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Abstract: Stability analysis of an autonomous epidemic model of an age-structured sub-populations
of susceptible, infected, precancerous and cancer cells and unstructured sub-population of human pap-
illoma virus (HPV) (SIPCV epidemic model) aims to gain an insight into the features of cervical cancer
disease. The model considers the immune functional response of organism to the virus population
growing by the HPV-density dependent death rate, while the death rates of infected, precancerous and
cancerous cells do not depend on the HPV quantity because the immune system of organism does not
respond to its own cells. Interaction between susceptible cells and HPV is described by the Lotka-
Voltera incidence rate and leads to the growth of infected cells. Some of infected cells become precan-
cerous cells, and the other apoptosis when viruses leave infected cells and are ready to infect new
susceptible cells. Precancerous cells partially become cancer cells with the density-dependent saturated
rate. Conditions of existence of the endemic equilibrium of system were obtained. It was proved that
this equilibrium is always locally asymptotically stable whenever it exists. We obtained: (i) the condi-
tions of cancer tumor localization (asymptotically stable dynamical regimes), (i1) outbreak of cancer
cell population (that may correspond to metastasis), (iii) outbreak of dysplasia (precancerous cells)
which induces the outbreak of cancer cells (that may correspond to metastasis). In cases (i1), (iii) the
conditions of existence of endemic equilibrium do not hold. All cases are illustrated by numerical
experiments.
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1. Introduction

Cervical cancer induced by sexually transmitted human papilloma virus (HPV) is the second most
common cancer in women worldwide [1-4]. The widespread prevalence of this disease stimulated
extensive studies of HPV-epidemic models over the last several years. The research in this field is
carried out in two directions: (i) epidemiology and population science (models of spread of HPV
through a population, HPV vaccination of people, etc.) [5,6]; (i1) epidemiology and biological sciences
(cellular and tissue modelling, cell-HPV interaction studies, etc.) [7-9]. The early studies in the frame-
work of the second scientific direction (ii) used the unstructured models of population dynamics for
several compartments — subpopulations of biological cells and HPV. The dynamics of virus population
can be efficiently described by the unstructured model on the basis of nonlinear ODE because viruses
are non-living things which do not proliferate and can replicate only within a living host cell. But
unstructured models are not suitable for the modelling of cell population dynamics because they do
not describe the cell’s life history and provide only a restricted description of their population dynamics
in many applications. The urgent need to gain insight the complex biological processes for deep and
accurate understanding of patterns of population dynamics and a variety of dynamical regimes of pop-
ulations motivated the development and implementation of age-structured, and more generally, phys-
iologically structured, cell population dynamics and tumor growth modelling [3,10-24].

In this paper we study the new age-structured model of susceptible, infected, precancerous, cancer
cells populations and unstructured model of human papilloma virus population (SIPCV epidemic
model) dynamics which is continuation of the previous research described in works [8,25]. In this
model we use the L. Hayflick limit theory [26] for modelling the proliferation in cell subpopulations.
The model describes the life history of each cell (cell aging by L. Hayflick): birth, maturing up to the
age when they can proliferate, division a limited number of times at the reproductive age, aging up to
the final reproductive age and death. The cell division and mortality in subpopulations are described
by the birth and death rates, respectively. The death rates of infected, precancerous and cancer cell
subpopulations in our model do not depend on the HPV quantity since the immune system of organism
does not respond to its own cells [1,3,4]. The death rate of HPV is considered as density-dependent
function since immune system responds to the virus population growth [1,3,4]. Interaction between
susceptible cells and HPV is described by the Lotka-Voltera incidence rate and leads to the growth of
infected cells [25]. Some of infected cells become precancerous cells, and the other apoptosis when
viruses leave infected cells and are ready to infect new susceptible cells [8,28]. Precancerous cells
partially become cancer cells with the density-dependent saturated rate [8]. We assume that cancer
cells do not apply pressure on the tissues of organism and have no effect on the proliferation and
mortality of other cells and replication of HPV. This model is studied both theoretically and numeri-
cally. The existence theorem and explicit recurrent formula for the solution of the age-structured
SIPCV model (like in work [25]) are beyond the aim and scope of this paper due to the complexity of
the model and will be the subject of our further study.

The stability analysis of model is based on the study of conditions of existence of the positive
(endemic) equilibrium of system and its asymptotical stability ([13,29-37]). We obtain the restrictions
on the basic reproduction numbers of susceptible and cancer cell subpopulations, and coefficients of
the system which guarantee existence of the endemic equilibrium. We prove that this equilibrium is
always locally asymptotically stable whenever it exists. The numerical experiments confirm theoretical
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results and provide us with several topologically non-equivalent phase portraits of the model. Simula-
tions reveal two asymptotically stable regimes with non-oscillating and oscillating dynamics in the
vicinity of positive equilibrium and, at least, two unstable dynamical regimes (when the positive equi-
librium does not exist). From the biological point of view the asymptotically stable dynamical regimes
of cell-HPV population mean the localization of cancer without spreading it in organism. The unstable
dynamical regimes of cell-HPV population mean the cancer metastasis. Overall, the theoretical and
numerical analysis of autonomous age-structured SIPCV epidemic model help us better understand
the features of HPV infectious and cancer disease.

