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Abstract: The pandemic of SARS-CoV-2 virus remains a pressing issue with unpredictable
characteristics which spread worldwide through human interactions. The current study is focusing
on the investigation and analysis of a fractional-order epidemic model that discusses the temporal
dynamics of the SARS-CoV-2 virus in a community. It is well known that symptomatic and
asymptomatic individuals have a major effect on the dynamics of the SARS-CoV-2 virus therefore,
we divide the total population into susceptible, asymptomatic, symptomatic, and recovered groups of
the population. Further, we assume that the vaccine confers permanent immunity because multiple
vaccinations have commenced across the globe. The new fractional-order model for the transmission
dynamics of SARS-CoV-2 virus is formulated via the Caputo-Fabrizio fractional-order approach with
the maintenance of dimension during the process of fractionalization. The theory of fixed point will
be used to show that the proposed model possesses a unique solution whereas the well-posedness
(bounded-ness and positivity) of the fractional-order model solutions are discussed. The steady states
of the model are analyzed and the sensitivity analysis of the basic reproductive number is explored.
Moreover to parameterize the model a real data of SARS-CoV-2 virus reported in the Sultanate of
Oman from January 1st, 2021 to May 23rd, 2021 are used. We then perform the large scale numerical
findings to show the validity of the analytical work.
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1. Introduction

Infectious diseases are mainly caused by four microorganisms: bacteria, parasites, viruses, and
fungi; they can be transmitted in different ways and can cause approximately fifty thousand deaths
daily. In the past various epidemics worldwide resulted in millions of deaths. Very recently, a severe
outbreak of respiratory illness was begun at the end of 2019 in China, Wuhan; this novel corona-virus
was later called named SARS-CoV-2 (COVID-19). It was first detected in January, 2020. Note that
the first transmission source of the virus was an animal; however, it rapidly spread through human
interaction and such that , by 5th March 2021, a total of 116,216,580 cases were globally reported
with 2,581,649 deaths. In every disease controlling, the control scenario, vaccination, etc., play a key
role. Vaccines are important weapons in the fight against SARS-CoV-2, and the fact that so many
vaccines are being developed and are proving to be effective is extremely promising. Due to the
hard work of researchers and scientists vaccines that can save lives and put an end to the pandemic
are now available. According to World Health Organization (WHO), safe and reliable vaccinations
will be a game-changer. However, the need to wear masks, maintaining social distancing, and avoiding
crowds still necessary because being vaccinated does not mean that we can ignore caution and endanger
ourselves and others, especially since the extent to which vaccines can protect against not only the
disease but also infection and transmission is still unknown.

Mathematical models play an important role in exploring the transmission dynamics of disease and
predicting its future spread. Based on these models effective control strategies have been provided for
compiling useful guidelines for the health officials and taking various steps towards disease control
and eradication. Fractional calculus is a rapidly growing area in the field of mathematics that is used
to catch the inherited axioms and memory of different natural and physical phenomena that occur
in natural and physical science, technology, and engineering. Numerous classical epidemiological
models have proved to be less accurate at predicting the dynamics of a system for the future due
to their local nature. On the other hand, models with fractional-order are very usefully subjected to
allocating and detaining the missing detail in models of classical case. More specifically, the classical
derivative (integer-order) does not explore the dynamics between two distinct points. Various concepts
have been developed for overcoming the limitations in case of the classical differentiation (see for
more detail [1–4]). Moreover, numerous of researchers used different classical as well as fractional
order epidemic models to forecast the long-term behaviors of SARS-CoV-virus and other diseases,
and as well suggest some control measures. Particularly the stability analysis of various integer order
epidemic models have been reported by different authors, (see for detail [5–10]). Due to the developing
of fractional calculus many authors formulated fractional order epidemiological models using various
fractional operators, e.g., Atangana proposed a mathematical model by using ABC-fractional operator
[11]. Another study has been reported to investigate the transmission dynamics of novel corona virus
disease [12]. Similarly the dynamics of novel corona virus with control analysis are discussed in
[13–16]. In which comparison of the fractional and integer order, epidemiological models show that
generally the integer-order models do not explore the dynamics more accurately.

The literature reveals that different dynamical systems are analyzed by different fractional
derivative e.g., Riemann and Liouville, Hadamard and Caputo, etc., [17–20]. Many numerical and
iterative approaches have been developed to solve the Caputo fractional order epidemic
models [21–24], while the complications arise due to a singular kernel. Therefore, a novel idea has
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been reported by Caputo and Fabrizio to the fractional-order derivative based upon non-singular
kernel subject to various important results for the Caputo-Fabrizio fractional integral [25].
Consequently, this operator has a lot of applications in material and thermal sciences [26–28]. Further,
the novel idea of fractional Caputo-Fabrizio derivative has been utilized frequently in physical and
biological sciences to describe the temporal dynamics of communicable diseases [29–35].

The current pandemic of SARS-CoV-2 and its vaccination remains a challenging issue and
therefore requires significant attention. Very few studies have examined to the best of our knowledge
that the novel dynamics of SARS-CoV-2 under the effect of vaccination, whereas few of them are the
combination of statistical and computational models [36–42]. Very recently a mathematical model
has been reported by Rahman et al., to study the dynamics of corona-virus transmission using the
aforesaid operator [43]. However many characteristics that can influence the transmission of
SARC-CoV-2 have been ignored. Particularly the impact of social behavior, mobility, symptomatic
and asymptomatic classification, and vaccination, etc., are not collectively proposed which can
influence the dynamics of the human population in ways that are not fully understood [44–47].
Motivated by the fact that fractional-order epidemiological models are more appropriate than the
classical order for describing the real-world problem in a true sense as well as to fill the gap in the
above-reported study, we propose a model to investigate the dynamics of SARS-COV-2 with
vaccination in the frame of Caputo-Fabrizio-Caputo fractional operator by taking into account the
vaccination of the susceptible population. We also classify the infected compartment into two groups
of symptomatic and asymptomatic according to the SARS-CoV-2 characteristics.

