 

Dependence Variance Dependence NU Variance 

High Emphasis Large Emphasis Large High Emphasis 

Large Low Emphasis Low Emphasis Small Emphasis 

Small High Emphasis Small Low Emphasis  
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Appendix B 

Table B.1. Kernel size of each layer of 3D-ResNet50. 

layer name 3D-ResNet50 

conv1 7 × 7 × 7, 64, stride 2 

conv2_x 

3 × 3 × 3 max pool, stride 2 

൥
1 ൈ 1 ൈ 1, 64
3 ൈ 3 ൈ 3, 64
1 ൈ 1 ൈ 1, 256

൩ ൈ 3 

conv3_x ൥
1 ൈ 1 ൈ 1, 128
3 ൈ 3 ൈ 3, 128
1 ൈ 1 ൈ 1, 512

൩ ൈ 4 

conv4_x ൥
1 ൈ 1 ൈ 1, 256
3 ൈ 3 ൈ 3, 256
1 ൈ 1 ൈ 1, 1024

൩ ൈ 6 

conv5_x ൥
1 ൈ 1 ൈ 1, 512
3 ൈ 3 ൈ 3, 512
1 ൈ 1 ൈ 1, 2048

൩ ൈ 3 

max pooling max pool, 128-d fc 

In Table B.1, 1 × 1 × 1, 3 × 3 × 3 and 7 × 7 × 7 in the table are the size of the convolution kernel; 
64, 128, 256, 1024 and 2048 are the number of channels output after each convolution; The network 
structure contained in each square bracket is a “bottleneck” building block，take conv3_x for 
example as shown in Figure B.1. 

 

Figure B.1. A “bottleneck” building block for 3D-ResNet50. 

Bottleneck is designed to reduce the number of parameters. Considering the cost of calculation, 
the calculation of the residual block is optimized, that is, the convolutional layer is designed to be 1× 
1 × 1 + 3 × 3 × 3 + 1 × 1 × 1. First, the dimension is reduced by the convolution kernel of 1 × 1 × 1, 
and the result is input to the intermediate layer, and then restored under the convolutional layer of 1 × 
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1 × 1, which not only maintains the accuracy but also reduces the amount of calculation. The first 1 × 
1 × 1 convolution reduces the 512-dimensional channel to 128 dimensions, and then recovers the 512 
dimensions by 1 × 1 × 1 convolution at the end. 

Appendix C (Implementation details of decision tree, random forest, naive Bayes, and support 
vector machine) 

C.1. Decision tree 

Decision tree is a predictive analysis model expressed in the form of a tree structure. Each of its 
unique tree-type classification graphs represents a feature from the root node to the leaf node. The 
important theoretical basis of the decision tree algorithm is "Gini Index" and "Information Entropy" 
which are analytical tools for quantifying information. Entropy represents the degree of randomness 
of the element, and its calculation formula is shown in (1): 

    xlogxp-H                          (1) 

where x  represents the discrete random variable,  xp  represents the probability of the 

variable x  occurrence, the greater the probability, the smaller the entropy value. The definition of 
Gini coefficient is similar to entropy value. The larger the Gini coefficient, the larger the entropy 
value, indicating the higher the degree of randomization of the element. 

C.2. Random forest 

The steps of the random forest algorithm are as follows: 1) Generate a decision tree. 2) Combine 
the decision trees into a random forest. 3) The classification results of all decision trees in the 
random forest are voted, and the voting result is the classification result of the final model. The 
classification voting process is shown in Eq (2): 

    



k

i
i

Y
YxhImaxargxH

1

                  (2) 

where Y  is the output variable;  xH  is the Y  that returns the most votes; k  is the number 
of decision trees;  xhi  is the classification model of a single decision tree; I  is the indicative 

function. 

C.3. Naive Bayes 

Naive Bayes is a method based on the classic Bayes principle, which can be used to build 
models for classification, prediction and evaluation. The classic Bayes principle can be expressed as 
Eq (3): 

     
 BP

APA/BP
B/AP                       (3) 
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where  B/AP  is the posterior probability which refers to the probability of the event A  

occurring when the event B  occurs;  AP  and  BP  are the probability of occurrence of events 

A  and B  respectively, and  AP  is also called prior probability;  A/BP  is the probability of 

event B  when event A  occurs which is the posterior probability of event A . Given there is a data 
set  md,...,d,dD 21 , a total of m  data, each data has n-dimensional features, the feature set is 

 nc,...,c,cC 21 , and each influencing factor feature has several levels, denoted as ijc . According to 

the feature set, the data set can be divided into k  categories. Assuming that the features are 
independent of each other and the influence weights are equal, according to the principle of naive 
Bayes, the probability of being classified into iy  under the horizontal condition niii c,...,c,c 21  is 

shown in Eq (4): 

 
   

 






n

j
ji

n

j
ijii

niiii

cP

y/cPyP

c,...,c,c/yP

1

1
21                    (4) 

C.4. Support vector machine 

The basic idea of support vector machine is to solve the separation hyperplane that can divide 
the data set correctly and has the largest geometric interval. It has high application value in both 
linear and non-linear data structures. When dealing with data sets with linear relationships, the 
optimal linear partition equation is shown in Eq (5): 

0 bxT                            (5) 

The formula for the distance from the point in the space to the best classification hyperplane is 
shown in Eq (6): 



 bx
d

T 
                         (6) 

As long as the distance is maximized, the best dividing line and the best classification 
hyperplane can be found. For the nonlinear classification problem in the input space, it is 
transformed into a linear classification problem in a certain dimensional feature space by nonlinear 
transformation, and linear support vector machines are learned in the high-dimensional feature space. 
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