2. Model and main results

2.1. Model

SIPCV epidemic model considers the biological tissue which consists of susceptible (noninfected),
infected (without significant changing of morphology, CIN I and CIN II stages [1-4,27]), precancerous
(with changed by virus morphology - dysplasia, but is differentiable yet, CIN III stage [2,3,27]), cancer
(nondifferentiable) cells and human papilloma virus (HPV) that moves freely between cells. The age-
specific densities of susceptible, infected, precancerous and cancer cells subclasses are denoted as
S(a,t), I(at), P(at) and C(a,t), respectively, and are defined in domain Q = {(a,t)|a € [0,ay4],t =
0}, where a; is a maximum lifespan of cells. The total number (quantity) of susceptible, infected,

precancerous and cancer cells subpopulations are denoted by Ng(t) = foadS(a, t)da , N;(t) =

Jy41(a,)da, Np(t) = [ P(a,t)da, Ne(t) = [} C(a,t)da, respectively. The dynamics of cell subpopu-

lations is described by the autonomous nonlinear age-structured model with death rates of susceptible
cells dy, infected cells d;, precancerous cells d, and cancer cells d,, with an age reproductive win-
dow of non-cancer cells [a,,a,] and cancer cells [a.,ay], a. < a,, a; < ap, (the age reproductive
window of cancer cells is shifted in relation to the age reproductive window of non-cancer cells due to
the abnormal program of cancer cell division when they divide before reaching the maturity of the
reproductive window of non-cancer cells and therefore become nondifferentiable cells), the same birth
rate of susceptible, infected and precancerous cells S,, and the birth rate of cancer cells .. Due to the
adaptive behaviour of the HPV immune system of organism (both T-killers cells and humoral immun-
ity) does not respond to the infected, precancerous and cancer cells, that is their death rates do not
depend on the HPV quantity. Since viruses are non-living things which do not proliferate and replicate
only within a living host cell, the dynamics of HPV quantity V(t) is described by the non-linear ODE
with density-dependent death rate d, (V). The latter describes the immune response of organism to the
HPV population growth. The interaction between susceptible cells and HPV is a product of the Lotka-
Voltera incidence rate aV(t)S(a,t) (where «a is an infection rate) and result in the growth of infected
cells. Infected cells partially move to the precancerous subpopulation with rate §1(a,t) (where § is
a progression rate from infected to precancerous cells (dysplasia)) and partially apoptosis with rate
nd;N,(t), when viruses leave infected cells and are ready to infect susceptible cells (where n is a mean
number of virions produced by an infectious cell, the death rate of infected cells d; > dg since it is
induced by HPV). Precancerous cells move to the cancer cell subpopulation with the saturated rate

ONp(t
u(Np) = —2p®

1+kNp(t)"

When the abundance of precancerous cells (dysplasia) increases from the small value,
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the risk of developing cancer cells increases from the small value too. In this case u(N,) is directly
proportional to the N, with coefficient 6 (progression rate). Since u(N,) is a fraction of precancer-
ous cells which move to cancer subclass per unit of time, it is a bounded parameter which increases
and eventually tends to the saturated level 6/k <1 with N, — oo, where k is a coefficient of satura-
tion [8].

These assumptions lead to the following autonomous epidemic model

25000 1 8000 — —(d, + AV (D)S(a, L), @.1)
Mat) A — (dy + 8)I(a,0) + aV(£)S(a, 1), 22)
@D | D — g, p(a,t) + 81(a,t) — u(Np)P(a, 0), 2.3)
2eD) 4 36@D — _,C(at) + p(Np)P(a, 1), 2.4)

PO = 4—d, V(D) +nd; [ 1(a t)da, (2.5)

where Ais a constant recruitment rate of virus population. Equations (2.1)—(2.5) are completed by the
boundary conditions and initial values:

$(0,8) = By J," S(a, t)da, (2.6)

100,6) = Bo f, " 1(a, t)da, (2.7)

P(0,t) = B, fa“rmp(a, t)da, (2.8)

c(0,t) = B, f;ck C(a,t)da, (2.9)

S(a,0) = p(a), 1(a,0) =0, P(a,0)=0, C(a,0)=0, V(0)=V, (2.10)

where ¢(a) is an initial density of susceptible cells, V, is an initial value of HPV quantity. We
impose the following restrictions on the density-dependent HPV death rate and cell’s birth and death
rates [1-4,27,28]:

ady,(V)
av

dg,d;, dy,d. >0, d; >dg, 0<d,(0)<d,, >0 for V>0, A=0, (2.11)

n>0, BB >0, >0, §>0, Vy>0, p(a) 20, [ “p(a)da> 0. (2.12)
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Equations (2.11) and (2.12) consider the positiveness and boundness of cell birth and death rates.
The restrictions (2.11) mean that increasing of HPV quantity changes the characteristics of intracellular
space that result in the organism immune response through the activation of cell immunity (T-killers)
and humoral immunity (B-lymphocytes) that leads to the elimination of viruses (i.e. monotone increas-
ing of their death rate). The constant d, restricts the intrinsic density independent part of death rate.

2.2. Existence of the positive (endemic) equilibrium of autonomous system (2.1)—(2.10)

The trivial, disease free equilibrium (DFE) of the system (2.1)—(2.10) exists if an infection rate
a = 0. In this case biological tissue consists only from susceptible cells and its dynamics is defined by
the basic reproduction number of susceptible cell subpopulation. Since we consider only positive in-
fection rate « > 0 (Eq (2.12)), the analysis of DFE is beyond of our study. Further we consider the
conditions of existence of positive (endemic) equilibrium of system (2.1)—(2.10): S*(a) = 0 is a pos-

itive equilibrium of susceptible cells with an equilibrium quantity Ng = foadS*(a)da >0; I"(a) =0 is
a positive equilibrium of infected cells with an equilibrium quantity Ny = fo“"’l*(a)da >0; P'(a) =0
IS a positive equilibrium of precancerous cells with an equilibrium quantity N; = foadP*(a)da >0,

C*(a) = 0 is a positive equilibrium of cancer cells with an equilibrium quantity ng = foad C*(a)da > 0,

V* > 0 is a positive equilibrium of HPV. This positive equilibrium of system (2.1)—(2.10) satisfies the
stationary system:

EO — —(dy +av)s (@), (2.13)
L9~ —Gi1* (@) + aV*S* (@), (2.14)
L = —d,(Np)P* () + 61 (a), (2.15)
L = —d.0* () + p(Np)P* (@), (2.16)

A—d,(VV* + nd;Nj =0, (2.17)

where d; = d; + 6, d,(N3) = d, + u(N3). Equations (2.13)—(2.17) are completed by the boundary con-
ditions:

§°(0) = B J," S*(@)da, 1°(0) = By [," I' (a)da, (2.18)

P*(0) = B, f;“rm P*(a)da, C*(0) = B, f‘i"C*(a)da. (2.19)

We seek the solution of the boundary problem (2.13)—(2.19) S*(a), I*(a), P*(a), C*(a). From
Eq (2.17) we have
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N = (nd)"H(d,(VIV" = 4), (2.20)
where we assume that
A< d, (VO™ (2.21)
Using Eq (2.18) we obtain the integral equation for the solution of Eq (2.13):

S*(a) = Bo faarmS*(a)da exp(—(ds + aV*)a). (2.22)

Integrating Eq (2.22) with respect to a form a, to a,, after a little algebra we arrive to the
transcendental equation for determination of v*:

Ry (V") = B, fa“rm exp(—(ds + aV*)a) da (2.23)

= Bo(ds + aV*) " (exp(— (ds + aV")a,) — exp(— (ds + aV*)ay)) = 1.