We formulate the new fractional-order epidemiological model by dividing the total population into
various population groups of susceptible, asymptomatic, symptomatic, and recovered individuals.
Because the asymptomatic and symptomatic population take an important part in the spreading of
SARS-CoV-2 virus transmission. Further, we assume that the permanent immunity of the susceptible
group by getting vaccinated. We show that the solution of the proposed fractional-order
epidemiological model exists and unique with the utilization of the theory of fixed point. We also
prove that positivity and boundedness make the problem biologically feasible. The steady-state of the
model will be calculated to discuss the stability analysis. We find the basic reproductive number and
discuss the sensitivity analysis to find the role of the epidemic parameter in the spreading of the
disease. We also use the Ordinary Least Square (OLS) method to parameterize the model and
estimate the value of model parameters from the real data of SARS-CoV-2 virus reported in Oman.
Finally, we present some graphical representations to support our analytical work and to show the
effectiveness of the fractional-order epidemiological model.

The organization of the manuscript as follows: In Section 2 we present some basic definitions that
will be used in our analysis, while Section 3 is devoted to the formulation of the model. The detailed
analysis of the proposed fractional-order epidemiological model in terms of existence and uniqueness,
positivity, and bounded-ness are discussed in Section 4. In Section 5, we perform the stability analysis
and discuss the sensitivity of the basic reproductive number. All the theoretical results are supported
with numerical simulation in Section 6 and concluding our work in the last Section.
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2. Preliminaries

We give some fundamental concepts that will be helpful to use in the upcoming sections. Let φ(t)
be a function and φ ∈ H1(0,T ),T > 0, assume that α > 0 and n − 1 < α < n, n ∈ N, then the fractional
order derivative in Caputo and Caputo-Fabrizio-Caputo sense are respectively defined as:

CDα
0,t{φ(t)} =

1
Γ(n − α)

∫ t

0
(t − x)n−α−1{φn(x)}dx, (2.1)

and
CFCDα

0,t{φ(t)} =
M(α)

(1 − α)

∫ t

0
φ
′

(x) exp
(
α(x − t)
1 − α

)
dx, (2.2)

where C and CFC stands for Caputo and Caputo-Fabrizio respectively, while t > 0 and M(α) represents
the normilization function, such that M(1) = 0 = M(0). We assume that 0 < α < 1 and φ(t), varies
with t, then the Riemann–Liouville fractional integral of order α is determined by

RLJα0,t{φ(t)} =
1

Γ(α)

∫ t

0
(t − x)α−1φ(x)dx, (2.3)

while the Caputo-Fabrizio-Caputo (CFC) integral having order α takes the form

CFC Jα0,t{φ(t)} =
2(1 − α)φ(t)
(2 − α)M(α)

+
2α

(2 − α)M(α)

∫ t

0
φ(x)dx, (2.4)

where t ≥ 0.

3. Model formulation

We explore a model using the Caputo-Fabrizio derivative to discuss the SARS-CoV-2 dynamics
by categorizing the entire population into susceptible, symptomatic, asymptomatic and recovered
groups. These population groups are symbolized respectively with S , A, C, and R. Moreover, rather
than direct representation, we must place some constraints by making the following assumptions:

a. The constants, parameters, and variables are taken to be non-negative for the proposed problem.
b. The total population is subdivided into four groups and represented by N(t).
c. The infected groups are assumed to be asymptomatic and symptomatic: as asymptomatic

individuals become the major source of disease transmission.
d. Vaccination of susceptible individuals will result in permanent immunity.
e. The transmission of the disease is taken to be probability-based i.e., if p is the probability that the

interaction of susceptible with infected may lead to the asymptomatic class, then (1 − p) portion
of the infected individuals automatically may go to the symptomatic class.

f. It is also noted that some of the individuals in case of SARS-CoV-virus got recovered without
showing any symptoms while some may produce complications and causes the symptom of the
disease, therefore this has been also proposed.
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Based on these assumptions and the disease characteristics, we suggest the below dynamics for the
fractional-order epidemic model of SARS-CoV-2 as:


Ṡ (t) = Π − βA(t)S (t) − βγC(t)S (t) − (ν + µ0)S (t),
Ȧ(t) = p {βA(t)S (t) + βγC(t)S (t)} − (µ0 + µ1 + γ1)A(t),
Ċ(t) = (1 − p) {βA(t)S (t) + βγC(t)S (t)} + qγ1A(t) − (µ0 + µ2 + γ2)C(t),
Ṙ(t) = γ1(1 − q)A(t) + γ2C(t) + νS (t) − µ0R(t).

(3.1)

here Π is the newborn rate and the transmission rate is β for the disease. γ is the reduced transmission
rate, and ν is the vaccination rate of the susceptible group. The total natural and disease-related death
rates are denoted by µ0, µ1, and µ2 respectively. Similarly, γ2 and γ1 are the recovery rates for the
asymptomatic and symptomatic groups, respectively. Moreover, p represents the probability of the
asymptomatic individuals and q is the probability of these people that recovers directly in the
symptomatic stage. We assume some substitutions for the shake of simplicity i.e., ρ1 = ν + µ0,
ρ2 = µ0 + µ1 + γ1 and ρ3 = µ0 + µ2 + γ2.

We draw up the fractional-order version of the proposed model as reported by Eq (3.1) in the
development of fractional calculus using the Caputo-Fabrizio-Caputo (CFC) operator with the
maintenance of dimension for each differential equations as given:

CFCDα
0,t(S (t)) = Πα − βαA(t)S (t) − γαβαC(t)S (t) − ρα1S (t),

CFCDα
0,t(A(t)) =

(
βαA(t)S (t) + γαβαC(t)S (t)

)
p − ρα2 A(t),

CFCDα
0,t(C(t)) =

(
βαA(t)S (t) + βαγαC(t)S (t)

)
(1 − p) + qγα1 A(t) − ρα3C(t),

CFCDα
0,t(R(t)) = (1 − q)γα1 A(t) + γα2C(t) + ναS (t) − µα0R(t),

(3.2)

where α is the fractional order parameter.

