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Abstract: Stability analysis of an autonomous epidemic model of an age-structured sub-populations 

of susceptible, infected, precancerous and cancer cells and unstructured sub-population of human pap-

illoma virus (HPV) (SIPCV epidemic model) aims to gain an insight into the features of cervical cancer 

disease. The model considers the immune functional response of organism to the virus population 

growing by the HPV-density dependent death rate, while the death rates of infected, precancerous and 

cancerous cells do not depend on the HPV quantity because the immune system of organism does not 

respond to its own cells. Interaction between susceptible cells and HPV is described by the Lotka-

Voltera incidence rate and leads to the growth of infected cells. Some of infected cells become precan-

cerous cells, and the other apoptosis when viruses leave infected cells and are ready to infect new 

susceptible cells. Precancerous cells partially become cancer cells with the density-dependent saturated 

rate. Conditions of existence of the endemic equilibrium of system were obtained. It was proved that 

this equilibrium is always locally asymptotically stable whenever it exists. We obtained: (i) the condi-

tions of cancer tumor localization (asymptotically stable dynamical regimes), (ii) outbreak of cancer 

cell population (that may correspond to metastasis), (iii) outbreak of dysplasia (precancerous cells) 

which induces the outbreak of cancer cells (that may correspond to metastasis). In cases (ii), (iii) the 

conditions of existence of endemic equilibrium do not hold. All cases are illustrated by numerical 

experiments. 
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1. Introduction 

Cervical cancer induced by sexually transmitted human papilloma virus (HPV) is the second most 

common cancer in women worldwide [1–4]. The widespread prevalence of this disease stimulated 

extensive studies of HPV-epidemic models over the last several years. The research in this field is 

carried out in two directions: (i) epidemiology and population science (models of spread of HPV 

through a population, HPV vaccination of people, etc.) [5,6]; (ii) epidemiology and biological sciences 

(cellular and tissue modelling, cell-HPV interaction studies, etc.) [7–9]. The early studies in the frame-

work of the second scientific direction (ii) used the unstructured models of population dynamics for 

several compartments – subpopulations of biological cells and HPV. The dynamics of virus population 

can be efficiently described by the unstructured model on the basis of nonlinear ODE because viruses 

are non-living things which do not proliferate and can replicate only within a living host cell. But 

unstructured models are not suitable for the modelling of cell population dynamics because they do 

not describe the cell’s life history and provide only a restricted description of their population dynamics 

in many applications. The urgent need to gain insight the complex biological processes for deep and 

accurate understanding of patterns of population dynamics and a variety of dynamical regimes of pop-

ulations motivated the development and implementation of age-structured, and more generally, phys-

iologically structured, cell population dynamics and tumor growth modelling [3,10–24]. 

In this paper we study the new age-structured model of susceptible, infected, precancerous, cancer 

cells populations and unstructured model of human papilloma virus population (SIPCV epidemic 

model) dynamics which is continuation of the previous research described in works [8,25]. In this 

model we use the L. Hayflick limit theory [26] for modelling the proliferation in cell subpopulations. 

The model describes the life history of each cell (cell aging by L. Hayflick): birth, maturing up to the 

age when they can proliferate, division a limited number of times at the reproductive age, aging up to 

the final reproductive age and death. The cell division and mortality in subpopulations are described 

by the birth and death rates, respectively. The death rates of infected, precancerous and cancer cell 

subpopulations in our model do not depend on the HPV quantity since the immune system of organism 

does not respond to its own cells [1,3,4]. The death rate of HPV is considered as density-dependent 

function since immune system responds to the virus population growth [1,3,4]. Interaction between 

susceptible cells and HPV is described by the Lotka-Voltera incidence rate and leads to the growth of 

infected cells [25]. Some of infected cells become precancerous cells, and the other apoptosis when 

viruses leave infected cells and are ready to infect new susceptible cells [8,28]. Precancerous cells 

partially become cancer cells with the density-dependent saturated rate [8]. We assume that cancer 

cells do not apply pressure on the tissues of organism and have no effect on the proliferation and 

mortality of other cells and replication of HPV. This model is studied both theoretically and numeri-

cally. The existence theorem and explicit recurrent formula for the solution of the age-structured 

SIPCV model (like in work [25]) are beyond the aim and scope of this paper due to the complexity of 

the model and will be the subject of our further study. 

The stability analysis of model is based on the study of conditions of existence of the positive 

(endemic) equilibrium of system and its asymptotical stability ([13,29–37]). We obtain the restrictions 

on the basic reproduction numbers of susceptible and cancer cell subpopulations, and coefficients of 

the system which guarantee existence of the endemic equilibrium. We prove that this equilibrium is 

always locally asymptotically stable whenever it exists. The numerical experiments confirm theoretical 
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results and provide us with several topologically non-equivalent phase portraits of the model. Simula-

tions reveal two asymptotically stable regimes with non-oscillating and oscillating dynamics in the 

vicinity of positive equilibrium and, at least, two unstable dynamical regimes (when the positive equi-

librium does not exist). From the biological point of view the asymptotically stable dynamical regimes 

of cell-HPV population mean the localization of cancer without spreading it in organism. The unstable 

dynamical regimes of cell-HPV population mean the cancer metastasis. Overall, the theoretical and 

numerical analysis of autonomous age-structured SIPCV epidemic model help us better understand 

the features of HPV infectious and cancer disease. 

2. Model and main results 

2.1. Model 

SIPCV epidemic model considers the biological tissue which consists of susceptible (noninfected), 

infected (without significant changing of morphology, CIN I and CIN II stages [1–4,27]), precancerous 

(with changed by virus morphology - dysplasia, but is differentiable yet, CIN III stage [2,3,27]), cancer 

(nondifferentiable) cells and human papilloma virus (HPV) that moves freely between cells. The age-

specific densities of susceptible, infected, precancerous and cancer cells subclasses are denoted as 

𝑆(𝑎, 𝑡), 𝐼(𝑎, 𝑡), 𝑃(𝑎, 𝑡) and 𝐶(𝑎, 𝑡), respectively, and are defined in domain 𝑄 = {(𝑎, 𝑡)|𝑎 ∈ [0, 𝑎𝑑], 𝑡 ≥

0}, where 𝑎𝑑 is a maximum lifespan of cells. The total number (quantity) of susceptible, infected, 

precancerous and cancer cells subpopulations are denoted by 𝑁𝑆(𝑡) = ∫ 𝑆(𝑎, 𝑡)𝑑𝑎
𝑎𝑑
0

 , 𝑁𝐼(𝑡) =

∫ 𝐼(𝑎, 𝑡)𝑑𝑎
𝑎𝑑
0

, 𝑁𝑃(𝑡) = ∫ 𝑃(𝑎, 𝑡)𝑑𝑎
𝑎𝑑
0

, 𝑁𝐶(𝑡) = ∫ 𝐶(𝑎, 𝑡)𝑑𝑎
𝑎𝑑
0

, respectively. The dynamics of cell subpopu-

lations is described by the autonomous nonlinear age-structured model with death rates of susceptible 

cells 𝑑𝑠, infected cells 𝑑𝑖, precancerous cells 𝑑𝑝 and cancer cells 𝑑𝑐, with an age reproductive win-

dow of non-cancer cells [𝑎𝑟 , 𝑎𝑚] and cancer cells [𝑎𝑐, 𝑎𝑘], 𝑎𝑐 < 𝑎𝑟, 𝑎𝑘 < 𝑎𝑚, (the age reproductive 

window of cancer cells is shifted in relation to the age reproductive window of non-cancer cells due to 

the abnormal program of cancer cell division when they divide before reaching the maturity of the 

reproductive window of non-cancer cells and therefore become nondifferentiable cells), the same birth 

rate of susceptible, infected and precancerous cells 𝛽0, and the birth rate of cancer cells 𝛽𝑐. Due to the 

adaptive behaviour of the HPV immune system of organism (both T-killers cells and humoral immun-

ity) does not respond to the infected, precancerous and cancer cells, that is their death rates do not 

depend on the HPV quantity. Since viruses are non-living things which do not proliferate and replicate 

only within a living host cell, the dynamics of HPV quantity 𝑉(𝑡) is described by the non-linear ODE 

with density-dependent death rate 𝑑𝑣(𝑉). The latter describes the immune response of organism to the 

HPV population growth. The interaction between susceptible cells and HPV is a product of the Lotka-

Voltera incidence rate 𝛼𝑉(𝑡)𝑆(𝑎, 𝑡) (where 𝛼 is an infection rate) and result in the growth of infected 

cells. Infected cells partially move to the precancerous subpopulation with rate 𝛿𝐼(𝑎, 𝑡) (where 𝛿 is 

a progression rate from infected to precancerous cells (dysplasia)) and partially apoptosis with rate 

𝑛𝑑𝑖𝑁𝐼(𝑡), when viruses leave infected cells and are ready to infect susceptible cells (where 𝑛 is a mean 

number of virions produced by an infectious cell, the death rate of infected cells 𝑑𝑖 > 𝑑𝑠 since it is 

induced by HPV). Precancerous cells move to the cancer cell subpopulation with the saturated rate 

𝜇(𝑁𝑃) =
𝜃𝑁𝑃(𝑡)

1+𝑘𝑁𝑃(𝑡)
. When the abundance of precancerous cells (dysplasia) increases from the small value, 
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the risk of developing cancer cells increases from the small value too. In this case 𝜇(𝑁𝑝) is directly 

proportional to the 𝑁𝑝 with coefficient 𝜃 (progression rate). Since 𝜇(𝑁𝑝) is a fraction of precancer-

ous cells which move to cancer subclass per unit of time, it is a bounded parameter which increases 

and eventually tends to the saturated level 𝜃/𝑘 < 1 with 𝑁𝑝 → ∞, where 𝑘 is a coefficient of satura-

tion [8]. 