Integrating Eq (2.22) with respectto a form 0 to a, we obtain the equation for the equilibrium
quantity of susceptible cells:

N¢ = Bo(ds + aV*)™? f;mS*(a)da (1 —exp(— (dgs + aV*)ay)). (2.24)

Substituting this expression in Eq (2.22) we obtain the solution S*(a) and equation for the equi-
librium density of susceptible cells N;:

S*(a) = N{Agexp(—(ds + aV)a), (2.25)

As = (ds+ aV") (1 —exp(— (ds + aV)a)) ™, (2.26)

where Ag is an auxiliary positive constant. Using the boundary condition (2.19) we can write the in-
tegral equation for the solution of Eq (2.14):

I"(a) = B, faarm I'(@)daexp(—dsa) + aV* ['S*(n) exp(—di(a —n)) dn. (2.27)

Integrating Eq (2.27) with respectto a form a, to a,, and using Eq (2.25), after a little algebra
we arrive to the integral equation:

a ~

farm I"(a)da = Bod; *(exp( — d;a,) — exp(— dian)) f‘iml*(a)da +aV*NiAs(d; — ds — aV*)_l (2.28)
X ((ds + aV*) " (exp(— (ds + aV*)a,) — exp(— (dg + aV*)ay,)) — d;i * (exp(— d;a,) — exp(— diam)))-

Expressing [*™I"(a)da from Eq (2.28) and substituting it together with Eq (2.23) in Eq (2.27),
after a little algebra we obtain the positive equilibrium I*(a):
I"(a) = A;exp(—(ds + aV)a), (2.29)

A; = aV*NiAs(d; — dg — aV*) 2, (2.30)
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HPV equilibrium v* has to satisfy restriction
V< (d; —dg)a?, (2.31)

which guarantees positiveness of the auxiliary constant 4, and equilibrium I*(a). Integrating I*(a)
(Eq (2.29)) with respectto a form 0 to a, and using Eq (2.30), we have

N/ = aV*NiAg(d; — dg — aV*)~(ds + aV*) ™1 (1 — exp( — (dg + aV*)ay)). (2.32)
From Egs (2.20), (2.26) and (2.32) we arrive to the equilibrium quantity of susceptible cells:
N¢ = (nd;aV*)~(d,(V)V* — A)(d; — dg — aV*). (2.33)

Hence, if Eq (2.23) hasareal root v* > 0 (i.e. the positive equilibrium quantity of HPV) satisfied
restrictions (2.21) and (2.31), the equilibrium densities of susceptible and infected cells are defined by
Egs (2.25), (2.29) with auxiliary constants (2.26), (2.30), and the equilibrium quantity of susceptible
and infected cells are defined by Eqgs (2.33), (2.20), respectively.

Solution of problem (2.15), (2.20) satisfies the integral equation:

P*(a) = o [ P*(@)da exp(~d,(Np)a) + 6 f3 I () exp(~d,(NZ) (@ —m)) dy.  (2.34)

Integrating Eq (2.34) with respectto a form a, to a,,, and using Eqgs (2.23), (2.29), (2.30), after
a little algebra we arrive to the integral equation:

(dp(Np) —ds —aV*) [, P*(a)da = 84,85 (2.35)
Since the left-hand side of Eq (2.35) must be positive the equilibrium quantity N3 and coeffi-

cients of the system have to satisfy the restriction:

d, + u(Np) > ds + aV*. (2.36)

Substituting expression fa“r’" P*(a)da from Eq (2.35) together with Eqgs (2.23), (2.29), (2.30), in

Eq (2.35), after a little algebra we obtain the positive equilibrium P*(a):
P*(a) = Ap(N}) exp(—(ds + aV*)a), (2.37)
Ap(Np) = 8A,(dp + u(Np) —ds — aV*)™h. (2.38)

Equation (2.36) guaranties positiveness of the auxiliary constant Ap(Np) and equilibrium
P*(a) > 0. Integrating Eq (2.37) with respectto a form 0 to a, we obtain the quadratic equation for
the equilibrium quantity of precancer cells N;:

((d, — ds — aV*)k + O)N;? + (d,, — ds — aV* — kL)Nj — L = 0, (2.39)
L =06A,(ds +aV*) (1 —exp(— (ds + aV*)ay)). (2.40)

If the positive solution of Eq (2.39) exists it can be given by

N; = (=(dp — ds — aV* — kL) +/(d, — ds — aV* — kL)? + 4L(k(d, — ds — aV*) + 0))

x 0.5(k(d, — ds — aV*) +6) . (2.41)
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Using the simple algebra, it is easy to verify that the equilibrium quantity of precancerous cells
(2.41) is positive N, >0 and satisfies restriction (2.36) if the HPV equilibrium v* and coefficients
of the system satisfy condition

V' < a i(d, —ds + 0k™). (2.42)

Thus, if restriction (2.42) holds there exists the positive equilibrium of precancerous cells N
(2.41), and after that HPV equilibrium v* has to satisfy restriction (2.36). If condition (2.42) does not
hold, restriction (2.36) does not hold too. Solution of the problem (2.16), (2.19) satisfies the integral
equation:

C*(a) = B [, C*(@)daexp(=d.a) + u(Np) [;' P* () exp(—dc(a—m)dn.  (2.43)