4. Existence and uniqueness

In this section, we will show that the solution of the fractional-order model reported by Eq (3.2) by
analyzing the fixed point theory. We will also prove that the uniqueness of the solution. For this, first
the proposed fractional order system can be transformed into an associated integral equation form as:

S (t) − S (0) =CFC Jα0,t
{
Πα − βαA(t)S (t) − γαβαC(t)S (t) − ρα1S (t)

}
,

A(t) − A(0) =CFC Jα0,t
{(
βαA(t)S (t) + γαβαC(t)S (t)

)
p − ρα2 A(t)

}
,

C(t) −C(0) =CFC Jα0,t
{(
βαA(t)S (t) + βαγαC(t)S (t)

)
(1 − p) + qγα1 A(t) − ρα3C(t)

}
,

R(t) − R(0) =CFC Jα0,t
{
(1 − q)γα1 A(t) + γα2C(t) + ναS (t) − µα0R(t)

}
.
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Upon the application of Caputo-Fabrizio-Caputo fractional order integration, one may obtain

S (t) − S (0) =
2(1 − α)

(2 − α)M(α)
{
Πα − βαA(t)S (t) − γαβαC(t)S (t) − ρα1S (t)

}
+

2α
(2 − α)M(α)

∫ t

0

{
Πα − βαA(x)S (x) − γαβαC(x)S (x) − ρα1S (x)

}
dx,

A(t) − A(0) =
2(1 − α)

(2 − α)M(α)
{
p
(
βαA(t)S (t) + γαβαC(t)S (t)

)
− ρα2 A(t)

}
+

2α
(2 − α)M(α)

∫ t

0

{
p
(
βαA(x)S (x) + γαβαS (x)C(x)

)
− ρα2 A(x)

}
dx,

C(t) −C(0) =
2(1 − α)

(2 − α)M(α)
{
(1 − p)

(
βαA(t)S (t) + βαγαC(t)S (t)

)
+ qγα1 A(t) − ρα3C(t)

}
+

2α
(2 − α)M(α)

∫ t

0

{
(1 − p)

(
βαA(x)S (x) + βαγαC(x)S (x)

)
+ qγα1 A(x) − ρα3C(x)

}
dx,

R(t) − R(0) =
2(1 − α)

(2 − α)M(α)
{
(1 − q)γα1 A(t) + γα2C(t) + ναS (t) − µα0R(t)

}
+

2α
M(α)(2 − α)

∫ t

0

{
(1 − q)γα1 A(x) + γα2C(x) + ναS (x) − µα0R(x)

}
dx.

We assume kernels as determined by

K1(S (t), t) = Πα − βαS (t)A(t) − γαβαC(t)S (t) − ρα1S (t),
K2(A(t), t) = p

(
βαA(t)S (t) + γαβαC(t)S (t)

)
− ρα2 A(t),

K3(C(t), t) =
(
βαA(x)S (x) + βαγαC(t)S (t)

)
(1 − p) + qγα1 A(t) − ρα3C(t),

K4(R(t), t) = γα1 (1 − q)A(t) + γα2C(t) + ναS (t) − µα0R(t).

(4.1)

Theorem 4.1. The kernels K1, K2, K3 and K4 satisfies the Lipschitz axioms.

Proof. Let us assume that S and S 1, A and A1, C and C1, R and R1 are respectively the two functions
for the above kernels K1, K2, K3 and K4, so we establish the following system

K1(S (t), t) − K1(S 1(t), t) = Πα − (βαA(t) + γαβαC(t))(S (t) − S 1(t)) − ρα1 (S (t) − S 1(t)),
K2(A(t), t) − K2(A1(t), t) = p

(
βα(A(t) − A1(t))S (t) + γαβαC(t)S (t)

)
− ρα2 (A(t) − A1(t)),

K3(C(t), t) − K3(C1(t), t) = (1 − p)
(
βαA(x)S (x) + βαγα(C(t) −C1(t))S (t)

)
+ qγα1 A(t)

− ρα3 (C(t) −C1(t)),
K4(R(t), t) − K4(R1(t), t) = (1 − q)γα1 A(t) + γα2C(t) + ναS (t) − µα0 (R(t) − R1(t)).

With the employment of Cauchy’s inequality to the above system, one may obtain

‖K1(S (t), t) − K1(S 1(t), t)‖ ≤ ‖Πα − (βαA(t) + γαβαC(t))(S (t) − S 1(t)) − ρα1 (S (t) − S 1(t))‖,
‖K2(A(t), t) − K2(A1(t), t)‖ ≤ ‖p

(
βα(A(t) − A1(t))S (t) + γαβαC(t)S (t)

)
− ρα2 (A(t) − A1(t))‖,

‖K3(C(t), t) − K3(C1(t), t)‖ ≤ ‖(1 − p)
(
βαA(x)S (x) + βαγα(C(t) −C1(t))S (t)

)
+ qγα1 A(t)

− ρα3 (C(t) −C1(t))‖,
‖K4(R(t), t) − K4(R1(t), t)‖ ≤ ‖(1 − q)γα1 A(t) + γα2C(t) + ναS (t) − µα0 (R(t) − R1(t))‖.
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Recursively one may obtain

S (t) =
2(1 − α)K1(S n−1(t), t)

(2 − α)M(α)
+

2α
(2 − α)M(α)

∫ t

0
K1(S n−1(x), x)dx,

A(t) =
2(1 − α)K2(An−1(t), t)

(2 − α)M(α)
+

2α
(2 − α)M(α)

∫ t

0
K2(An−1(x), x)dx,

C(t) =
2(1 − α)K3(Cn−1(t), t)

(2 − α)M(α)
+

2α
(2 − α)M(α)

∫ t

0
K3(Cn−1(x), x)dx,

R(t) =
2(1 − α)K4(Rn−1(t), t)

(2 − α)M(α)
+

2α
M(α)(2 − α)

∫ t

0
K4(Rn−1(x), x)dx.

(4.2)

The application of norm with the concept of majorizing, the difference between successive terms
implies

‖Wn(t)‖ = ‖S n(t) − S 1,n−1(t)‖ ≤
2(1 − α)

(2 − α)M(α)
‖K1(S n−1(t), t) − K1(S 1,n−2(t), t)‖

+
2α

(2 − α)M(α)