These assumptions lead to the following autonomous epidemic model 

𝜕𝑆(𝑎,𝑡)

𝜕𝑡
+

𝜕𝑆(𝑎,𝑡)

𝜕𝑎
= −(𝑑𝑠 + 𝛼𝑉(𝑡))𝑆(𝑎, 𝑡),                          (2.1) 

𝜕𝐼(𝑎,𝑡)

𝜕𝑡
+

𝜕𝐼(𝑎,𝑡)

𝜕𝑎
= −(𝑑𝑖 + 𝛿)𝐼(𝑎, 𝑡) + 𝛼𝑉(𝑡)𝑆(𝑎, 𝑡),                   (2.2) 

𝜕𝑃(𝑎,𝑡)

𝜕𝑡
+

𝜕𝑃(𝑎,𝑡)

𝜕𝑎
= −𝑑𝑝𝑃(𝑎, 𝑡) + 𝛿𝐼(𝑎, 𝑡) − 𝜇(𝑁𝑃)𝑃(𝑎, 𝑡),               (2.3) 

𝜕𝐶(𝑎,𝑡)

𝜕𝑡
+

𝜕𝐶(𝑎,𝑡)

𝜕𝑎
= −𝑑𝑐𝐶(𝑎, 𝑡) + 𝜇(𝑁𝑃)𝑃(𝑎, 𝑡),                      (2.4) 

𝜕𝑉(𝑡)

𝜕𝑡
= 𝛬 − 𝑑𝑣(𝑉)𝑉(𝑡) + 𝑛𝑑𝑖 ∫ 𝐼(𝑎, 𝑡)𝑑𝑎

𝑎𝑑
0

,                       (2.5) 

where 𝛬is a constant recruitment rate of virus population. Equations (2.1)–(2.5) are completed by the 

boundary conditions and initial values: 

𝑆(0, 𝑡) = 𝛽0 ∫ 𝑆(𝑎, 𝑡)𝑑𝑎
𝑎𝑚
𝑎𝑟

,                              (2.6) 

𝐼(0, 𝑡) = 𝛽0 ∫ 𝐼(𝑎, 𝑡)𝑑𝑎
𝑎𝑚
𝑎𝑟

,                              (2.7) 

𝑃(0, 𝑡) = 𝛽0 ∫ 𝑃(𝑎, 𝑡)𝑑𝑎
𝑎𝑚
𝑎𝑟

,                              (2.8) 

𝐶(0, 𝑡) = 𝛽𝑐 ∫ 𝐶(𝑎, 𝑡)𝑑𝑎
𝑎𝑘
𝑎𝑐

,                              (2.9) 

𝑆(𝑎, 0) = 𝜑(𝑎), 𝐼(𝑎, 0) = 0, 𝑃(𝑎, 0) = 0, 𝐶(𝑎, 0) = 0, 𝑉(0) = 𝑉0,     (2.10) 

where 𝜑(𝑎) is an initial density of susceptible cells, 𝑉0 is an initial value of HPV quantity. We 

impose the following restrictions on the density-dependent HPV death rate and cell’s birth and death 

rates [1–4,27,28]: 

𝑑𝑠, 𝑑𝑖 , 𝑑𝑝, 𝑑𝑐 > 0, 𝑑𝑖 > 𝑑𝑠, 0 < 𝑑𝑣(0) < 𝑑0, 
𝜕𝑑𝑣(𝑉)

𝑑𝑉
> 0 for 𝑉 > 0, 𝛬 ≥ 0,     (2.11) 

𝑛 > 0, 𝛽0, 𝛽𝑐 > 0, 𝛼 > 0, 𝛿 > 0, 𝑉0 > 0, 𝜑(𝑎) ≥ 0, ∫ 𝜑(𝑎)𝑑𝑎 > 0
𝑎𝑑
0

.     (2.12) 
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Equations (2.11) and (2.12) consider the positiveness and boundness of cell birth and death rates. 

The restrictions (2.11) mean that increasing of HPV quantity changes the characteristics of intracellular 

space that result in the organism immune response through the activation of cell immunity (T-killers) 

and humoral immunity (B-lymphocytes) that leads to the elimination of viruses (i.e. monotone increas-

ing of their death rate). The constant 𝑑0 restricts the intrinsic density independent part of death rate. 

2.2. Existence of the positive (endemic) equilibrium of autonomous system (2.1)–(2.10) 

The trivial, disease free equilibrium (DFE) of the system (2.1)–(2.10) exists if an infection rate 

𝛼 = 0. In this case biological tissue consists only from susceptible cells and its dynamics is defined by 

the basic reproduction number of susceptible cell subpopulation. Since we consider only positive in-

fection rate 𝛼 > 0 (Eq (2.12)), the analysis of DFE is beyond of our study. Further we consider the 

conditions of existence of positive (endemic) equilibrium of system (2.1)–(2.10): 𝑆∗(𝑎) ≥ 0 is a pos-

itive equilibrium of susceptible cells with an equilibrium quantity 𝑁𝑆
∗ = ∫ 𝑆∗(𝑎)𝑑𝑎

𝑎𝑑
0

> 0; 𝐼∗(𝑎) ≥ 0 is 

a positive equilibrium of infected cells with an equilibrium quantity 𝑁𝐼
∗ = ∫ 𝐼∗(𝑎)𝑑𝑎

𝑎𝑑
0

> 0; 𝑃∗(𝑎) ≥ 0 

is a positive equilibrium of precancerous cells with an equilibrium quantity 𝑁𝑃
∗ = ∫ 𝑃∗(𝑎)𝑑𝑎

𝑎𝑑
0

> 0, 

𝐶∗(𝑎) ≥ 0 is a positive equilibrium of cancer cells with an equilibrium quantity 𝑁𝐶
∗ = ∫ 𝐶∗(𝑎)𝑑𝑎

𝑎𝑑
0

> 0, 

𝑉∗ > 0 is a positive equilibrium of HPV. This positive equilibrium of system (2.1)–(2.10) satisfies the 

stationary system: 

𝑑𝑆∗(𝑎)

𝑑𝑎
= −(𝑑𝑠 + 𝛼𝑉∗)𝑆∗(𝑎),                                 (2.13) 

𝑑𝐼∗(𝑎)

𝑑𝑎
= −�̃�𝑖𝐼

∗(𝑎) + 𝛼𝑉∗𝑆∗(𝑎),                               (2.14) 

𝑑𝑃∗(𝑎)

𝑑𝑎
= −�̃�𝑝(𝑁𝑃

∗)𝑃∗(𝑎) + 𝛿𝐼∗(𝑎),                            (2.15) 

𝑑𝐶∗(𝑎)

𝑑𝑎
= −𝑑𝑐𝐶

∗(𝑎) + 𝜇(𝑁𝑃
∗)𝑃∗(𝑎),                           (2.16) 

𝛬 − 𝑑𝑣(𝑉
∗)𝑉∗ + 𝑛𝑑𝑖𝑁𝐼

∗ = 0,                              (2.17) 

where �̃�𝑖 = 𝑑𝑖 + 𝛿, �̃�𝑝(𝑁𝑃
∗) = 𝑑𝑝 + 𝜇(𝑁𝑃

∗). Equations (2.13)–(2.17) are completed by the boundary con-

ditions: 

𝑆∗(0) = 𝛽0 ∫ 𝑆∗(𝑎)𝑑𝑎
𝑎𝑚
𝑎𝑟

, 𝐼∗(0) = 𝛽0 ∫ 𝐼∗(𝑎)𝑑𝑎
𝑎𝑚
𝑎𝑟

,                 (2.18) 

𝑃∗(0) = 𝛽0 ∫ 𝑃∗(𝑎)𝑑𝑎
𝑎𝑚
𝑎𝑟

, 𝐶∗(0) = 𝛽𝑐 ∫ 𝐶∗(𝑎)𝑑𝑎
𝑎𝑘
𝑎𝑐

.                 (2.19) 

We seek the solution of the boundary problem (2.13)–(2.19) 𝑆∗(𝑎), 𝐼∗(𝑎), 𝑃∗(𝑎), 𝐶∗(𝑎). From 

Eq (2.17) we have 
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𝑁𝐼
∗ = (𝑛𝑑𝑖)

−1(𝑑𝑣(𝑉
∗)𝑉∗ − 𝛬),                                  (2.20) 

where we assume that 

𝛬 < 𝑑𝑣(𝑉
∗)𝑉∗.                                          (2.21) 

Using Eq (2.18) we obtain the integral equation for the solution of Eq (2.13): 

𝑆∗(𝑎) = 𝛽0 ∫ 𝑆∗(𝑎)𝑑𝑎
𝑎𝑚
𝑎𝑟

𝑒𝑥𝑝(−(𝑑𝑠 + 𝛼𝑉∗)𝑎).                      (2.22) 

Integrating Eq (2.22) with respect to 𝑎 form 𝑎𝑟 to 𝑎𝑚, after a little algebra we arrive to the 

transcendental equation for determination of 𝑉∗: 

𝑅𝑉(𝑉
∗) = 𝛽0 ∫ 𝑒𝑥𝑝(−(𝑑𝑠 + 𝛼𝑉∗)𝑎) 𝑑𝑎

𝑎𝑚
𝑎𝑟

                            (2.23) 

= 𝛽0(𝑑𝑠 + 𝛼𝑉∗)−1(𝑒𝑥𝑝( − (𝑑𝑠 + 𝛼𝑉∗)𝑎𝑟) − 𝑒𝑥𝑝( − (𝑑𝑠 + 𝛼𝑉∗)𝑎𝑚)) = 1. 