Integrating Eq (2.43) with respect to a form a. to ay, after a little algebra we arrive to the
equation:

(1 - .Bcdgl(exp( —d.a;) —exp(— dcak))) fakc*(a)da
= u(Np) [ ¥ [ P* (1) exp(~dc(a —m)) dn da (2.44)

Since the expression in the right-hand side of Eq (2.44) is positive, integral f:" C*(a)da >0 , if

RC = ﬁcdc_l(exp( - dcac) - exp( - dcak)) <1, (245)
where R, is a basic reproduction number of a cancer cell sub-population. Restriction (2.45) guaran-

tees the positiveness of equilibrium ¢*(a) in Eq (2.43). Expressing f;kC*(a)da from Eq (2.44) and

substituting it together with Eq (2.37), in Eq (2.43), after integration and a little algebra we arrive to
the positive equilibrium of cancer cell’s density C*(a):

C*(@) = Ap(NDUND) (s + aV* — d) " (Ac exp(~d,a) — exp(—(ds + aVa)),  (2.46)
Ac = (1= R)™(1 - Bo(ds + aV?) " (exp(— (ds + aV)a,) — exp( — (ds + aV)ay))).  (2.47)

Integrating Eq (2.42) with respectto a form 0 to a,; we obtain the corresponding equilibrium
quantity of cancer cells:

N¢ = Ap(Np)u(Np)(ds + aV* —d ) (Acdz M (1 — exp(—d.ay))
—(ds + aV*) 7 (1 — exp(—(ds + aV*)ay))). (2.48)

The results obtained above are summarized in the Theorem 2.1.
Theorem 2.1. The system (2.1)—(2.5) possess a positive (endemic) equilibrium S*(a) =0, Ng >0,
I'(a@) =0, Nf >0, P*(a) =0, N;) >0, C*(a) =0, N:>0, V*> 0, if and only if there exists the real
positive root V* > 0 of transcendental equation R,(V*) =1 (Eq (2.23)) for which conditions (2.21),
(2.31), (2.36), (2.42), hold and the basic reproduction number of cancer cell population R, <1 (Eq
(2.45)). The equilibrium values of all parameters are determined through v*: S*(a) - Egs (2.25),
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(2.26), N; - Eq (2.33), I'(a) — Eqgs (2.29), (2.30), N; - Eq (2.20), P*(a) — Eqs (2.37), (2.38), N; -
(2.41), c*(a) —Eqgs (2.46), (2.47), N; - Eq (2.48).
Remark 2.1. Parameter R, (V*) is a decreasing function of v* > o:

ORy (V")
av*

=Pos,- (fam exp(—(ds + aV*a) da) = —af, f;maexp(—(ds +aV*a)da < 0. (2.49)
Hence, the necessary and sufficient condition of existence of a positive root V* > 0 of transcen-
dental equation R, (V*) =1 (Eq(2.23)) is the condition R, (0) > 1, that is the basic reproduction num-

ber of susceptible cell population R is bigger than one:

Rs = Ry (0) = fio [ exp(~dsa) da = fod; " (exp( — dsa,) — exp(— dsa)) > 1. (2.50)

2.3. Local asymptotic stability of the positive (endemic) equilibrium of autonomous system (2.1)—
(2.10)

Linearizing system (2.1)—(2.5) at the positive equilibrium $*(a) >0, N& >0, I*(a) =0, N; >0,
P*(a) =0, Ny >0, C*(a) =0, N;>0, V*>0, we arrive to the system for perturbations (a,t) =

Ys(a)exp(At) and &(t) = foad Ys(a,t)da = foad Ys(@)daexp(At) = & exp(At) for S$*(a) and N,
Yi(a,t) =P;(@)exp(At) and &(t) = foad Yi(a,t)da =& exp(At) for I'(a) and Ny, P,(at) =
Pp(a) exp(At) and &,(b) = foad Pp(a,t)da = &, exp(At) for P*(a) and Np, Y.(at) = (a) exp(At)

and &.(t) =f0“d1pc(a, t)da = &.exp(At) for C*(a) and N¢, ¥,(t) = ¢, exp(At) for v*:

D = —(A+ dg + aV " )s(a) — aS" (@i, (2.51)
P = — (A + d)i(@) + aVips(a) + aS* (@i, (2.52)
D = — @+ A (V)Y (@ + 59i(@) — TP (@, (2.53)
WD =~ + dope(@) + NPy (@) + HSE P (0)5,, (2:54)
—(2+ 22y 1 a4, (v) ), + ndig; = 0, (2.55)

QuNp) _
dNp (1+kN )2

where > 0. Equations (2.51)—(2.55) are completed by the boundary conditions:

¥s(0) = Bo [, ws(@da,  $i(0) = Bo [, " hi(@)da, (2.56)
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Yp(0) = By [, p(@da,  (0) = B [, * e(a)da (2.57)
System (2.51)—(2.57) is reduced to the system of integral equations:

s(@) = Bo f " s(@)daexp(~(A+ ds + aV*)a) — a, f ')
a, 0

x exp(—(A + ds + aV*)(a — 1)) dn, (2.58)
Vi@ =fo [ wi@daexp(-G+da) + | (aV ) +5 )
ar 0
x exp(—(A+ dy)(a—n))dn, (2.59)
am 5 a a N*
@ =F | “pp@daem(-a+dmina)+ [ (svim- 2 b sty
x exp(—(A + dy(N3))(a — 1)) dn, (2.60)
a a Iu(N;
ve@ =6 | bel@daenp(-(+doa) + [ (smnon + BT P
x exp(—(A+d.)(a—mn))dn. (2.61)

First, we analyse the existence of the real positive characteristic numbers A1 > 0 of the linear
system (2.51)—(2.57). Integrating both sides of Eq (2.58) with respectto a from a, to a,, Yyields:

¥s(@) = —,ar”'S" (@). (2.62)

Integrating Eq (2.62) with respectto a from 0 to a, we arrive to the linear homogeneous equa-
tion for the perturbations & and v,:

£ = —P,ad 1N, (2.63)

Integrating Eq (2.59) with respectto a from a, to a,,, and using Eqgs (2.23), (2.63), we arrive
to the equation:

[ ¥i(@yda = aNsAsBy (1 — aV* A ) (A +d; — ds — av*) Py, (2.64)

where A +d; —d;—aV* >0 for 2> 0 (see Eq (2.31)). We assume that 1 # aV*, because when 1 =
aV* function perturbations y, = 0 (Eq (2.64)), & =0 (Eq (2.63)) and we obtain the trivial solution.