∥∥∥∥∥∥
∫ t

0
[K1(S n−1(x), x) − K1(S 1,n−2(x), x)]dx

∥∥∥∥∥∥ ,
‖Xn(t)‖ = ‖An(t) − A1,n−1(t)‖ ≤

2(1 − α)
(2 − α)M(α)

‖K2(An−1(t), t) − K1(A1,n−2(t), t)‖

+
2α

(2 − α)M(α)

∥∥∥∥∥∥
∫ t

0
[K1(An−1(x), x) − K1(A1,n−2(x), x)]dx

∥∥∥∥∥∥ ,
‖Yn(t)‖ = ‖Cn(t) −C1,n−1(t)‖ ≤

2(1 − α)
(2 − α)M(α)

‖K3(Cn−1(t), t) − K1(C1,n−2(t), t)‖

+
2α

(2 − α)M(α)

∥∥∥∥∥∥
∫ t

0
[K1(Cn−1(x), x) − K1(C1,n−2(x), x)]dx

∥∥∥∥∥∥ ,
‖Zn(t)‖ = ‖Rn(t) − R1,n−1(t)‖ ≤

2(1 − α)
(2 − α)M(α)

‖K4(Rn−1(t), t) − K1(R1,n−2(t), t)‖

+
2α

(2 − α)M(α)

∥∥∥∥∥∥
∫ t

0
[K1(Rn−1(x), x) − K1(R1,n−2(x), x)]dx

∥∥∥∥∥∥ ,

(4.3)

where

∞∑
i=0

Wi(t) = S n(t),
∞∑

i=0

Xi(t) = An(t),
∞∑

i=0

Yi(t) = Cn(t),
∞∑

i=0

Zi(t) = Rn(t). (4.4)
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Moreover, the kernels K1, . . . ,K4 satisfy the Lipschitz property, so one can write

‖Wn(t)‖ = ‖S n(t) − S 1,n−1(t)‖ ≤
2(1 − α)

(2 − α)M(α)
η1‖S n−1(t) − S 1,n−2(t)‖

+
2α

M(α)(2 − α)
η2

∫ t

0

∥∥∥S n−1(x) − S 1,n−2(x)
∥∥∥ dx,

‖Xn(t)‖ = ‖An(t) − A1,n−1(t)‖ ≤
2(1 − α)

(2 − α)M(α)
η3‖An−1(t) − A1,n−2(t)‖

+
2α

M(α)(2 − α)
η4

∫ t

0

∥∥∥An−1(x) − A1,n−2(x)
∥∥∥ dx,

‖Yn(t)‖ = ‖Cn(t) −C1,n−1(t)‖ ≤
2(1 − α)

(2 − α)M(α)
η5‖Cn−1(t) −C1,n−2(t)‖

+
2α

M(α)(2 − α)
η6

∫ t

0

∥∥∥Cn−1(x) −C1,n−2(x)
∥∥∥ dx,

‖Zn(t)‖ = ‖Rn(t) − R1,n−1(t)‖ ≤
2(1 − α)

(2 − α)M(α)
η7‖Rn−1(t) − R1,n−2(t)‖

+
2α

M(α)(2 − α)
η8

∫ t

0

∥∥∥Rn−1(x) − R1,n−2(x)
∥∥∥ dx.

(4.5)

Theorem 4.2. The solution of the proposed fractional order model (3.2) exists under Caputo-Fabrizio-
Caputo operator.

Proof. The employment of Eq (4.4) and the use of recursive scheme leads to the following system

‖Wn(t)‖ ≤ ‖S (0)‖ +

{(
2η1(1 − α)

M(α)(2 − α)

)n}
+

{(
2η2αt

M(α)(2 − α)

)n}
,

‖Xn(t)‖ ≤ ‖A(0)‖ +

{(
2(1 − α)η3

(2 − α)M(α)

)n}
+

{(
2αη4t

(2 − α)M(α)

)n}
,

‖Yn(t)‖ ≤ ‖C(0)‖ +

{(
2η5(1 − α)

M(α)(2 − α)

)n}
+

{(
2η6αt

M(α)(2 − α)

)n}
,

‖Zn(t)‖ ≤ ‖R(0)‖ +

{(
2(1 − α)η7

(2 − α)M(α)

)n}
+

{(
2αη8t

(2 − α)M(α)

)n}
.

(4.6)

Now to investigate that the functions in Eq (4.6) are solutions of the model (3.2) we make use of the
following substitutions

S (t) = S n(t) − Π1,n(t), A(t) = An(t) − Π2,n(t), C(t) = Cn(t) − Π3,n(t),
R(t) = Rn(t) − Π4,n(t),

(4.7)
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where Π1,n(t), Π2,n(t), Π3,n(t), Π4,n(t) represent the remainder terms of the series solutions. Thus

S (t) − S n−1(t) =
2(1 − α)K1(S (t) − Π1,n(t))

M(α)(2 − α)
+

2α
M(α)(2 − α)

∫ t

0
K1(S (x) − Π1,n(x))dx,

A(t) − S n−1(t) =
2K2(A(t) − Π2,n(t))(1 − α)

M(α)(2 − α)
+

2α
(2 − α)M(α)

∫ t

0
K2(A(x) − Π2,n(x))dx,

C(t) − S n−1(t) =
2K3(C(t) − Π3,n(t))(1 − α)

M(α)(2 − α)
+

2α
(2 − α)M(α)

∫ t

0
K3(C(x) − Π3,n(x))dx,

R(t) − S n−1(t) =
2(1 − α)K4(R(t) − Π4,n(t))

(2 − α)M(α)
+

2α
(2 − α)M(α)

∫ t

0
K4(R(x) − Π4,n(x))dx.

(4.8)

Applying the norm on both sides with the application of Lipschitz axiom the above assertion yields∥∥∥∥∥∥S (t) −
2(1 − α)K1(S (t), t)

(2 − α)M(α)
− S (0) −

2α
(2 − α)M(α)

∫ t

0
K1(S (x), x)dx

∥∥∥∥∥∥
≤ ‖Π1,n(t)‖

{
1 +

(
2(1 − α)η1

(2 − α)M(α)
+

2αη2t
(2 − α)M(α)