Integrating Eq (2.22) with respect to 𝑎 form 0 to 𝑎𝑑 we obtain the equation for the equilibrium 

quantity of susceptible cells: 

𝑁𝑆
∗ = 𝛽0(𝑑𝑠 + 𝛼𝑉∗)−1 ∫ 𝑆∗(𝑎)𝑑𝑎

𝑎𝑚
𝑎𝑟

(1 − 𝑒𝑥𝑝( − (𝑑𝑠 + 𝛼𝑉∗)𝑎𝑑)).             (2.24) 

Substituting this expression in Eq (2.22) we obtain the solution 𝑆∗(𝑎) and equation for the equi-

librium density of susceptible cells 𝑁𝑆
∗: 

𝑆∗(𝑎) = 𝑁𝑆
∗𝐴𝑆 𝑒𝑥𝑝(−(𝑑𝑠 + 𝛼𝑉∗)𝑎),                              (2.25) 

𝐴𝑆 = (𝑑𝑠 + 𝛼𝑉∗)(1 − 𝑒𝑥𝑝( − (𝑑𝑠 + 𝛼𝑉∗)𝑎𝑑))
−1,                (2.26) 

where 𝐴𝑆 is an auxiliary positive constant. Using the boundary condition (2.19) we can write the in-

tegral equation for the solution of Eq (2.14): 

𝐼∗(𝑎) = 𝛽0 ∫ 𝐼∗(𝑎)𝑑𝑎
𝑎𝑚
𝑎𝑟

𝑒𝑥𝑝(−�̃�𝑖𝑎) + 𝛼𝑉∗ ∫ 𝑆∗(𝜂) 𝑒𝑥𝑝(−�̃�𝑖(𝑎 − 𝜂)) 𝑑𝜂
𝑎

0
.       (2.27) 

Integrating Eq (2.27) with respect to 𝑎 form 𝑎𝑟 to 𝑎𝑚, and using Eq (2.25), after a little algebra 

we arrive to the integral equation: 

∫ 𝐼∗(𝑎)𝑑𝑎
𝑎𝑚
𝑎𝑟

= 𝛽0�̃�𝑖
−1(𝑒𝑥𝑝( − �̃�𝑖𝑎𝑟) − 𝑒𝑥𝑝( − �̃�𝑖𝑎𝑚)) ∫ 𝐼∗(𝑎)𝑑𝑎

𝑎𝑚
𝑎𝑟

+ 𝛼𝑉∗𝑁𝑆
∗𝐴𝑆(�̃�𝑖 − 𝑑𝑠 − 𝛼𝑉∗)

−1
 (2.28) 

× ((𝑑𝑠 + 𝛼𝑉∗)−1(𝑒𝑥𝑝( − (𝑑𝑠 + 𝛼𝑉∗)𝑎𝑟) − 𝑒𝑥𝑝( − (𝑑𝑠 + 𝛼𝑉∗)𝑎𝑚)) − �̃�𝑖
−1 (𝑒𝑥𝑝( − �̃�𝑖𝑎𝑟) − 𝑒𝑥𝑝( − �̃�𝑖𝑎𝑚))). 

Expressing ∫ 𝐼∗(𝑎)𝑑𝑎
𝑎𝑚
𝑎𝑟

 from Eq (2.28) and substituting it together with Eq (2.23) in Eq (2.27), 

after a little algebra we obtain the positive equilibrium 𝐼∗(𝑎): 

𝐼∗(𝑎) = 𝐴𝐼 𝑒𝑥𝑝(−(𝑑𝑠 + 𝛼𝑉∗)𝑎),                        (2.29) 

𝐴𝐼 = 𝛼𝑉∗𝑁𝑆
∗𝐴𝑆(�̃�𝑖 − 𝑑𝑠 − 𝛼𝑉∗)−1,                       (2.30) 
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HPV equilibrium 𝑉∗ has to satisfy restriction 

𝑉∗ < (�̃�𝑖 − 𝑑𝑠)𝛼
−1,                             (2.31) 

which guarantees positiveness of the auxiliary constant 𝐴𝐼 and equilibrium 𝐼∗(𝑎). Integrating 𝐼∗(𝑎) 

(Eq (2.29)) with respect to 𝑎 form 0 to 𝑎𝑑 and using Eq (2.30), we have 

𝑁𝐼
∗ = 𝛼𝑉∗𝑁𝑆

∗𝐴𝑆(�̃�𝑖 − 𝑑𝑠 − 𝛼𝑉∗)−1(𝑑𝑠 + 𝛼𝑉∗)−1(1 − 𝑒𝑥𝑝( − (𝑑𝑠 + 𝛼𝑉∗)𝑎𝑑)).    (2.32) 

From Eqs (2.20), (2.26) and (2.32) we arrive to the equilibrium quantity of susceptible cells: 

𝑁𝑆
∗ = (𝑛𝑑𝑖𝛼𝑉

∗)−1(𝑑𝑣(𝑉
∗)𝑉∗ − 𝛬)(�̃�𝑖 − 𝑑𝑠 − 𝛼𝑉∗).             (2.33) 

Hence, if Eq (2.23) has a real root 𝑉∗ > 0 (i.e. the positive equilibrium quantity of HPV) satisfied 

restrictions (2.21) and (2.31), the equilibrium densities of susceptible and infected cells are defined by 

Eqs (2.25), (2.29) with auxiliary constants (2.26), (2.30), and the equilibrium quantity of susceptible 

and infected cells are defined by Eqs (2.33), (2.20), respectively. 

Solution of problem (2.15), (2.20) satisfies the integral equation: 

𝑃∗(𝑎) = 𝛽0 ∫ 𝑃∗(𝑎)𝑑𝑎
𝑎𝑚
𝑎𝑟

𝑒𝑥𝑝(−�̃�𝑝(𝑁𝑃
∗)𝑎) + 𝛿 ∫ 𝐼∗(𝜂) 𝑒𝑥𝑝(−�̃�𝑝(𝑁𝑃

∗)(𝑎 − 𝜂))𝑑𝜂
𝑎

0
.     (2.34) 

Integrating Eq (2.34) with respect to 𝑎 form 𝑎𝑟 to 𝑎𝑚, and using Eqs (2.23), (2.29), (2.30), after 

a little algebra we arrive to the integral equation: 

(�̃�𝑝(𝑁𝑃
∗) − 𝑑𝑠 − 𝛼𝑉∗) ∫ 𝑃∗(𝑎)𝑑𝑎

𝑎𝑚
𝑎𝑟

= 𝛿𝐴𝐼𝛽0
−1.                       (2.35) 

Since the left-hand side of Eq (2.35) must be positive the equilibrium quantity 𝑁𝑃
∗ and coeffi-

cients of the system have to satisfy the restriction: 

𝑑𝑝 + 𝜇(𝑁𝑃
∗) > 𝑑𝑠 + 𝛼𝑉∗.                           (2.36) 

Substituting expression ∫ 𝑃∗(𝑎)𝑑𝑎
𝑎𝑚
𝑎𝑟

 from Eq (2.35) together with Eqs (2.23), (2.29), (2.30), in 

Eq (2.35), after a little algebra we obtain the positive equilibrium 𝑃∗(𝑎): 

𝑃∗(𝑎) = 𝐴𝑃(𝑁𝑃
∗) 𝑒𝑥𝑝(−(𝑑𝑠 + 𝛼𝑉∗)𝑎),                   (2.37) 

𝐴𝑃(𝑁𝑃
∗) = 𝛿𝐴𝐼(𝑑𝑝 + 𝜇(𝑁𝑃

∗) − 𝑑𝑠 − 𝛼𝑉∗)−1.                (2.38) 

Equation (2.36) guaranties positiveness of the auxiliary constant 𝐴𝑃(𝑁𝑃
∗)  and equilibrium 

𝑃∗(𝑎) > 0. Integrating Eq (2.37) with respect to 𝑎 form 0 to 𝑎𝑑 we obtain the quadratic equation for 

the equilibrium quantity of precancer cells 𝑁𝑃
∗: 

((𝑑𝑝 − 𝑑𝑠 − 𝛼𝑉∗)𝑘 + 𝜃)𝑁𝑃
∗2 + (𝑑𝑝 − 𝑑𝑠 − 𝛼𝑉∗ − 𝑘𝐿)𝑁𝑃

∗ − 𝐿 = 0,         (2.39) 

𝐿 = 𝛿𝐴𝐼(𝑑𝑠 + 𝛼𝑉∗)−1(1 − 𝑒𝑥𝑝( − (𝑑𝑠 + 𝛼𝑉∗)𝑎𝑑)).           (2.40) 

If the positive solution of Eq (2.39) exists it can be given by 

𝑁𝑝
∗ = (−(𝑑𝑝 − 𝑑𝑠 − 𝛼𝑉∗ − 𝑘𝐿) + √(𝑑𝑝 − 𝑑𝑠 − 𝛼𝑉∗ − 𝑘𝐿)2 + 4𝐿(𝑘(𝑑𝑝 − 𝑑𝑠 − 𝛼𝑉∗) + 𝜃))      

× 0.5(𝑘(𝑑𝑝 − 𝑑𝑠 − 𝛼𝑉∗) + 𝜃)
−1

.                                   (2.41) 
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Using the simple algebra, it is easy to verify that the equilibrium quantity of precancerous cells 

(2.41) is positive 𝑁𝑝
∗ > 0 and satisfies restriction (2.36) if the HPV equilibrium 𝑉∗ and coefficients 

of the system satisfy condition 

𝑉∗ < 𝛼−1(𝑑𝑝 − 𝑑𝑠 + 𝜃𝑘−1).                           (2.42) 

Thus, if restriction (2.42) holds there exists the positive equilibrium of precancerous cells 𝑁𝑝
∗ 

(2.41), and after that HPV equilibrium 𝑉∗ has to satisfy restriction (2.36). If condition (2.42) does not 

hold, restriction (2.36) does not hold too. Solution of the problem (2.16), (2.19) satisfies the integral 

equation: 

𝐶∗(𝑎) = 𝛽𝑐 ∫ 𝐶∗(𝑎)𝑑𝑎
𝑎𝑘
𝑎𝑐

𝑒𝑥𝑝(−𝑑𝑐𝑎) + 𝜇(𝑁𝑃
∗) ∫ 𝑃∗(𝜂) 𝑒𝑥𝑝(−𝑑𝑐(𝑎 − 𝜂))𝑑𝜂

𝑎

0
.   (2.43) 

Integrating Eq (2.43) with respect to 𝑎 form 𝑎𝑐 to 𝑎𝑘, after a little algebra we arrive to the 

equation: 

(1 − 𝛽𝑐𝑑𝑐
−1(𝑒𝑥𝑝( − 𝑑𝑐𝑎𝑐) − 𝑒𝑥𝑝( − 𝑑𝑐𝑎𝑘)))∫ 𝐶∗(𝑎)𝑑𝑎

𝑎𝑘

𝑎𝑐

 

= 𝜇(𝑁𝑃
∗) ∫ ∫ 𝑃∗(𝜂) 𝑒𝑥𝑝(−𝑑𝑐(𝑎 − 𝜂))𝑑𝜂

𝑎

0
𝑑𝑎

𝑎𝑘
𝑎𝑐

                       (2.44) 