Substituting faa’" Y;(a)da in Eq (2.59) after integration and a little algebra we arrive to the solution of

Eq (2.59):
Pi(a@) = a(l — aV* A DA+ d; — ds — aV*) " S* (@), (2.65)

Integrating Eq (2.65) with respect to a form 0 to a, we obtain the linear homogeneous equa-
tion for the perturbations ¢; and v,:
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&=al—aV' A ) (A+d; —d; —aVv*) N, (2.66)

Integrating Eq (2.60) with respect to a from a, to a,,, and using Egs (2.23), (2.37), (2.38),
(2.65), we arrive to the equation:

am _ - _
f Pp(@)da = ft (A + dy(Np) — dy — V) (6aNAs(A+d; — ds — aV™) ™
ar

x (1 - aV* 2 )y, — 20 4, (Np)g, ), (2.67)

where 1+d,(Np) —ds—aV*>0 for 2> 0 (see Egs (2.36), (2.42)). Substituting Eq (2.65) in Eq
(2.60), after integration and a little algebra we obtain the solution of Eq (2.60):

¥p(@) = (A +d,(Np) — ds —aV*) ™ (ba(r+d;—ds - av*) (1 —aV Ay,

— 208 (N3 45) ™ 4p (NG ) S” (@), (2.68)

Integrating Eq (2.68) with respectto a from 0 to a4, we arrive to the linear homogeneous equa-
tion for the perturbations ¢, and ,,:

~ ou(Np
((,1 +dy(Np) = ds —aV*)Ns ™" + ‘;SVP”) (N;As)-lAp(N;)> &
= Sa(A+d; —ds—aV*) (1 —aV A, (2.69)

Integrating Eq (2.61) with respect to a from a. to a,, and using Eqgs (2.23), (2.37), (2.68),
yields:

Xc(A) f;c “Pe(@)da = Ye(D)De(Dy + Ye(DE (D), (2.70)

Xc() = (1= B +d) (exp(~(A+d)ac) — exp(—(A + dc)ay)))

X ((A+d,)—ds—aV?), (2.71)

Ye(D) =1—Bo(A+do) " (exp(— (A +do)ac) —exp(— (A + do)ay)), (2.72)
Dc() = u(Np)NiAs(1 — aV* A D)Sa(A + d; — dg — aV*)_l, (2.73)
Ec(d) = (1= uVH) (A + dp(N7) — ds - aV*)_l)%lf’)AP(NP*). (2.74)
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We assume that X.(1) # 0, Y.(1) # 0 for 2 >0 because otherwise function perturbations v, =
0, &, =0 (Egs (2.69), (2.70)) and we obtain the trivial solution. Substituting Eqs (2.70)—(2.74) in Eq
(2.61), after integration we arrive to the solution of Eq (2.61):

Ye(@) = Ec(D)(BeBc(A) exp(—=(A + do)a) — (A + de —ds —aV) ™

x (exp(=(A +d.)a) — exp(— (ds + aV*)a)))&, + Dc(D)(BBc (D) exp(—(4 + dc)a)
—(A+d,(Np) —ds — aV*)_l(A +d.—ds—aV*) Y exp(—(A+ do)a) —exp( — (ds + aV*)a)) )y, (2.75)

where B.(1) = X~1(1)Y(1). Integrating Eq (2.75) with respect to a from 0 to a, we arrive to the
linear homogeneous equation for the perturbations ¢, ¢, and ,:

§e = EcDBBDA+d) (1 —exp(-(A +dp)ag)) — (A +de — ds —aV)™

X (A +d)™ (1= exp(=(A + d)ag)) — (ds + aV*) (1 — exp( — (ds + aV*)aa)))) $p

+Dc(D(BBc(DA+d) (1 — exp(—(A + do)ag)) — (A + dp(Np) —ds — aV*)_l
XA+d,—ds—aV) Y (A+d) (A —exp(—(A+d)ay)) — (dg + aV*)?
x (1 — exp(— (ds + aV*)ay))) ) . (2.76)

Substituting Eq (2.66) in Eq (2.55) we obtain the last equation of the system for v,,:

A+ Ay —nd;aNe(1 —aV* A (A + 4,) Dy, = 0. (2.77)
4y =2y L a,v), A, =d;—dy—aV”, (2.78)

where 4,4, A4, > 0 are auxiliary constants (see Egs (2.11), (2.31)). Equating to zero determinant of the
linear system (2.63), (2.66), (2.69), (2.76), (2.77) we arrive to the characteristic equation for A:

~ ou(Np
((/1 +dy(Np) —dg —aV? )N~ + # (N;AS)_lAP(NP*)>
P
X (A+ A —nd;aNe(1 —aV* A H(A+4,)™Y) = 0. (2.79)

uNp) _ 8

vy = ey > O and con-

We analyse existence of the real positive roots of Eq (2.79). Since

dition (2.42) holds, expression in the first briskets is always positive for 1> 0. Hence, we analyse
existence of the positive roots 1 >0 (1# aV*) of equation obtained by equating to zero the second
briskets in Eq (2.79) transformed to the form:

Y1) = 7,0, (2.80)
Vi) = A2+ A+ A,), (2.81)
¥,(A) = ndaN§ (A — av*). (2.82)
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Cubic polynomial y,(1) has three zeroes: A, =0, A, =—-4,<0, 13=-4,<0,and y;(1) >
for 1 - . Obviously that a cubic function y;(1) and a linear increasing function y,(1) intersect in

domain 1> 0 if there exists such point 1,> 0, solution of equation %=% at which

y1(Ao) < y2(4,). Parameter 1, > 0 is given:

Ao = (((Ad + 4,)? — 3(A44, — nd;aN))™" — (A4 + Av)) /3, (2.83)
if 4,4, = (% v+ dv(V*)) (d; — dg — aV*) < nd;aNg. (2.84)

Substituting Eq (2.33) in Eq (2.84) yields:

3y (V") 1 -1
TV < AV, (285)
Since 2% < o and 4> o, inequality (2.85) does not hold. It means that A, > 0 - a real posi-
ov
tive root of equation 2290 = 22:%0) ‘3¢ which y,(1,) < y,(4,), does not exist, and characteristic equa-

A ar '’

tion (2.77) does not have a real positive root 1* > 0.