)}
,∥∥∥∥∥∥A(t) −

2(1 − α)K2(A(t), t)
(2 − α)M(α)

− A(0) −
2α

(2 − α)M(α)

∫ t

0
K2(A(x), x)dx

∥∥∥∥∥∥
≤ ‖Π2,n(t)‖

{
1 +

(
2(1 − α)η3

(2 − α)M(α)
+

2αη4t
(2 − α)M(α)

)}
,∥∥∥∥∥∥C(t) −

2(1 − α)K3(C(t), t)
(2 − α)M(α)

−C(0) −
2α

(2 − α)M(α)

∫ t

0
K3(C(x), x)dx

∥∥∥∥∥∥
≤ ‖Π3,n(t)‖

{
1 +

(
2(1 − α)η5

(2 − α)M(α)
+

2αη6t
(2 − α)M(α)

)}
,∥∥∥∥∥∥R(t) −

2(1 − α)K4(R(t), t)
M(α)(2 − α)

− R(0) −
2α

(2 − α)M(α)

∫ t

0
K4(R(x), x)dx

∥∥∥∥∥∥
≤ ‖Π4,n(t)‖

{
1 +

(
2(1 − α)η7

(2 − α)M(α)
+

2αη8t
(2 − α)M(α)

)}
.

(4.9)

Upon the application of lim as t approaches∞ implies that

S (t) =
2(1 − α)K1(S (t), t)

M(α)(2 − α)
+

2α
M(α)(2 − α)

∫ t

0
K1(S (x), x)dx + S (0),

A(t) =
2(1 − α)K2(A(t), t)

(2 − α)M(α)
+

2α
(2 − α)M(α)

∫ t

0
K2(A(x), x)dx + A(0),

C(t) =
2(1 − α)K3(C(t), t)

(2 − α)M(α)
+

2α
(2 − α)M(α)

∫ t

0
K3(C(x), x)dx + C(0),

R(t) =
2(1 − α)K4(R(t), t)

M(α)(2 − α)
+

2α
M(α)(2 − α)

∫ t

0
K4(R(x), x)dx + R(0),

(4.10)

which proves the conclusion i.e., the above are solutions of the model as given by Eq (3.2).

Theorem 4.3. The fractional order epidemiological model as reported by Eq (3.2) posses a solution
which is unique.
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Proof. On the contradiction basis, we assume that (S
′

(t), A
′

(t),C
′

(t),R
′

(t)) is also the solution of the
proposed fractional epidemiological model (3.2), thus

S (t) − S
′

(t) =
2(1 − α)

{
K1(S (t), t) − K1(S

′

(t), t)
}

(2 − α)M(α)

+
2α

(2 − α)M(α)

∫ t

0

{
K1(S (x), x) − K1(S

′

(x), x)
}

dx,

A(t) − A
′

(t) =
2(1 − α)

{
K2(A(t), t) − K2(A

′

(t), t)
}

(2 − α)M(α)

+
2α

(2 − α)M(α)

∫ t

0

{
K2(A(x), x) − K2(A

′

(x), x)
}

dx,

C(t) −C
′

(t) =
2(1 − α)

{
K3(C(t), t) − K3(C

′

(t), t)
}

(2 − α)M(α)

+
2α

(2 − α)M(α)

∫ t

0

{
K3(C(x), x) − K3(C

′

(x), x)
}

dx,

R(t) − R
′

(t) =
2(1 − α)

{
K4(R(t), t) − K4(S

′

(t), t)
}

(2 − α)M(α)

+
2α

(2 − α)M(α)

∫ t

0

{
K4(R(x), x) − K4(R

′

(x), x)
}

dx.

(4.11)

Upon the property of majorizing we may write the above system as

‖S (t) − S
′

(t)‖ =
2(1 − α)‖K1(S (t), t) − K1(S

′

(t), t)‖
(2 − α)M(α)

+
2α

(2 − α)M(α)

∫ t

0
‖K1(S (x), x) − K1(S

′

(x), x)‖dx,

‖A(t) − A
′

(t)‖ =
2(1 − α)‖K2(A(t), t) − K2(A

′

(t), t)‖
(2 − α)M(α)

+
2α

(2 − α)M(α)

∫ t

0
‖K2(A(x), x) − K2(A

′

(x), x)‖dx,

‖C(t) −C
′

(t)‖ =
2(1 − α)‖K3(C(t), t) − K3(C

′

(t), t)‖
(2 − α)M(α)

+
2α

(2 − α)M(α)

∫ t

0
‖K3(C(x), x) − K3(C

′

(x), x)‖dx,

‖R(t) − R
′

(t)‖ =
2(1 − α)‖K4(R(t), t) − K4(S

′

(t), t)‖
(2 − α)M(α)

+
2α

(2 − α)M(α)

∫ t

0
‖K4(R(x), x) − K4(R

′

(x), x)‖dx.

(4.12)
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Using the results derived in Theorems 4.1 and 4.2, we obtain

‖S (t) − S
′

(t)‖ ≤
2η1ψ1(1 − α)
(2 − α)M(α)

+

(
2η2αψ2t

M(α)(2 − α)

)n

,

‖A(t) − A
′

(t)‖ ≤
2η3(1 − α)ψ3

M(α)(2 − α)
+

(
2η4αψ4t

(2 − α)M(α)

)n

,

‖C(t) −C
′

(t)‖ ≤
2(1 − α)η5ψ5

(2 − α)M(α)
+

(
2αη6ψ6t

(2 − α)M(α)

)n

,

‖R(t) − R
′

(t)‖ ≤
2η7ψ7(1 − α)
M(α)(2 − α)

+

(
2αη8ψ8t

M(α)(2 − α)

)n

.

(4.13)

The inequalities as reported in Eq (4.13) holds for every value of n, thus we obtain

S (t) = S
′

(t), A(t) = A
′

(t), C(t) = C
′

(t), R(t) = R
′

(t). (4.14)

The positivity and boundedness of the fractional-order model (3.2) will be proved to show the well
possed-ness of the problem. Further, we discuss a certain region for the dynamics of the proposed
problem which is invariant positively. For this, the Lemmas developed has been explored below.