Since the expression in the right-hand side of Eq (2.44) is positive, integral ∫ 𝐶∗(𝑎)𝑑𝑎
𝑎𝑘
𝑎𝑐

> 0 , if 

𝑅𝐶 = 𝛽𝑐𝑑𝑐
−1(𝑒𝑥𝑝( − 𝑑𝑐𝑎𝑐) − 𝑒𝑥𝑝( − 𝑑𝑐𝑎𝑘)) < 1,               (2.45) 

where 𝑅𝐶 is a basic reproduction number of a cancer cell sub-population. Restriction (2.45) guaran-

tees the positiveness of equilibrium 𝐶∗(𝑎) in Eq (2.43). Expressing ∫ 𝐶∗(𝑎)𝑑𝑎
𝑎𝑘
𝑎𝑐

 from Eq (2.44) and 

substituting it together with Eq (2.37), in Eq (2.43), after integration and a little algebra we arrive to 

the positive equilibrium of cancer cell’s density 𝐶∗(𝑎): 

𝐶∗(𝑎) = 𝐴𝑃(𝑁𝑃
∗)𝜇(𝑁𝑃

∗)(𝑑𝑠 + 𝛼𝑉∗ − 𝑑𝑐)
−1(𝐴𝐶 𝑒𝑥𝑝(−𝑑𝑐𝑎) − 𝑒𝑥𝑝(−(𝑑𝑠 + 𝛼𝑉∗)𝑎)),      (2.46) 

𝐴𝐶 = (1 − 𝑅𝐶)
−1(1 − 𝛽𝑐(𝑑𝑠 + 𝛼𝑉∗)−1(𝑒𝑥𝑝( − (𝑑𝑠 + 𝛼𝑉∗)𝑎𝑐) − 𝑒𝑥𝑝( − (𝑑𝑠 + 𝛼𝑉∗)𝑎𝑘))).  (2.47) 

Integrating Eq (2.42) with respect to 𝑎 form 0 to 𝑎𝑑 we obtain the corresponding equilibrium 

quantity of cancer cells: 

𝑁𝐶
∗ = 𝐴𝑃(𝑁𝑃

∗)𝜇(𝑁𝑃
∗)(𝑑𝑠 + 𝛼𝑉∗ − 𝑑𝑐)

−1(𝐴𝐶𝑑𝑐
−1(1 − 𝑒𝑥𝑝(−𝑑𝑐𝑎𝑑)) 

−(𝑑𝑠 + 𝛼𝑉∗)−1(1 − 𝑒𝑥𝑝(−(𝑑𝑠 + 𝛼𝑉∗)𝑎𝑑))).                  (2.48) 

The results obtained above are summarized in the Theorem 2.1. 

Theorem 2.1. The system (2.1)–(2.5) possess a positive (endemic) equilibrium 𝑆∗(𝑎) ≥ 0, 𝑁𝑆
∗ > 0, 

𝐼∗(𝑎) ≥ 0, 𝑁𝐼
∗ > 0, 𝑃∗(𝑎) ≥ 0, 𝑁𝑃

∗ > 0, 𝐶∗(𝑎) ≥ 0, 𝑁𝐶
∗ > 0, 𝑉∗ > 0, if and only if there exists the real 

positive root 𝑉∗ > 0 of transcendental equation 𝑅𝑉(𝑉
∗) = 1 (Eq (2.23)) for which conditions (2.21), 

(2.31), (2.36), (2.42), hold and the basic reproduction number of cancer cell population 𝑅𝐶 < 1 (Eq 

(2.45)). The equilibrium values of all parameters are determined through 𝑉∗: 𝑆∗(𝑎) - Eqs (2.25), 
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(2.26), 𝑁𝑆
∗ - Eq (2.33), 𝐼∗(𝑎) – Eqs (2.29), (2.30), 𝑁𝐼

∗ - Eq (2.20), 𝑃∗(𝑎) – Eqs (2.37), (2.38), 𝑁𝑃
∗ - 

(2.41), 𝐶∗(𝑎) – Eqs (2.46), (2.47), 𝑁𝐶
∗ - Eq (2.48). 

Remark 2.1. Parameter 𝑅𝑉(𝑉
∗) is a decreasing function of 𝑉∗ ≥ 0: 

𝜕𝑅𝑉(𝑉
∗)

𝜕𝑉∗
= 𝛽0

𝜕

𝜕𝑉∗
(∫ 𝑒𝑥𝑝(−(𝑑𝑠 + 𝛼𝑉∗)𝑎)𝑑𝑎

𝑎𝑚
𝑎𝑟

) = −𝛼𝛽0 ∫ 𝑎 𝑒𝑥𝑝(−(𝑑𝑠 + 𝛼𝑉∗)𝑎)𝑑𝑎
𝑎𝑚
𝑎𝑟

< 0.   (2.49) 

Hence, the necessary and sufficient condition of existence of a positive root 𝑉∗ > 0 of transcen-

dental equation 𝑅𝑉(𝑉
∗) = 1 (Eq (2.23)) is the condition 𝑅𝑉(0) > 1, that is the basic reproduction num-

ber of susceptible cell population 𝑅𝑆 is bigger than one: 

𝑅𝑆 = 𝑅𝑉(0) = 𝛽0 ∫ 𝑒𝑥𝑝(−𝑑𝑠𝑎)𝑑𝑎
𝑎𝑚
𝑎𝑟

= 𝛽0𝑑𝑠
−1(𝑒𝑥𝑝( − 𝑑𝑠𝑎𝑟) − 𝑒𝑥𝑝( − 𝑑𝑠𝑎𝑚)) > 1.    (2.50) 

2.3. Local asymptotic stability of the positive (endemic) equilibrium of autonomous system (2.1)–

(2.10) 

Linearizing system (2.1)–(2.5) at the positive equilibrium 𝑆∗(𝑎) ≥ 0, 𝑁𝑆
∗ > 0, 𝐼∗(𝑎) ≥ 0, 𝑁𝐼

∗ > 0, 

𝑃∗(𝑎) ≥ 0, 𝑁𝑃
∗ > 0, 𝐶∗(𝑎) ≥ 0, 𝑁𝐶

∗ > 0, 𝑉∗ > 0, we arrive to the system for perturbations �̄�𝑠(𝑎, 𝑡) =

𝜓𝑠(𝑎) 𝑒𝑥𝑝( 𝜆𝑡)  and �̄�𝑠(𝑡) = ∫ �̄�𝑠(𝑎, 𝑡)𝑑𝑎
𝑎𝑑
0

= ∫ 𝜓𝑠(𝑎)𝑑𝑎
𝑎𝑑
0

𝑒𝑥𝑝( 𝜆𝑡) = 𝜉𝑠 𝑒𝑥𝑝( 𝜆𝑡)  for 𝑆∗(𝑎)  and 𝑁𝑆
∗ , 

�̄�𝑖(𝑎, 𝑡) = 𝜓𝑖(𝑎) 𝑒𝑥𝑝( 𝜆𝑡)  and �̄�𝑖(𝑡) = ∫ �̄�𝑖(𝑎, 𝑡)𝑑𝑎
𝑎𝑑
0

= 𝜉𝑖 𝑒𝑥𝑝( 𝜆𝑡)  for 𝐼∗(𝑎)  and 𝑁𝐼
∗ , �̄�𝑝(𝑎, 𝑡) =

𝜓𝑝(𝑎) 𝑒𝑥𝑝( 𝜆𝑡) and �̄�𝑝(𝑡) = ∫ �̄�𝑝(𝑎, 𝑡)𝑑𝑎
𝑎𝑑
0

= 𝜉𝑝 𝑒𝑥𝑝( 𝜆𝑡) for 𝑃∗(𝑎) and  𝑁𝑃
∗ , �̄�𝑐(𝑎, 𝑡) = 𝜓𝑐(𝑎) 𝑒𝑥𝑝( 𝜆𝑡) 

and �̄�𝑐(𝑡) = ∫ 𝜓𝑐(𝑎, 𝑡)𝑑𝑎
𝑎𝑑
0

= 𝜉𝑐 𝑒𝑥𝑝( 𝜆𝑡) for 𝐶∗(𝑎) and 𝑁𝐶
∗, �̄�𝑣(𝑡) = 𝜓𝑣 𝑒𝑥𝑝( 𝜆𝑡) for 𝑉∗: 

𝜕𝜓𝑠(𝑎)

𝜕𝑎
= −(𝜆 + 𝑑𝑠 + 𝛼𝑉∗)𝜓𝑠(𝑎) − 𝛼𝑆∗(𝑎)𝜓𝑣,                       (2.51) 

𝜕𝜓𝑖(𝑎)

𝜕𝑎
= −(𝜆 + �̃�𝑖)𝜓𝑖(𝑎) + 𝛼𝑉∗𝜓𝑠(𝑎) + 𝛼𝑆∗(𝑎)𝜓𝑣,                    (2.52) 

𝜕𝜓𝑝(𝑎)

𝜕𝑎
= −(𝜆 + �̃�𝑝(𝑁𝑃

∗))𝜓𝑝(𝑎) + 𝛿𝜓𝑖(𝑎) −
𝜕𝜇(𝑁𝑃

∗ )

𝜕𝑁𝑃
𝑃∗(𝑎)𝜉𝑝,              (2.53) 

𝜕𝜓𝑐(𝑎)

𝜕𝑎
= −(𝜆 + 𝑑𝑐)𝜓𝑐(𝑎) + 𝜇(𝑁𝑃

∗)𝜓𝑝(𝑎) +
𝜕𝜇(𝑁𝑃

∗ )

𝜕𝑁𝑃
𝑃∗(𝑎)𝜉𝑝,              (2.54) 

−(𝜆 +
𝜕𝑑𝑣(𝑉

∗)

𝜕𝑉
𝑉∗ + 𝑑𝑣(𝑉

∗))𝜓𝑣 + 𝑛𝑑𝑖𝜉𝑖 = 0,                       (2.55) 

where 
𝜕𝜇(𝑁𝑃

∗ )