Second, we analyse existence of the trivial characteristic number 2 =0 of linear system (2.55),
(2.58)—(2.57). Substituting 2 =0 in Eq (2.58), integrating them with respect to a from a, to a,,
and excluding from obtained expression Eq (2.23) yields:

apyBo [o [, S* (1) exp(=(ds + aV*)(a— 1)) dida = 0. (2.86)

In this case y, = 0 and we only obtain a trivial solution of system that is the characteristic num-
ber 2 cannot take the trivial value.

Finally, if condition (2.84) does not hold and Eq (2.79) does not have a real positive root, we
analyse existence of the complex characteristic roots with nonnegative real part. We seek the pure
imaginary root 1 =iw (wWhere w = 0 is unknown real parameter) for which there exists the non-triv-
ial solution of system (2.51)—(2.57). Substituting 1 = iw in Egs (2.51)—(2.55) and separating imagi-
nary parts of equations yields:

wips(a) =0, wp;(a) =0, wp,(a) =0, wp.(a) =0, w, =0. (2.87)

From Eq (2.87) it follows that the nontrivial solution of system (2.51)—(2.57) exists if and only if
w = 0, that is characteristic Eq (2.79) does not have complex roots with non-negative real part. The
results obtained above are summarized in the Theorem 2.2.
Theorem 2.2. Let conditions of Theorem 2.1 hold, the positive equilibrium of system (2.1)—(2.10)
S$*(@)=0, Ny >0, ["(a)=0, Nf >0, P*(a) =0, N;) >0, C*(a) =0, N:>0, V*>0 is always lo-
cally asymptotically stable.
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2.4. Numerical experiments

The theoretical results obtained in Theorems 2.1 and 2.2 are illustrated by the numerical experi-
ments. For simulation of the autonomous model (2.1-2.10), we use the explicit formulae of method of
characteristics from [25]. The set of coefficients and initial values of autonomous system (2.1-2.10)
used in simulations is given in Appendix A.

First, using the bisection method we find numerically the positive real root of Eq (2.23) V* which
satisfies conditions of Theorem 2.1, and compute the positive equilibrium - N& (2.33), S*(a) (2.25),
N; (2.20), I*(a) (2.29), Ny (2.41), P*(a) (2.37), N} (2.48), C*(a) (2.46).Our goal here is to study
the dynamical regimes of cell and HPV population in the vicinity of the positive equilibria.

Experiment I. Case (i) Rs <1, R; < 1. In this case Eq (2.23) does not have the positive root
V* >0 (see Remark 2.1 to Theorem 2.1). The quantity of susceptible, infected, precancerous, cancer
cells and HPV quantity asymptotically evolve to the trivial equilibrium. Such dynamical regime is not
interesting and valuable in practice and does not deserve our attention.

Experiment Il. Case (ii) Rs > 1, R; <1 (non-oscillating dynamical regimes). If coefficients of
the system (2.1)—(2.10) satisfy conditions (2.21), (2.31), (2.36), (2.42) of Theorem 2.1 the dynamical
regimes of cell and virus populations correspond to the stable asymptotic behavior in the vicinity of
nontrivial equilibrium. We observe two kinds of population behavior — non-oscillating dynamics (case
(ii)) and oscillating dynamics (case (iii)).

The results of numerical experiments exhibited the case (ii) of dynamical regimes are shown in
the phase diagrams in Figure la (susceptible cell population), Figure 1b (infected cell population),
Figure 1c (precancerous cell population), Figure 1d (cancer cell population), Figure 1e (HPV popula-

dar(t)

tion). The graphs in all figures are given in phase coordinates Y'(t) = —=

and Y(t), where Y(t) isa

quantity of corresponding cells or HPV. The arrow on the graphs shows the direction of increasing of
time t.

Since in case (ii) the conditions of Theorem 2.1 hold, there exists the positive root of Eq (2.23)
V* > 0 and the positive equilibrium of system (2.1)—(2.10). By virtue of Theorem 2.2 this equilibrium
is always locally asymptotically stable. All graphs in Figures 1a — 1e illustrate the asymptotic conver-
gence of all cells and HPV quantities to the corresponding positive equilibrium. Since we do not ob-
serve the cycles on the phase diagrams, solution converges to the positive equilibrium without oscil-
lations with a little wiggle.

Experiment Il. Case (iii) Rg > 1, R, <1 (oscillating dynamical regimes). In this experiment co-
efficients of the system (2.1)—(2.10) satisfy conditions (2.21), (2.31), (2.36), (2.42) of Theorem 2.1.
We continue to study the particularities of asymptotic behavior of solution in the vicinity of positive
equilibrium increasing value of the birth rate of susceptible, infected and precancerous cells and HPV
death rate (see Appendix A). The results of numerical experiments exhibited case (iii) of dynamical
regimes are shown in the phase diagrams in Figure 2a (susceptible cell population), Figure 2b (infected
cell population), Figure 2c (precancerous cell population), Figure 2d (cancer cell population), Figure
2e (HPV population).
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Figure 1. (a) Dependence of Ni(t) from Ng(t) for non-oscillating dynamics, case (ii). (b)
Dependence of Nj(t) from N;(t) for non-oscillating dynamics, case (ii). (c) Dependence
of Np(t) from Np(t) for non-oscillating dynamics, case (ii). (d) Dependence of N¢(t)
from N¢(t) for non-oscillating dynamics, case (ii). () Dependence of N (¢t) from Ny (t)
for non-oscillating dynamics, case (ii).
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Figure 2. (a) Dependence of N/(t) from N(t) for oscillating dynamics, case (iii). (b)
Dependence of N/(t) from N, (t) for oscillating dynamics, case (iii). (¢) Dependence of
Ni(t) from Np(t) for oscillating dynamics, case (iii). (d) Dependence of N/ (t) from
N (t) for oscillating dynamics, case (iii). (¢) Dependence of Ny (t) from N, (t) for oscil-
lating dynamics, case (iii).