Lemma 4.1. Let (S (t), A(t),C(t),R(t)) be the solution of model (3.2) and assume that possessing non-
negative initial conditions, then the solutions are non-negative for all t ≥ 0.

Proof. Let us consider a general fractional-order model of the Eq (3.2) becomes

GDΩ
0,t(S (t)) = ΠΩ − βΩA(t)S (t) − γΩβΩC(t)S (t) − ρΩ

1 S (t),
GDΩ

0,t(A(t)) = p
(
βΩA(t)S (t) + βΩγΩC(t)S (t)

)
− ρΩ

2 A(t),
GDΩ

0,t(C(t)) = (1 − p)
(
βΩA(t)S (t) + βΩγΩC(t)S (t)

)
+ qγΩ

1 A(t) − ρΩ
3 C(t),

GDΩ
0,t(R(t)) = (1 − q)γΩ

1 A(t) + γΩ
2 C(t) + νΩS (t) − µΩ

0 R(t),

(4.15)

where G is the operator for fractional-order under consideration, while the parameter of fractional order
is in Ω. So the above system leads to

GDΩ
0,t(S (t))

∣∣∣∣∣
κ(S )

= ΠΩ > 0, GDΩ
0,t(A(t))

∣∣∣∣∣
κ(A)

=
(
βΩA(t)S (t) + γΩβΩC(t)S (t)

)
p ≥ 0,

GDΩ
0,t(C(t))

∣∣∣∣∣
κ(C)

=
(
βΩA(t)S (t) + βΩγΩC(t)S (t)

)
(1 − p) + qγΩ

1 A(t) ≥ 0,

GDΩ
0,t(R(t))

∣∣∣∣∣
κ(R)

= γΩ
1 (1 − q)A(t) + γΩ

2 C(t) + νΩS (t) > 0,

(4.16)

where κ(ξ) =
{
ξ = 0 and S , A,C,R contained in C(R+ × R+)

}
and ξ ∈ {S , A,C,R}. Following the result

in [48], it is therefore concluded that any solutions (S (t), A(t),C(t),R(t)) of model (4.15) are positive
for all non-negative t.
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Lemma 4.2. Let Φ be the region (set) for considering the dynamics of the proposed model (3.2) within
it, is invariant positively, then

Φ =

(S (t), A(t),C(t),R(t)) ∈ R4
+ : S + A + C + R ≤

(
Π

ρ1

)Ω
 . (4.17)

Proof. Since N symbolizes the total population, then N = S + A + C + R, which implies that

CF DΩ
0,t(N(t)) + µΩ

0 N(t) ≤ ΠΩ. (4.18)

The solution of Eq (4.18) in the Caputo-Fabrizio sense leads to the assertion given by

N(t) ≤
(

Π

ρ1

)Ω

+ EΩ

(
−µΩ

0 tΩ
) (

N(0) −
ΠΩ

µΩ
0

)
. (4.19)

In Eq (4.19) E(.) represents the Mittag-Leffler function i.e., EΩ(Z) =
∑∞

n=0
Zn

Γ(Ωi+1) . It could be noted

from the above Eq (4.19) that whenever time increases with no bound, then N(t) →
(

Π
ρ1

)Ω
. Hence,

if N(0) ≤
(

Π
ρ1

)Ω
, then N(t) ≤

(
Π
ρ1

)Ω
for all t > 0, while whenever N(0) >

(
Π
ρ1

)Ω
, then N goes into

the feasible region Φ, and will never leave. So it could be concluded that the fractional order model
dynamics can be studied in the feasible region Φ.

5. Steady state analysis

The proposed epidemiological model (3.1) of the SARS-CoV-virus is examined for the equilibria:
disease free and endemic states. Let D1 be the disease free equilibrium point of the model, then for
analyzing this point the population under consideration is assumed to be infection free. Thus the system
reported by Eq (3.1) has a disease free equilibrium D1 =

(
S 0, A0,C0,R0

)
, where S 0 = Π

ρ1
, A0 = C0 = 0

and R0 = νΠ
µ0ρ1

. Now to calculate the basic reproductive number, we assume X = (A,C)T then system
(3.1) yields

dX
dt

∣∣∣∣∣
D1

= F − V, (5.1)

where

F =

[
pβS 0 pβγS 0

(1 − p)pβS 0 (1 − p)βγS 0

]
, V =

[
ρ2 0
−γ1q ρ3

]
. (5.2)

Therefore, the basic reproductive number is the spectral radius of ρ(FV−1), i.e., R0 = R1 + R2 + R3,
where

R1 =
pΠβ

ρ1ρ2
, R2 =

Πγγ1βpq
ρ1ρ2ρ3

, R3 =
(1 − p)Πγβ

ρ1ρ3
. (5.3)

In a similar way it is assumed that the endemic state of the model (3.1) is D2 = (S ∗, A∗,C∗,R∗), then

S ∗ =
ρ2ρ3

β (ρ3 p + γ1qγp + ρ2γ(1 − p))
, A∗ =

pρ1ρ2ρ3 [R0 − 1]
ρ2β (ρ3 p + γ1qγp + ρ2γ(1 − p))

,

C∗ =
q1 (pqγ1 + ρ2(1 − p)) [R0 − 1]
β (ρ3 p + γ1qγp + ρ2γ(1 − p))

, R∗ =
1
µ0

[
(1 − q)a∗ + γ2c∗ + νs∗

]
.

(5.4)
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The linearizable version of the proposed SARS-CoV-2 virus model (3.1) leads to a matrix given by

J =


−βA − γβC − ρ1 −βS −γβS 0

p(βA + γβC) pβS − ρ2 pγβS 0
(1 − p)(βA + γβC) (1 − p)βS (1 − p)γβS − ρ3 0

ν (1 − q)γ1 γ2 −µ0

 . (5.5)

Two eigenvalues of the Jacobian matrix J around the disease-free state are −µ0 and −ρ1, while the
remaining two are the roots of the quadratic equation is given by

λ2 + {ρ2(1 − R1) + ρ3(1 − R3)} λ + ρ2ρ3 {1 − R1 − R2} . (5.6)

It could be noted that that the roots of the above Eq (5.6) are negative if R1 < 1, R3 < 1 and R1 +

R2 < 1, which implies that the disease-free state D1 is stable locally asymptotically whenever R0 < 1.
Similarly, it can be shown that the disease endemic state D2 of the proposed model (3.1) is stable
locally asymptotically whenever R0 > 1.