𝜕𝑁𝑃
=

𝜃

(1+𝑘𝑁𝑃
∗ )2

> 0. Equations (2.51)–(2.55) are completed by the boundary conditions: 

𝜓𝑠(0) = 𝛽0 ∫ 𝜓𝑠(𝑎)𝑑𝑎
𝑎𝑚
𝑎𝑟

,  𝜓𝑖(0) = 𝛽0 ∫ 𝜓𝑖(𝑎)𝑑𝑎
𝑎𝑚
𝑎𝑟

,              (2.56) 
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𝜓𝑝(0) = 𝛽𝑝 ∫ 𝜓𝑝(𝑎)𝑑𝑎
𝑎𝑚
𝑎𝑟

,  𝜓𝑐(0) = 𝛽𝑐 ∫ 𝜓𝑐(𝑎)𝑑𝑎
𝑎𝑘
𝑎𝑐

              (2.57) 

System (2.51)–(2.57) is reduced to the system of integral equations: 

𝜓𝑠(𝑎) = 𝛽0∫ 𝜓𝑠(𝑎)𝑑𝑎
𝑎𝑚

𝑎𝑟

𝑒𝑥𝑝(−(𝜆 + 𝑑𝑠 + 𝛼𝑉∗)𝑎) − 𝛼𝜓𝑣∫ 𝑆∗(𝜂)
𝑎

0

 

× 𝑒𝑥𝑝(−(𝜆 + 𝑑𝑠 + 𝛼𝑉∗)(𝑎 − 𝜂))𝑑𝜂,                         (2.58) 

𝜓𝑖(𝑎) = 𝛽0∫ 𝜓𝑖(𝑎)𝑑𝑎
𝑎𝑚

𝑎𝑟

𝑒𝑥𝑝(−(𝜆 + �̃�𝑖)𝑎) +∫ (
𝑎

0

𝛼𝑉∗𝜓𝑠(𝜂) + 𝑆∗(𝜂)𝛼𝜓𝑣) 

× 𝑒𝑥𝑝(−(𝜆 + �̃�𝑖)(𝑎 − 𝜂)) 𝑑𝜂,                              (2.59) 

𝜓𝑝(𝑎) = 𝛽0∫ 𝜓𝑝(𝑎)𝑑𝑎
𝑎𝑚

𝑎𝑟

𝑒𝑥𝑝(−(𝜆 + �̃�𝑝(𝑁𝑃
∗))𝑎) + ∫ (𝛿𝜓𝑖(𝜂)−

𝜕𝜇(𝑁𝑃
∗)

𝜕𝑁𝑃
𝑃∗(𝜂)𝜉𝑝)

𝑎

0

 

× 𝑒𝑥𝑝(−(𝜆 + �̃�𝑝(𝑁𝑃
∗))(𝑎 − 𝜂))𝑑𝜂,                          (2.60) 

𝜓𝑐(𝑎) = 𝛽𝑐∫ 𝜓𝑐(𝑎)𝑑𝑎
𝑎𝑘

𝑎𝑐

𝑒𝑥𝑝(−(𝜆 + 𝑑𝑐)𝑎) + ∫ (𝜇(𝑁𝑃
∗)𝜓𝑝(𝜂)+

𝜕𝜇(𝑁𝑃
∗)

𝜕𝑁𝑃
𝑃∗(𝜂)𝜉𝑝)

𝑎

0

 

× 𝑒𝑥𝑝(−(𝜆 + 𝑑𝑐)(𝑎 − 𝜂))𝑑𝜂.                             (2.61) 

First, we analyse the existence of the real positive characteristic numbers 𝜆 > 0 of the linear 

system (2.51)–(2.57). Integrating both sides of Eq (2.58) with respect to 𝑎 from 𝑎𝑟 to 𝑎𝑚 yields: 

𝜓𝑠(𝑎) = −𝜓𝑣𝛼𝜆
−1𝑆∗(𝑎).                             (2.62) 

Integrating Eq (2.62) with respect to 𝑎 from 0 to 𝑎𝑑 we arrive to the linear homogeneous equa-

tion for the perturbations 𝜉𝑠 and 𝜓𝑣: 

𝜉𝑠 = −𝜓𝑣𝛼𝜆
−1𝑁𝑆

∗.                              (2.63) 

Integrating Eq (2.59) with respect to 𝑎 from 𝑎𝑟 to 𝑎𝑚, and using Eqs (2.23), (2.63), we arrive 

to the equation: 

∫ 𝜓𝑖(𝑎)𝑑𝑎
𝑎𝑚
𝑎𝑟

= 𝛼𝑁𝑆
∗𝐴𝑆𝛽0

−1(1 − 𝛼𝑉∗𝜆−1)(𝜆 + �̃�𝑖 − 𝑑𝑠 − 𝛼𝑉∗)
−1
𝜓𝑣,     (2.64) 

where 𝜆 + �̃�𝑖 − 𝑑𝑠 − 𝛼𝑉∗ > 0 for 𝜆 > 0 (see Eq (2.31)). We assume that 𝜆 ≠ 𝛼𝑉∗, because when 𝜆 =

𝛼𝑉∗ function perturbations 𝜓𝑣 = 0 (Eq (2.64)), 𝜉𝑠 = 0 (Eq (2.63)) and we obtain the trivial solution. 

Substituting ∫ 𝜓𝑖(𝑎)𝑑𝑎
𝑎𝑚
𝑎𝑟

 in Eq (2.59) after integration and a little algebra we arrive to the solution of 

Eq (2.59): 

𝜓𝑖(𝑎) = 𝛼(1 − 𝛼𝑉∗𝜆−1)(𝜆 + �̃�𝑖 − 𝑑𝑠 − 𝛼𝑉∗)
−1
𝑆∗(𝑎)𝜓𝑣,            (2.65) 

Integrating Eq (2.65) with respect to 𝑎 form 0 to 𝑎𝑑 we obtain the linear homogeneous equa-

tion for the perturbations 𝜉𝑖 and 𝜓𝑣: 
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𝜉𝑖 = 𝛼(1 − 𝛼𝑉∗𝜆−1)(𝜆 + �̃�𝑖 − 𝑑𝑠 − 𝛼𝑉∗)
−1
𝑁𝑆
∗𝜓𝑣,              (2.66) 

Integrating Eq (2.60) with respect to 𝑎 from 𝑎𝑟 to 𝑎𝑚, and using Eqs (2.23), (2.37), (2.38), 

(2.65), we arrive to the equation: 

∫ 𝜓𝑝(𝑎)𝑑𝑎
𝑎𝑚

𝑎𝑟

= 𝛽0
−1(𝜆 + �̃�𝑝(𝑁𝑃

∗) − 𝑑𝑠 − 𝛼𝑉∗)
−1
(𝛿𝛼𝑁𝑆

∗𝐴𝑆(𝜆 + �̃�𝑖 − 𝑑𝑠 − 𝛼𝑉∗)
−1

 

× (1 − 𝛼𝑉∗𝜆−1)𝜓𝑣 −
𝜕𝜇(𝑁𝑃

∗ )

𝜕𝑁𝑃
𝐴𝑃(𝑁𝑃

∗)𝜉𝑝),                     (2.67) 

where 𝜆 + �̃�𝑝(𝑁𝑃
∗) − 𝑑𝑠 − 𝛼𝑉∗ > 0 for 𝜆 > 0 (see Eqs (2.36), (2.42)). Substituting Eq (2.65) in Eq 

(2.60), after integration and a little algebra we obtain the solution of Eq (2.60): 

𝜓𝑝(𝑎) = (𝜆 + �̃�𝑝(𝑁𝑃
∗) − 𝑑𝑠 − 𝛼𝑉∗)

−1
(𝛿𝛼(𝜆 + �̃�𝑖 − 𝑑𝑠 − 𝛼𝑉∗)

−1
(1 − 𝛼𝑉∗𝜆−1)𝜓𝑣 

−
𝜕𝜇(𝑁𝑃

∗ )

𝜕𝑁𝑃
(𝑁𝑆

∗𝐴𝑆)
−1𝐴𝑃(𝑁𝑃

∗)𝜉𝑝)𝑆
∗(𝑎).                       (2.68) 

Integrating Eq (2.68) with respect to 𝑎 from 0 to 𝑎𝑑, we arrive to the linear homogeneous equa-

tion for the perturbations 𝜉𝑝 and 𝜓𝑣: 

((𝜆 + �̃�𝑝(𝑁𝑃
∗) − 𝑑𝑠 − 𝛼𝑉∗)𝑁𝑆

∗−1 +
𝜕𝜇(𝑁𝑃

∗)

𝜕𝑁𝑃
(𝑁𝑆

∗𝐴𝑆)
−1𝐴𝑃(𝑁𝑃

∗)) 𝜉𝑝 

= 𝛿𝛼(𝜆 + �̃�𝑖 − 𝑑𝑠 − 𝛼𝑉∗)
−1
(1 − 𝛼𝑉∗𝜆−1)𝜓𝑣.                  (2.69) 

Integrating Eq (2.61) with respect to 𝑎 from 𝑎𝑐  to 𝑎𝑘 , and using Eqs (2.23), (2.37), (2.68), 

yields: 

𝑋𝐶(𝜆) ∫ 𝜓𝑐(𝑎)𝑑𝑎
𝑎𝑘
𝑎𝑐

= 𝑌𝐶(𝜆)𝐷𝐶(𝜆)𝜓𝑣 + 𝑌𝐶(𝜆)𝐸𝐶(𝜆)𝜉𝑝,                 (2.70) 

𝑋𝐶(𝜆) = (1 − 𝛽𝑐(𝜆 + 𝑑𝑐)
−1(𝑒𝑥𝑝(−(𝜆 + 𝑑𝑐)𝑎𝑐) − 𝑒𝑥𝑝(−(𝜆 + 𝑑𝑐)𝑎𝑘))) 

× ((𝜆 + 𝑑𝑐) − 𝑑𝑠 − 𝛼𝑉∗),                           (2.71) 

 

𝑌𝐶(𝜆) = 1 − 𝛽0(𝜆 + 𝑑𝑐)
−1(𝑒𝑥𝑝( − (𝜆 + 𝑑𝑐)𝑎𝑐) − 𝑒𝑥𝑝( − (𝜆 + 𝑑𝑐)𝑎𝑘)),          (2.72) 