Since in case (iii) conditions (2.21), (2.31), (2.36), (2.42) of Theorem 2.1 hold, there exists the

positive equilibrium of system (2.1)—-(2.10). Graphs in Figure 2a—e illustrate the local asymptotic sta-
bility of all trajectories in the vicinity of positive equilibrium and exhibit the convergence of all cells
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and HPV quantities to the corresponding positive equilibrium with oscillations of large magnitude.
The magnitude of these oscillations can be estimated by the dimension of cycles on the phase diagrams.

Experiment I1. Case (iv) Rs > 1, R, <1 (unstable regime). In this experiment coefficients of the
system (2.1)—(2.10) do not satisfy conditions (2.36), (2.42) of Theorem 2.1 (see Appendix A). The
results of numerical experiments exhibited case (iv) of dynamical regimes are shown in the phase
diagrams in Figure 3a (susceptible cell population), Figure 3b (infected cell population), Figure 3c
(precancerous cell population), Figure 3d (cancer cell population), Figure 3e (HPV population).

Since in case (iv) conditions (2.36), (2.42) of Theorem 2.1 do not hold, the positive equilibrium
of system (2.1)—(2.10) does not exist. Graphs in Figures 3a, 3b, 3e show the oscillating dynamics of
the quantity of susceptible, infected cell subpopulations and HPV subpopulation with following their
convergence to some stationary values, like in the previous case (iii).

Since Nj(t) >0 in Figure 3c and N/(t) > 0 in Figure3d the graphs in these figures show the
wiggle (non-oscillating) dynamics of the quantity of precancerous and cancer cell subpopulations with
their subsequent unlimited exponential growth. The section of straight increasing line with arrow in
phase diagram in Figure 3c, d corresponds to the exponentially increasing function on the traditional
plane with coordinates Np(t) and t, N.(t) and ¢, respectively. In spite of the small basic reproduc-
tion number R; = 0.59 the quantity of cancer cell population evolves to infinity. Such dynamics is
induced by the unlimited growth of precancerous cell subpopulation which plays the role of donor for
cancer cell subpopulation. From the biological point of view this dynamical regime corresponds to the
growth of dysplasia and formation of metastasis in organism.

Experiment I11. Case (v) Rs > 1, R. = 1. In the last group of experiments, we study the behavior
of solution when the basic reproduction number of cancer cell population R, <1 and R, > 1. We
consider the same set of the coefficients and constants as in the Experiment 11 but take the bigger
values of birth rates of cancer cells g. (Appendix A) that corresponds to the bigger value of R..

In the first simulation R; = 0,99993, and the set of all coefficients and constants (except g.) is
the same as in case (iii). Since Ry > 1, R, < 1, and coefficients of the system (2.1)—(2.10) satisfy con-
ditions (2.21), (2.31), (2.36), (2.42) of Theorem 2.1, there exists the positive equilibrium of system
(2.1)—(2.10). In numerical experiment we obtain the same type of oscillating dynamical regime as in
case (iii) in the vicinity of positive equilibrium of susceptible, infected, precancerous cell populations
and HPV population shown in Figure 2a—c, e.

The dynamical regime of cancer cell population in this simulation differs essentially from the one
obtained in case (iii). The results of simulation are shown in the phase diagram in Figure 4a. Since
N/(t) > 0 in Figure 4a, we obtain the wiggle dynamical regime of the cancer cell quantity with subse-
quent asymptotic exponential convergence of it to the positive equilibrium, instead of oscillating dy-
namics shown in Figure 2d.

In the second simulation R > 1, R, = 1.00008, and the set of all coefficients and constants of the
system (2.1)—(2.10) satisfy conditions (2.21), (2.31), (2.36), (2.42) of Theorem 2.1 and is the same
(except B.) as in case (iii) (see Appendix A). Since R > 1, conditions of Theorem 2.1 do not hold,
and the positive equilibrium of system (2.1)—(2.10) does not exist. In this simulation we obtain the
same type of oscillating dynamical regime as in case (iii) in the vicinity of the positive equilibrium of
susceptible, infected, precancerous cell subpopulations and HPV subpopulation shown in Figure 2a—
c, e. The dynamical regime of the cancer cell subpopulation obtained in this experiment differs from
the one obtained in case (iii) and is the same as in simulation of case (iv) (for R; < 1). The results of
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simulation are shown in the phase diagram in Figure 4b. Since N.(t) > 0, we observe the wiggle dy-
namical regime of the cancer cell subpopulation quantity (without oscillation) with subsequent unlim-
ited exponential growth. Thus, the absence of the positive equilibrium in this case means the unstable

dynamical regime of the system (2.1)—(2.10).
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Figure 3. (a) Dependence of N;(t) from Ng(t) for oscillating dynamics, case (iv). (b)
Dependence of N/(t) from N, (t) for oscillating dynamics, case (iv). (¢c) Dependence of
Nj(t) from Np(t) for unstable dynamics, case (iii). (d) Dependence of N/(t) from N.(t)
for unstable dynamics, case (iv). (e) Dependence of Ny (t) from N, (¢t) for oscillating dy-

namics, case (iv).
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Figure 4. (a) Dependence of N/(t) from N.(t) for wiggle dynamics, R; = 0.99995, case
(v). (b) Dependence of N/(t) from N.(t) for wiggle dynamics, R. = 1.00008, case (V).