To discuss the sensitivity of the basic reproductive number (R0) to each epidemic parameters of the
model (3.1) we perform the following

∂R0

∂β
=

pΠ

ρ1ρ2
+

Πγγ1 pq
ρ1ρ2ρ3

+
(1 − p) Πγ0

ρ1ρ3
> 0,

∂R0

∂γ
=

Πγ1βpq
ρ1ρ2ρ3

+
(1 − p) Πβ

ρ1ρ3
> 0,

∂R0

∂ν
= −

pΠβ

ρ2
1ρ2
−

Πγγ1βpq
ρ2

1ρ2ρ3
< 0,

∂R0

∂γ2
= −

pqΠβγγ1

ρ1ρ2ρ
2
3

−
(1 − p)Πγβ
ρ1ρ

2
3ρ3

< 0.
(5.7)

Eq (5.7) describes that the basic reproductive number rises with the increasing of β and γ, as depicted
by Figure 1a, while reduces whenever the value of ν and γ2 rises, as shown in Figure 1b.
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Figure 1. The graph visualizing the sensitivity analysis of the basic reproductive number
verses the epidemic parameters γ, β, ν and γ2.
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6. Numerical simulation

In this section, the numerical simulations are carried out to understand the temporal dynamical
behavior corresponding with the SARS-CoV-virus fractional-order epidemiological model (3.2). We
parameterize the proposed model against the real data of SARS-CoV-2 virus reported in the Sultanate
of Oman from 1st January 2021 to 23rd May 2021. Based on reported data we estimate the epidemic
parameters and then simulate the model for the long run. For this, the Ordinary Least Square (OLS)
method is used. Using OLS to minimize the error terms for daily reported cases and the simulated data
in Eq (6.1), and the associated relative error is used in the goodness of fit

min

 n∑
i=1

Ci − ĉi

C2
i

 . (6.1)

In the above Eq (6.1), Ci and Ĉi are the cumulative number of reported cases and the cumulative number
of simulated cases. It could be noted that the crude birth rate (per 1000 population) is 25.2 and the total
population of the Sultanate of Oman is 4.975 million, and our unit of time is the day, therefore the
value of Π is calculated as Π = (4975000 × 25.2) /(1000 × 365). Moreover, the data fitting verse the
proposed model is depicted in Figure 2. Thus the parameter’s value is estimated and presented in Table
1. It is also is very important to show the feasibility of the reported work and investigate its validity

Table 1. The estimated value of the model parameters fitted by Ordinary Least Square (OLS)
method, while some of the parameters value are assumed with biological feasibility.

Parameter Value Source Parameter Value Source
Π 343.0 assumed β 0.440 fitted
ν 0.010 fitted γ 0.457 fitted
γ1 0.059 fitted p 0.260 fitted
γ2 0.0081 fitted q 0.59 assumed
µ1 0.080 assumed µ2 0.033 assumed
µ0 0.01 assumed

of using large-scale numerical simulations. Unlike the traditional numerical analysis, there are not
as many options to choose schemes for the numerical analysis of the fractional-order epidemiological
model’s simulations [49, 50]. Thus, there is a need for extensive research to develop new schemes
and techniques that are both convergent and robust in the field of fractional calculus. By following
the numerical schemes as reported in [51–53], we assume [0, t] interval of simulation and h = 10−3 is
the time step for integration, and n = T

h , n ∈ N, and u = 0, 1, 2, . . . , n. So the scheme may take the
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Figure 2. The trajectories visualizes the real data of SARS-CoV virus vs model fitting.

following structure:

CFCS u+1 = S (0) + (1 − α)
{
Πα − βαA(t)S (t) − γαβαC(t)S (t) − ρα1S (t)

}
+ αh

u∑
k=0

{Πα − βαA(t)S (t) − γαβαC(t)S (t) − ρα1S (t)},

CFCAu+1 = A(0) + (1 − α)
{
p
(
βαA(t)S (t) + γαβαC(t)S (t)

)
− ρα2 A(t)

}
+ αh

u∑
k=0

{p
(
βαA(t)S (t) + γαβαC(t)S (t)

)
− ρα2 A(t)},

CFCCu+1 = C(0) + (1 − α)
{
(1 − p)

(
βαA(t)S (t) + βαγαC(t)S (t)

)
+ qγα1 A(t)

− ρα3C(t)
}
+ αh

u∑
k=0

((1 − p)
{
βαS (t)A(t) + βαγαC(t)S (t)

}
+ qγα1 A(t)

− ρα3C(t)),
CFCRu+1 = (1 − α)

{
(1 − q)γα1 A(t) + γα2C(t) + ναS (t) − µα0R(t)

}
+ αh

u∑
k=0

{(1 − q)γα1 A(t) + γα2C(t) + ναS (t) − µα0R(t)} + R(0).

(6.2)

This part of the study is specified to present the graphical illustrations of the proposed model. For this
purpose, the value of the model parameters is considered from the Table 1, while moving on the same
way the various order of α are taken to be 0.6, 0.7, 0.8, 0.9 and 1.0 to demonstrate the difference
between integer-order and fractional-order and its effect on the disease transmission. Consequently,
the results are depicted in Figures 3–6, which represent the dynamical behaviors of the compartmental
population of the Caputo-Fabrizio-Caputo fractional-order model (3.2). More precisely, different
trajectories of Figure 3 visualize the dynamical behaviors of the susceptible population for the
different values of α. Similarly, the various trajectories of Figures 4–6 demonstrate the dynamical
behaviors of the symptomatic, asymptomatic, and recovered population against the different values of
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the fractional-order parameter (α). It is observed that the fractional-order parameter has a great
influence on disease transmission. It can be also seen that there is an inverse relationship between the
fractional-order parameter (α) and the dynamics of the susceptible, asymptomatic, and symptomatic
population i.e., increasing the value of α decreases the density of S , A and C are decreases as shown
in Figures 3–5 respectively. On the other, a direct relation has been observed in the case of the
dynamics of recovered population, and so increases the density of recovered population whenever the
value of fractional parameter increasing as reported in Figure 6. This indicates that the
Caputo-Fabrizio-Caputo, fractional-order reveals more valuable outputs regarding the model behavior
which are usually could not be obtained in the case of the integer-order model.
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Figure 3. The various trajectories visualizing the large-scale dynamics of the proposed
fractional order Caputo-Fabrizio-Caputo model (3.2) for the susceptible individuals (S (t))
against different instances of fractional order parameter (α), where the other epidemic
parameters values are reported in Table 1, and initial sizes of the population are
(100, 90, 80, 70).