𝐷𝐶(𝜆) = 𝜇(𝑁𝑃
∗)𝑁𝑆

∗𝐴𝑆(1 − 𝛼𝑉∗𝜆−1)𝛿𝛼(𝜆 + �̃�𝑖 − 𝑑𝑠 − 𝛼𝑉∗)
−1

,             (2.73) 

𝐸𝐶(𝜆) = (1 − 𝜇(𝑁𝑃
∗)(𝜆 + �̃�𝑝(𝑁𝑃

∗) − 𝑑𝑠 − 𝛼𝑉∗)
−1
)
𝜕𝜇(𝑁𝑃

∗ )

𝜕𝑁𝑃
𝐴𝑃(𝑁𝑃

∗).           (2.74) 
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We assume that 𝑋𝐶(𝜆) ≠ 0, 𝑌𝐶(𝜆) ≠ 0 for 𝜆 > 0 because otherwise function perturbations 𝜓𝑣 =

0, 𝜉𝑝 = 0 (Eqs (2.69), (2.70)) and we obtain the trivial solution. Substituting Eqs (2.70)–(2.74) in Eq 

(2.61), after integration we arrive to the solution of Eq (2.61): 

𝜓𝑐(𝑎) = 𝐸𝐶(𝜆)(𝛽𝑐𝐵𝐶(𝜆) 𝑒𝑥𝑝(−(𝜆 + 𝑑𝑐)𝑎) − (𝜆 + 𝑑𝑐 − 𝑑𝑠 − 𝛼𝑉∗)−1 

× (𝑒𝑥𝑝(−(𝜆 + 𝑑𝑐)𝑎) − 𝑒𝑥𝑝( − (𝑑𝑠 + 𝛼𝑉∗)𝑎)))𝜉𝑝 + 𝐷𝐶(𝜆)(𝛽𝑐𝐵𝐶(𝜆) 𝑒𝑥𝑝(−(𝜆 + 𝑑𝑐)𝑎)  

−(𝜆 + �̃�𝑝(𝑁𝑃
∗) − 𝑑𝑠 − 𝛼𝑉∗)

−1
(𝜆 + 𝑑𝑐 − 𝑑𝑠 − 𝛼𝑉∗)−1(𝑒𝑥𝑝(−(𝜆 + 𝑑𝑐)𝑎)−𝑒𝑥𝑝( − (𝑑𝑠 + 𝛼𝑉∗)𝑎)))𝜓𝑣, (2.75) 

where 𝐵𝐶(𝜆) = 𝑋−1(𝜆)𝑌(𝜆). Integrating Eq (2.75) with respect to 𝑎 from 0 to 𝑎𝑑 we arrive to the 

linear homogeneous equation for the perturbations 𝜉𝑐, 𝜉𝑝 and 𝜓𝑣: 

𝜉𝑐 = 𝐸𝐶(𝜆)(𝛽𝑐𝐵𝐶(𝜆)(𝜆 + 𝑑𝑐)
−1(1 − 𝑒𝑥𝑝(−(𝜆 + 𝑑𝑐)𝑎𝑑)) − (𝜆 + 𝑑𝑐 − 𝑑𝑠 − 𝛼𝑉∗)−1 

× ((𝜆 + 𝑑𝑐)
−1(1 − 𝑒𝑥𝑝(−(𝜆 + 𝑑𝑐)𝑎𝑑)) − (𝑑𝑠 + 𝛼𝑉∗)−1(1 − 𝑒𝑥𝑝( − (𝑑𝑠 + 𝛼𝑉∗)𝑎𝑑)))) 𝜉𝑝 

+𝐷𝐶(𝜆)(𝛽𝑐𝐵𝐶(𝜆)(𝜆 + 𝑑𝑐)
−1(1 − 𝑒𝑥𝑝(−(𝜆 + 𝑑𝑐)𝑎𝑑)) − (𝜆 + �̃�𝑝(𝑁𝑃

∗) − 𝑑𝑠 − 𝛼𝑉∗)
−1

 

× (𝜆 + 𝑑𝑐 − 𝑑𝑠 − 𝛼𝑉∗)−1((𝜆 + 𝑑𝑐)
−1(1 − 𝑒𝑥𝑝(−(𝜆 + 𝑑𝑐)𝑎𝑑)) − (𝑑𝑠 + 𝛼𝑉∗)−1 

× (1 − 𝑒𝑥𝑝( − (𝑑𝑠 + 𝛼𝑉∗)𝑎𝑑))))𝜓𝑣.                                     (2.76) 

Substituting Eq (2.66) in Eq (2.55) we obtain the last equation of the system for 𝜓𝑣: 

(𝜆 + 𝐴𝑑 − 𝑛𝑑𝑖𝛼𝑁𝑆
∗(1 − 𝛼𝑉∗𝜆−1)(𝜆 + 𝐴𝑣)

−1)𝜓𝑣 = 0.                  (2.77) 

𝐴𝑑 =
𝜕𝑑𝑣(𝑉

∗)

𝜕𝑉
𝑉∗ + 𝑑𝑣(𝑉

∗),  𝐴𝑣 = �̃�𝑖 − 𝑑𝑠 − 𝛼𝑉∗,                (2.78) 

where 𝐴𝑑 , 𝐴𝑣 > 0 are auxiliary constants (see Eqs (2.11), (2.31)). Equating to zero determinant of the 

linear system (2.63), (2.66), (2.69), (2.76), (2.77) we arrive to the characteristic equation for 𝜆: 

((𝜆 + �̃�𝑝(𝑁𝑃
∗) − 𝑑𝑠 − 𝛼𝑉∗)𝑁𝑆

∗−1 +
𝜕𝜇(𝑁𝑃

∗)

𝜕𝑁𝑃
(𝑁𝑆

∗𝐴𝑆)
−1𝐴𝑃(𝑁𝑃

∗)) 

× (𝜆 + 𝐴𝑑 − 𝑛𝑑𝑖𝛼𝑁𝑆
∗(1 − 𝛼𝑉∗𝜆−1)(𝜆 + 𝐴𝑣)

−1) = 0.                 (2.79) 

We analyse existence of the real positive roots of Eq (2.79). Since 
𝜕𝜇(𝑁𝑃

∗ )

𝜕𝑁𝑃
=

𝜃

(1+𝑘𝑁𝑃
∗ )2

> 0 and con-

dition (2.42) holds, expression in the first briskets is always positive for 𝜆 > 0. Hence, we analyse 

existence of the positive roots 𝜆 > 0 (𝜆 ≠ 𝛼𝑉∗) of equation obtained by equating to zero the second 

briskets in Eq (2.79) transformed to the form: 

𝑦1(𝜆) = 𝑦2(𝜆),                                     (2.80) 

𝑦1(𝜆) = 𝜆(𝜆 + 𝐴𝑑)(𝜆 + 𝐴𝑣),                               (2.81) 

𝑦2(𝜆) = 𝑛𝑑𝑖𝛼𝑁𝑆
∗(𝜆 − 𝛼𝑉∗).                               (2.82) 
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Cubic polynomial 𝑦1(𝜆) has three zeroes: 𝜆1 = 0, 𝜆2 = −𝐴𝑑 < 0, 𝜆3 = −𝐴𝑣 < 0, and 𝑦1(𝜆) → ∞ 

for 𝜆 → ∞. Obviously that a cubic function 𝑦1(𝜆) and a linear increasing function 𝑦2(𝜆) intersect in 

domain 𝜆 > 0  if there exists such point 𝜆0 > 0 , solution of equation 
𝜕𝑦1(𝜆0)

𝜕𝜆
=

𝜕𝑦2(𝜆0)

𝜕𝜆
, at which 

𝑦1(𝜆0) ≤ 𝑦2(𝜆0). Parameter 𝜆0 > 0 is given: 

𝜆0 = (((𝐴𝑑 + 𝐴𝑣)
2 − 3(𝐴𝑑𝐴𝑣 − 𝑛𝑑𝑖𝛼𝑁𝑆

∗))
0.5

− (𝐴𝑑 + 𝐴𝑣)) /3,             (2.83) 

if 𝐴𝑑𝐴𝑣 = (
𝜕𝑑𝑣(𝑉

∗)

𝜕𝑉
𝑉∗ + 𝑑𝑣(𝑉

∗)) (�̃�𝑖 − 𝑑𝑠 − 𝛼𝑉∗) < 𝑛𝑑𝑖𝛼𝑁𝑆
∗.              (2.84) 

Substituting Eq (2.33) in Eq (2.84) yields: 

𝜕𝑑𝑣(𝑉
∗)

𝜕𝑉
𝑉∗ < −𝛬𝑉∗−1.                            (2.85) 

Since 
𝜕𝑑𝑣(𝑉

∗)

𝜕𝑉
> 0 and 𝛬 ≥ 0, inequality (2.85) does not hold. It means that 𝜆0 > 0 - a real posi-

tive root of equation 
𝜕𝑦1(𝜆0)

𝜕𝜆
=

𝜕𝑦2(𝜆0)

𝜕𝜆
, at which 𝑦1(𝜆0) ≤ 𝑦2(𝜆0), does not exist, and characteristic equa-

tion (2.77) does not have a real positive root 𝜆∗ > 0. 

Second, we analyse existence of the trivial characteristic number 𝜆 = 0 of linear system (2.55), 

(2.58)–(2.57). Substituting 𝜆 = 0 in Eq (2.58), integrating them with respect to 𝑎 from 𝑎𝑟 to 𝑎𝑚 

and excluding from obtained expression Eq (2.23) yields: 

𝛼𝜓𝑣𝛽0 ∫ ∫ 𝑆∗(𝜂) 𝑒𝑥𝑝(−(𝑑𝑠 + 𝛼𝑉∗)(𝑎 − 𝜂)) 𝑑𝜂𝑑𝑎
𝑎

0

𝑎𝑚
𝑎𝑟

= 0. (2.86) 

In this case 𝜓𝑣 = 0 and we only obtain a trivial solution of system that is the characteristic num-

ber 𝜆 cannot take the trivial value. 