3. Discussion and conclusions

In this paper we study an autonomous epidemic model of age-structured population dynamics of
susceptible, infected, precancerous and cancer cells and unstructured model of population dynamics
of human papilloma virus (HPV) (SIPCV epidemic model). The model considers the problem of HPV
propagation and cancer disease dynamics on the tissue level and includes the competitive system of
initial-boundary value problems for semi-linear transport equations with non-local boundary condi-
tions (renewal equations) and initial problem for nonlinear ODE. We carried out the stability analysis
of this autonomous system, obtained the conditions of existence of the positive (endemic) equilibrium
and proved that this equilibrium is always locally asymptotically stable whenever it exists. Theoretical
analysis revealed two key parameters important for the study of cervical cancer disease — the basic
reproduction numbers of susceptible cell population Ry and cancer cell population R.. The necessary
and sufficient condition of existence of the positive equilibrium of system, as it was expected, imposes
the restriction on the basic reproduction number of susceptible cell population: Rg > 1, that is the
healthy biological tissue must be growing for providing the sufficient environment for the HPV repli-
cation and propagation, and development of the cancer tissue. The particularity of the semi-linear
transport equation of cancer cell population dynamics is that it does not impact on the dynamics of the
other cell and HPV sub-populations since all other equations of the system do not depend from the
cancer cell density or cancer cell quantity. This property of model is a consequence of our hypothesizes
that immune system of organism is tolerant with respect to its own cervical cancer cells and cancer
cells do not apply pressure on the tissues of organism and have no effect on the proliferation and
mortality of the other cells and replication of HPV. Thus, when the positive equilibrium of system
exists and the cancer cell population is not empty, their farther dynamics depends only on the basic
reproduction number R.. If R, < 1 cancer cell population evolve eventually to the stationary state that
means the localization of tumor tissue, and if R, > 1 cancer cell population grows infinitely that means
the formation of metastasis in organism. The unlimited growth of cancer cell population can also ap-
pear even for R; < 1, when the positive equilibrium of system does not exist, but susceptible, infected
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cell subpopulations and HPV subpopulation eventually evolve to some stationary values and precan-
cerous cell subpopulation (dysplasia) grows infinitely. In this case precancerous cells induce the cancer
cell outbreak and subpopulation of cancer cells grows infinitely.

Numerical experiments illustrate and confirm the theoretical results obtained in paper. When the
basic reproduction number of susceptible cell subpopulation R; < 1 (case (i)) the positive equilibrium
of system does not exist, and simulation showed that all cell and HPV subpopulations eventually
evolve to zero. This is a trivial solution of the model which is not valuable in epidemiological problem.
When Rg > 1, R, <1, and all coefficients and constants of system (2.1)—(2.10) satisfy conditions
(2.21), (2.31), (2.36), (2.42) of Theorem 2.1, the positive equilibrium of system exists. Simulation
showed that in this case there are three types of dynamical asymptotically stable regimes: non-oscil-
lating convergence of solution to the positive equilibrium (case (ii)), oscillating convergence of solu-
tion to the positive equilibrium (case (iii)), wiggle dynamics with subsequent exponential convergence
of solution to the positive equilibrium (first simulation in case (v), R, = 0.99995). The common feature
of all these dynamical regimes is that cancer cell population cannot grow infinitely, their dynamics is
related to the dynamics of all other cells of tissue and the quantity of cancer cells eventually evolves
to the stationary state. Results of the simulations in these cases confirm the theoretical conclusion
about a localization of cancer tissue. When Ry > 1, R, < 1, and coefficients and constants of system
(2.1)—(2.10) do not satisfy condition (2.42) of Theorem 2.1, the positive equilibrium of system does
not exist. Simulation showed that in this case the quantity of susceptible, infected cell subpopulations
and HPV subpopulation oscillated and eventually evolved to some stationary values and the quantity
of precancerous cell subpopulation (dysplasia) showed the wiggle dynamics with subsequent unlimited
growth. In spite of the small value of the basic reproduction number R, < 1, cancer cell subpopulation
also grew infinitely together with precancerous cell subpopulation that means the growth of dysplasia
and cancer metastasis in organism.

And the last, but not least case when Rg > 1, R, > 1, and all coefficients and constants of the
system satisfy the conditions of Theorem 2.1, except R.. In this case (the second simulation in case
(iv), R; = 1.00008), like in case (i), system does not have the positive equilibrium, but the dynamical
regime of population is significantly different from case (i). The quantities of susceptible, infected,
precancerous cells and HPV converge to the stationary states, except the cancer cell quantity. Cancer
cell subpopulation exhibits the wiggle dynamics (without oscillation) with consequence unlimited ex-
ponential growth, that is the dynamics of cancer cells is not stable and leads to the formation of me-
tastases in organism. Thus, the results of all numerical experiments confirm the conclusions of theo-
retical analysis.

Overall, the main result of this paper - development of the SIPCV age-structured epidemic model
and stability analysis of autonomous system of this model, provide the theoretical instrument for the
qualitative analysis of dynamical regimes of susceptible, infected, precancerous, cancerous cells and
HPV populations that help us better understand the features of HPV infectious and cancer disease.
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Appendix A. The set of coefficients and constants in numerical experiments

The set of constants used in numerical experiments is given in Table Al. The coefficients and

initial values of the system used in all numerical experiments are:

p(a) =2exp(—a), Vo =0, d,(V(t)) =dyy1+5V(t).
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Table Al. The set of constants.

a, am a; a ag ds d; d. 6 a 1) n A

025 09 01 04 10 01 011 005 002 01 015 0.01 0.001

In the different numerical experiments, in addition to the constants from the Table A1, we use the
coefficients given in the Table A2.

Table A2. The set of coefficients in equations.

Bo Be do dp k
Case (i) 0.5 2.0 0.02 0.30 0.2
Case (ii) 1.638 2.0 0.02 0.30 0.2
Case (iii) 1.680 2.0 0.10 0.30 0.2
Case (iv) 1.680 2.0 0.10 0.11 0.5
Case (v), first simulation 1.680 3.3750 0.10 0.30 0.2
Case (Vv), second simulation 1.680 3.3755 0.10 0.30 0.2
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