7. Conclusions

The research work carried out in this analysis consists of a new fractional-order epidemiological
model related to the SARS-CoV-2 virus disease by using the CFC operator. The proposed
Caputo-Fabrizio model has been balanced dimensionally in respect of involved parameters. Upon the
application of the theory of fixed point, it has been rigorously proved that the solution of the model
under the CFC operator exists and is unique. We also discussed the well possed-ness of the problem
and showed that the solutions are bounded as well as positive. Steady-state analysis with sensitivity is
also examined. Real data of SARS-CoV-2 virus are used and parameterized the proposed model.
Finally, both the classical and fractional order Caputo-Fabrizio-Caputo model is simulated
numerically and showed the feasibility and advantage of the obtained result. Thus the major findings
of this work investigate that CFC fractional-order operator is the best choice instead of classical
order, where the long run of the models show that the SARS-CoV-2 virus infection decreasing
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Figure 4. The various trajectories visualizing the large-scale dynamics of the Caputo-
Fabrizio-Caputo model (3.2) for the asymptomatic individuals (A(t)) against different
instances of fractional order parameter (α), where the other epidemic parameters values are
reported in Table 1, and initial sizes of the population are (100, 90, 80, 70).
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Figure 5. The trajectories visualizing the large-scale dynamics of the Caputo-Fabrizio-
Caputo model (3.2) for the symptomatic individuals (C(t)) against different instances of
fractional order parameter (α), where the values of other epidemic parameters are reported in
Table 1, and the initial sizes of the population are (100, 90, 80, 70).
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Figure 6. The trajectories visualizing the large-scale dynamics of the Caputo-Fabrizio-
Caputo model (3.2) for the recovered individuals (R(t)) against different instances of
fractional order parameter (α), where the value of other epidemic parameters are reported
in Table 1, and the initial sizes of the population are (100, 90, 80, 70).

asymptotically.
Nonetheless, the CFC operator yielded interesting output in the reported work however there are

some other operators are introduced very recently such as Atangana–Baleanu–Caputo,
Atangana–Gomez, Atangana bi-order, Atangana–Koca, variable order, distributed orders and the
fractal-fractional operator to capture much more information and complexities occurs in the real
world problems, therefore in a near future, these operators are to be considered to analyze the
epidemiological models of SARS-CoV-virus infection and other diseases.
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3. D. Baleanu, Z. B. Güvenç, J. T. Machado, New Trends in Nanotechnology and Fractional Calculus
Applications, Springer, New York, 2010.

4. D. Baleanu, J. A. T. Machado, A. C. Luo, Fractional Dynamics and Control, Springer Science
and Business Media, 2011.

5. G. Zaman, Y. H. Kang, I. H. Jung, Stability analysis and optimal vaccination of an SIR epidemic
model, BioSystems, 93 (2008), 240-249.

6. Y. Wang, J. Cao, Global dynamics of a network epidemic model for waterborne diseases spread,
Appl. Math. Comput., 237 (2014), 474–488.

7. H. Abboubakar, J. C. Kamgang, D. Tieudjo, Backward bifurcation and control in transmission
dynamics of arboviral diseases, Math. Biosci., 278 (2016), 100-129.

8. T. Khan, G. Zaman, M. I. Chohan, The transmission dynamic and optimal control of acute and
chronic hepatitis B, J. Biol. Dyn., 11 (2017), 172-189.

9. Y. Tu, S. Gao, Y. Liu, D. Chen, Y. Xu, Transmission dynamics and optimal control of stage-
structured HLB model, J. Biol. Dyn., 16 (2019), 5180.

10. A. Akgül, S. H. Khoshnaw, A. S. Abdalrahman, Mathematical modeling for enzyme inhibitors
with slow and fast subsystems, Arab J. Basic Appl. Sci., 27 (2020), 442–449.

11. A. Atangana, Modelling the spread of COVID-19 with new fractal-fractional operators: can the
lockdown save mankind before vaccination, Chaos, Solitons Fractals, 136 (2020), 109860.

12. B. Ghanbari, A. Atangana, A new application of fractional Atangana–Baleanu derivatives:
designing ABC-fractional masks in image processing, Physica A: Stat. Mech. Appl., 542 (2020),
123516.

13. A. G. M. Selvam, J. Alzabut, D. A. Vianny, M. Jacintha, F. B. Yousef, Modeling and stability
analysis of the spread of novel coronavirus disease COVID-19, Int. J. Biomath., 2021 (2021),
2150035.

14. F. Bozkurt, A. Yousef, D. Baleanu, J. Alzabut, A mathematical model of the evolution and spread
of pathogenic coronaviruses from natural host to human host, Chaos, Solitons Fractals, 138
(2020), 109931.

15. K. M. Owolabi, A. Atangana, A. Akgul, Modelling and analysis of fractal-fractional partial
differential equations: application to reaction-diffusion model, Alexandria Eng. J., 59 (2020),
2477–2490.

16. H. Mohammadi, S. Rezapour, A. Jajarmi, On the fractional SIRD mathematical model and control
for the transmission of COVID-19: the first and the second waves of the disease in Iran and Japan,
ISA Trans., 2021.

17. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential
Equations, Elsevier, 204 (2006).

Mathematical Biosciences and Engineering Volume 18, Issue 5, 6095–6116.



6114
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