Finally, if condition (2.84) does not hold and Eq (2.79) does not have a real positive root, we 

analyse existence of the complex characteristic roots with nonnegative real part. We seek the pure 

imaginary root 𝜆 = 𝑖𝜔 (where 𝜔 ≠ 0 is unknown real parameter) for which there exists the non-triv-

ial solution of system (2.51)–(2.57). Substituting 𝜆 = 𝑖𝜔 in Eqs (2.51)–(2.55) and separating imagi-

nary parts of equations yields: 

𝜔𝜓𝑠(𝑎) = 0, 𝜔𝜓𝑖(𝑎) = 0, 𝜔𝜓𝑝(𝑎) = 0, 𝜔𝜓𝑐(𝑎) = 0, 𝜔𝜓𝑣 = 0.          (2.87) 

From Eq (2.87) it follows that the nontrivial solution of system (2.51)–(2.57) exists if and only if 

𝜔 = 0, that is characteristic Eq (2.79) does not have complex roots with non-negative real part. The 

results obtained above are summarized in the Theorem 2.2. 

Theorem 2.2. Let conditions of Theorem 2.1 hold, the positive equilibrium of system (2.1)–(2.10) 

𝑆∗(𝑎) ≥ 0, 𝑁𝑆
∗ > 0, 𝐼∗(𝑎) ≥ 0, 𝑁𝐼

∗ > 0, 𝑃∗(𝑎) ≥ 0, 𝑁𝑃
∗ > 0, 𝐶∗(𝑎) ≥ 0, 𝑁𝐶

∗ > 0, 𝑉∗ > 0 is always lo-

cally asymptotically stable. 
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2.4. Numerical experiments 

The theoretical results obtained in Theorems 2.1 and 2.2 are illustrated by the numerical experi-

ments. For simulation of the autonomous model (2.1–2.10), we use the explicit formulae of method of 

characteristics from [25]. The set of coefficients and initial values of autonomous system (2.1–2.10) 

used in simulations is given in Appendix A. 

First, using the bisection method we find numerically the positive real root of Eq (2.23) 𝑉∗ which 

satisfies conditions of Theorem 2.1, and compute the positive equilibrium - 𝑁𝑆
∗ (2.33), 𝑆∗(𝑎) (2.25), 

𝑁𝐼
∗ (2.20), 𝐼∗(𝑎) (2.29), 𝑁𝑃

∗ (2.41), 𝑃∗(𝑎) (2.37), 𝑁𝐶
∗ (2.48), 𝐶∗(𝑎) (2.46). Our goal here is to study 

the dynamical regimes of cell and HPV population in the vicinity of the positive equilibria. 

Experiment I. Case (i) 𝑅𝑆 ≤ 1, 𝑅𝐶 < 1. In this case Eq (2.23) does not have the positive root 

𝑉∗ > 0 (see Remark 2.1 to Theorem 2.1). The quantity of susceptible, infected, precancerous, cancer 

cells and HPV quantity asymptotically evolve to the trivial equilibrium. Such dynamical regime is not 

interesting and valuable in practice and does not deserve our attention. 

Experiment II. Case (ii) 𝑅𝑆 > 1, 𝑅𝐶 < 1 (non-oscillating dynamical regimes). If coefficients of 

the system (2.1)–(2.10) satisfy conditions (2.21), (2.31), (2.36), (2.42) of Theorem 2.1 the dynamical 

regimes of cell and virus populations correspond to the stable asymptotic behavior in the vicinity of 

nontrivial equilibrium. We observe two kinds of population behavior – non-oscillating dynamics (case 

(ii)) and oscillating dynamics (case (iii)). 

The results of numerical experiments exhibited the case (ii) of dynamical regimes are shown in 

the phase diagrams in Figure 1a (susceptible cell population), Figure 1b (infected cell population), 

Figure 1c (precancerous cell population), Figure 1d (cancer cell population), Figure 1e (HPV popula-

tion). The graphs in all figures are given in phase coordinates 𝑌′(𝑡) =
𝑑𝑌(𝑡)

𝑑𝑡
 and 𝑌(𝑡), where 𝑌(𝑡) is a 

quantity of corresponding cells or HPV. The arrow on the graphs shows the direction of increasing of 

time 𝑡. 

Since in case (ii) the conditions of Theorem 2.1 hold, there exists the positive root of Eq (2.23) 

𝑉∗ > 0 and the positive equilibrium of system (2.1)–(2.10). By virtue of Theorem 2.2 this equilibrium 

is always locally asymptotically stable. All graphs in Figures 1a – 1e illustrate the asymptotic conver-

gence of all cells and HPV quantities to the corresponding positive equilibrium. Since we do not ob-

serve the cycles on the phase diagrams, solution converges to the positive equilibrium without oscil-

lations with a little wiggle. 

Experiment II. Case (iii) 𝑅𝑆 > 1, 𝑅𝐶 < 1 (oscillating dynamical regimes). In this experiment co-

efficients of the system (2.1)–(2.10) satisfy conditions (2.21), (2.31), (2.36), (2.42) of Theorem 2.1. 

We continue to study the particularities of asymptotic behavior of solution in the vicinity of positive 

equilibrium increasing value of the birth rate of susceptible, infected and precancerous cells and HPV 

death rate (see Appendix A). The results of numerical experiments exhibited case (iii) of dynamical 

regimes are shown in the phase diagrams in Figure 2a (susceptible cell population), Figure 2b (infected 

cell population), Figure 2c (precancerous cell population), Figure 2d (cancer cell population), Figure 

2e (HPV population). 
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(a)                                     (b) 

  

(c)                                     (d) 

 

(e) 

Figure 1. (a) Dependence of Ns
′(t) from NS(t) for non-oscillating dynamics, case (ii). (b) 

Dependence of NI
′(t) from NI(t) for non-oscillating dynamics, case (ii). (c) Dependence 

of NP
′ (t) from NP(t) for non-oscillating dynamics, case (ii). (d) Dependence of NC

′ (t) 

from NC(t) for non-oscillating dynamics, case (ii). (e) Dependence of 𝑁𝑉
′ (𝑡) from 𝑁𝑉(𝑡) 

for non-oscillating dynamics, case (ii). 
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(a)                                     (b) 

  

(c)                                     (d) 

 

(e) 

Figure 2. (a) Dependence of 𝑁𝑠
′(𝑡) from 𝑁𝑆(𝑡) for oscillating dynamics, case (iii). (b) 

Dependence of 𝑁𝐼
′(𝑡) from 𝑁𝐼(𝑡) for oscillating dynamics, case (iii). (c) Dependence of 

𝑁𝑃
′ (𝑡) from 𝑁𝑃(𝑡) for oscillating dynamics, case (iii). (d) Dependence of 𝑁𝐶

′ (𝑡) from 

𝑁𝐶(𝑡) for oscillating dynamics, case (iii). (e) Dependence of 𝑁𝑉
′ (𝑡) from 𝑁𝑉(𝑡) for oscil-

lating dynamics, case (iii). 

Since in case (iii) conditions (2.21), (2.31), (2.36), (2.42) of Theorem 2.1 hold, there exists the 

positive equilibrium of system (2.1)–(2.10). Graphs in Figure 2a–e illustrate the local asymptotic sta-

bility of all trajectories in the vicinity of positive equilibrium and exhibit the convergence of all cells 
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and HPV quantities to the corresponding positive equilibrium with oscillations of large magnitude. 

The magnitude of these oscillations can be estimated by the dimension of cycles on the phase diagrams. 

Experiment II. Case (iv) 𝑅𝑆 > 1, 𝑅𝐶 < 1 (unstable regime). In this experiment coefficients of the 

system (2.1)–(2.10) do not satisfy conditions (2.36), (2.42) of Theorem 2.1 (see Appendix A). The 

results of numerical experiments exhibited case (iv) of dynamical regimes are shown in the phase 

diagrams in Figure 3a (susceptible cell population), Figure 3b (infected cell population), Figure 3c 

(precancerous cell population), Figure 3d (cancer cell population), Figure 3e (HPV population). 

Since in case (iv) conditions (2.36), (2.42) of Theorem 2.1 do not hold, the positive equilibrium 

of system (2.1)–(2.10) does not exist. Graphs in Figures 3a, 3b, 3e show the oscillating dynamics of 

the quantity of susceptible, infected cell subpopulations and HPV subpopulation with following their 

convergence to some stationary values, like in the previous case (iii). 

Since 𝑁𝑃
′ (𝑡) > 0 in Figure 3c and 𝑁𝐶

′(𝑡) > 0 in Figure3d the graphs in these figures show the 

wiggle (non-oscillating) dynamics of the quantity of precancerous and cancer cell subpopulations with 

their subsequent unlimited exponential growth. The section of straight increasing line with arrow in 

phase diagram in Figure 3c, d corresponds to the exponentially increasing function on the traditional 

plane with coordinates 𝑁𝑃(𝑡) and 𝑡, 𝑁𝐶(𝑡) and 𝑡, respectively. In spite of the small basic reproduc-

tion number 𝑅𝐶 = 0.59 the quantity of cancer cell population evolves to infinity. Such dynamics is 

induced by the unlimited growth of precancerous cell subpopulation which plays the role of donor for 

cancer cell subpopulation. From the biological point of view this dynamical regime corresponds to the 

growth of dysplasia and formation of metastasis in organism. 

Experiment III. Case (v) 𝑅𝑆 > 1, 𝑅𝐶 ≈ 1. In the last group of experiments, we study the behavior 

of solution when the basic reproduction number of cancer cell population 𝑅𝐶 < 1 and 𝑅𝐶 > 1. We 

consider the same set of the coefficients and constants as in the Experiment II but take the bigger 

values of birth rates of cancer cells 𝛽𝑐 (Appendix A) that corresponds to the bigger value of 𝑅𝐶. 

In the first simulation 𝑅𝐶 = 0,99993, and the set of all coefficients and constants (except 𝛽𝑐) is 

the same as in case (iii). Since 𝑅𝑆 > 1, 𝑅𝐶 < 1, and coefficients of the system (2.1)–(2.10) satisfy con-

ditions (2.21), (2.31), (2.36), (2.42) of Theorem 2.1, there exists the positive equilibrium of system 

(2.1)–(2.10). In numerical experiment we obtain the same type of oscillating dynamical regime as in 

case (iii) in the vicinity of positive equilibrium of susceptible, infected, precancerous cell populations 

and HPV population shown in Figure 2a–c, e. 

The dynamical regime of cancer cell population in this simulation differs essentially from the one 

obtained in case (iii). The results of simulation are shown in the phase diagram in Figure 4a. Since 

𝑁𝐶
′ (𝑡) > 0 in Figure 4a, we obtain the wiggle dynamical regime of the cancer cell quantity with subse-

quent asymptotic exponential convergence of it to the positive equilibrium, instead of oscillating dy-

namics shown in Figure 2d.  

In the second simulation 𝑅𝑆 > 1, 𝑅𝐶 = 1.00008, and the set of all coefficients and constants of the 

system (2.1)–(2.10) satisfy conditions (2.21), (2.31), (2.36), (2.42) of Theorem 2.1 and is the same 

(except 𝛽𝑐) as in case (iii) (see Appendix A). Since 𝑅𝐶 > 1, conditions of Theorem 2.1 do not hold, 

and the positive equilibrium of system (2.1)–(2.10) does not exist. In this simulation we obtain the 

same type of oscillating dynamical regime as in case (iii) in the vicinity of the positive equilibrium of 

susceptible, infected, precancerous cell subpopulations and HPV subpopulation shown in Figure 2a–

c, e. The dynamical regime of the cancer cell subpopulation obtained in this experiment differs from 

the one obtained in case (iii) and is the same as in simulation of case (iv) (for 𝑅𝐶 < 1). The results of 
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simulation are shown in the phase diagram in Figure 4b. Since 𝑁𝐶
′ (𝑡) > 0, we observe the wiggle dy-

namical regime of the cancer cell subpopulation quantity (without oscillation) with subsequent unlim-

ited exponential growth. Thus, the absence of the positive equilibrium in this case means the unstable 

dynamical regime of the system (2.1)–(2.10). 

  

(a)                                     (b) 

  

(c)                                     (d) 

 

(e) 

Figure 3. (a) Dependence of 𝑁𝑠
′(𝑡) from 𝑁𝑆(𝑡) for oscillating dynamics, case (iv). (b) 

Dependence of 𝑁𝐼
′(𝑡) from 𝑁𝐼(𝑡) for oscillating dynamics, case (iv). (c) Dependence of 

𝑁𝑃
′ (𝑡) from 𝑁𝑃(𝑡) for unstable dynamics, case (iii). (d) Dependence of 𝑁𝐶

′(𝑡) from 𝑁𝐶(𝑡) 

for unstable dynamics, case (iv). (e) Dependence of 𝑁𝑉
′ (𝑡) from 𝑁𝑉(𝑡) for oscillating dy-

namics, case (iv). 
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(a)                                     (b) 

Figure 4. (a) Dependence of 𝑁𝐶
′(𝑡) from 𝑁𝐶(𝑡) for wiggle dynamics, 𝑅𝐶 = 0.99995, case 

(v). (b) Dependence of 𝑁𝐶
′(𝑡) from 𝑁𝐶(𝑡) for wiggle dynamics, 𝑅𝐶 = 1.00008, case (v). 

3. Discussion and conclusions 

In this paper we study an autonomous epidemic model of age-structured population dynamics of 

susceptible, infected, precancerous and cancer cells and unstructured model of population dynamics 

of human papilloma virus (HPV) (SIPCV epidemic model). The model considers the problem of HPV 

propagation and cancer disease dynamics on the tissue level and includes the competitive system of 

initial-boundary value problems for semi-linear transport equations with non-local boundary condi-

tions (renewal equations) and initial problem for nonlinear ODE. We carried out the stability analysis 

of this autonomous system, obtained the conditions of existence of the positive (endemic) equilibrium 

and proved that this equilibrium is always locally asymptotically stable whenever it exists. Theoretical 

analysis revealed two key parameters important for the study of cervical cancer disease – the basic 

reproduction numbers of susceptible cell population 𝑅𝑆 and cancer cell population 𝑅𝐶. The necessary 

and sufficient condition of existence of the positive equilibrium of system, as it was expected, imposes 

the restriction on the basic reproduction number of susceptible cell population: 𝑅𝑆 > 1, that is the 

healthy biological tissue must be growing for providing the sufficient environment for the HPV repli-

cation and propagation, and development of the cancer tissue. The particularity of the semi-linear 

transport equation of cancer cell population dynamics is that it does not impact on the dynamics of the 

other cell and HPV sub-populations since all other equations of the system do not depend from the 

cancer cell density or cancer cell quantity. This property of model is a consequence of our hypothesizes 

that immune system of organism is tolerant with respect to its own cervical cancer cells and cancer 

cells do not apply pressure on the tissues of organism and have no effect on the proliferation and 

mortality of the other cells and replication of HPV. Thus, when the positive equilibrium of system 

exists and the cancer cell population is not empty, their farther dynamics depends only on the basic 

reproduction number 𝑅𝐶. If 𝑅𝐶 < 1 cancer cell population evolve eventually to the stationary state that 

means the localization of tumor tissue, and if 𝑅𝐶 > 1 cancer cell population grows infinitely that means 

the formation of metastasis in organism. The unlimited growth of cancer cell population can also ap-

pear even for 𝑅𝐶 < 1, when the positive equilibrium of system does not exist, but susceptible, infected 
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cell subpopulations and HPV subpopulation eventually evolve to some stationary values and precan-

cerous cell subpopulation (dysplasia) grows infinitely. In this case precancerous cells induce the cancer 

cell outbreak and subpopulation of cancer cells grows infinitely. 

Numerical experiments illustrate and confirm the theoretical results obtained in paper. When the 

basic reproduction number of susceptible cell subpopulation 𝑅𝑆 ≤ 1 (case (i)) the positive equilibrium 

of system does not exist, and simulation showed that all cell and HPV subpopulations eventually 

evolve to zero. This is a trivial solution of the model which is not valuable in epidemiological problem. 

When 𝑅𝑆 > 1, 𝑅𝐶 < 1, and all coefficients and constants of system (2.1)–(2.10) satisfy conditions 

(2.21), (2.31), (2.36), (2.42) of Theorem 2.1, the positive equilibrium of system exists. Simulation 

showed that in this case there are three types of dynamical asymptotically stable regimes: non-oscil-

lating convergence of solution to the positive equilibrium (case (ii)), oscillating convergence of solu-

tion to the positive equilibrium (case (iii)), wiggle dynamics with subsequent exponential convergence 

of solution to the positive equilibrium (first simulation in case (v), 𝑅𝐶 = 0.99995). The common feature 

of all these dynamical regimes is that cancer cell population cannot grow infinitely, their dynamics is 

related to the dynamics of all other cells of tissue and the quantity of cancer cells eventually evolves 

to the stationary state. Results of the simulations in these cases confirm the theoretical conclusion 

about a localization of cancer tissue. When 𝑅𝑆 > 1, 𝑅𝐶 < 1, and coefficients and constants of system 

(2.1)–(2.10) do not satisfy condition (2.42) of Theorem 2.1, the positive equilibrium of system does 

not exist. Simulation showed that in this case the quantity of susceptible, infected cell subpopulations 

and HPV subpopulation oscillated and eventually evolved to some stationary values and the quantity 

of precancerous cell subpopulation (dysplasia) showed the wiggle dynamics with subsequent unlimited 

growth. In spite of the small value of the basic reproduction number 𝑅𝐶 < 1, cancer cell subpopulation 

also grew infinitely together with precancerous cell subpopulation that means the growth of dysplasia 

and cancer metastasis in organism. 

And the last, but not least case when 𝑅𝑆 > 1, 𝑅𝐶 > 1, and all coefficients and constants of the 

system satisfy the conditions of Theorem 2.1, except 𝑅𝐶. In this case (the second simulation in case 

(iv), 𝑅𝐶 = 1.00008), like in case (i), system does not have the positive equilibrium, but the dynamical 

regime of population is significantly different from case (i). The quantities of susceptible, infected, 

precancerous cells and HPV converge to the stationary states, except the cancer cell quantity. Cancer 

cell subpopulation exhibits the wiggle dynamics (without oscillation) with consequence unlimited ex-

ponential growth, that is the dynamics of cancer cells is not stable and leads to the formation of me-

tastases in organism. Thus, the results of all numerical experiments confirm the conclusions of theo-

retical analysis. 

Overall, the main result of this paper - development of the SIPCV age-structured epidemic model 

and stability analysis of autonomous system of this model, provide the theoretical instrument for the 

qualitative analysis of dynamical regimes of susceptible, infected, precancerous, cancerous cells and 

HPV populations that help us better understand the features of HPV infectious and cancer disease. 
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Appendix A. The set of coefficients and constants in numerical experiments 

The set of constants used in numerical experiments is given in Table A1. The coefficients and 

initial values of the system used in all numerical experiments are: 

𝜑(𝑎) = 2𝑒𝑥𝑝( − 𝑎), 𝑉0 = 0, 𝑑𝑣(𝑉(𝑡)) = 𝑑0√1 + 5𝑉(𝑡).  
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Table A1. The set of constants. 

𝑎𝑟 𝑎𝑚 𝑎𝑐 𝑎𝑘 𝑎𝑑 𝑑𝑠 𝑑𝑖 𝑑𝑐 𝜃 𝛼 𝛿 𝑛 𝛬 

0.25 0.9 0.1 0.4 1.0 0.1 0.11 0.05 0.02 0.1 0.15 0.01 0.001 

In the different numerical experiments, in addition to the constants from the Table A1, we use the 

coefficients given in the Table A2. 

Table A2. The set of coefficients in equations. 

 𝛽0 𝛽𝑐 𝑑0 𝑑𝑝 𝑘 

Case (i) 0.5 2.0 0.02  0.30 0.2 

Case (ii) 1.638  2.0 0.02  0.30 0.2 

Case (iii) 1.680  2.0 0.10  0.30 0.2 

Case (iv) 1.680  2.0 0.10  0.11 0.5 

Case (v), first simulation 1.680  3.3750 0.10  0.30 0.2 

Case (v), second simulation 1.680  3.3755 0.10  0.30 0.2 
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